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PREFACE

INTRODUCTION

I am grateful for the enthusiastic reception given to my book Linear and Combinatorial
Programming published in 1976. Many readers from all over the world commented that
they liked Chapter 16 on the Linear Complementarity Problem (LCP) in this book, but
found it too brief, and suggested that a new up-to-date book devoted exclusively to this
topic, covering all aspects of linear complementarity would be worthwhile. This book is
the result of the encouragement I have received from all these suggestions.

An important class of applications for the LCP stems from the fact that the neces-
sary optimality conditions for a Quadratic Programming Problem (QP) lead to an LCP.
Until recently, a practitioner of mathematical programming could have brushed off QP as
an academically interesting generalization of linear programming which is not very use-
ful. But the recent development of recursive quadratic programming methods for solving
Nonlinear Programming Problems (NLP) has changed all that. These methods solve an
NLP through a sequence of quadratic approximations, and have become extremely popu-
lar. They have suddenly made QP and thereby LCP an important topic in mathematical
programming with a large number of practical applications. Because of this, the study of
LCP is attracting a great deal of attention both in academic curricula and in the training
of practitioners.

THE OBJECTIVES

1. To provide an in-depth and clear treatment of all the important practical, technical,
computational, geometric, and mathematical aspects of the LCP, QP, and their various
applications.

2. To discuss clearly the various algorithms for solving the LCP, to present their efficient
implementation for the Computer, and to discuss their computational complexity.

3. To present the practical applications of these algorithms and extensions of these al-
gorithms to solve general nonlinear programming problems.

4. To survey new methods for solving linear programs, proposed subsequently to the
publication of [2.26].

BACKGROUND NEEDED

The background required to study this book is some familiarity with matrix algebra and
linear programming (LP). The basics of LP are reviewed in Chapters 1 and 2.
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SUMMARY OF CHAPTER CONTENTS

The book begins with a section titled ‘notation’ in which all the symbols and several terms
are defined. It is strongly recommended that the reader peruse this section first at initial
reading, and refer to it whenever there is a question about the meaning of some symbol or
term.

Chapter 1 presents a clear geometric interpretation of the LCP through the definition
of the system of complementary cones as a generalization of the set of orthants in R".
Applications to LP, QP, and nonzero sum game problems are discussed. There is a complete
discussion of positive definiteness and positive semidefiniteness of square matrices, their
relationship to convexity, together with efficient pivotal methods for checking whether
these properties hold for a given matrix. Various applications of QP are discussed, as well
as the recursive quadratic programming method for solving NLP models.

Chapter 2 presents a complete discussion of the many variants of the complemen-
tary pivot method and proofs of its convergence on different classes of LCPs. Section
2.7 contains a very complete, lucid, but elementary treatment of the extensions of the
complementary pivot method to simplicial methods for computing fixed points using tri-
angulations of R", and various applications of these methods to solve a variety of general
NLP models and nonlinear complementarity problems.

Chapter 3 covers most of the theoretical properties of the LCP. There is extensive
treatment of the various separation properties in the class of complementary cones, and
a complete discussion of principal pivot transforms of matrices. In this chapter we also
discuss the various classes of matrices that arise in the study of the LCP. Chapter 4
provides a survey of various principal pivoting methods for solving the LCP. Algorithms
for parametric LCP are presented in Chapter 5.

Chapter 6 contains results on the worst case computational complexity of the com-
plementary and the principal pivoting methods for the LCP. Chapter 7 presents a special
algorithm for the LCP associated with positive definite symmetric matrices, based on or-
thogonal projections, which turned out to be very efficient in computational tests. Chapter
8 presents the polynomially bounded ellipsoid methods for solving LLCPs associated with
positive semidefinite matrices, or equivalently convex QPs.

Chapter 9 presents various iterative methods for LCPs. In Chapter 10 we present
an extensive survey of various descent methods for unconstrained and linearly constrained
minimization problems; these techniques provide alternative methods for solving quadratic
programming problems. In Chapter 11 we discuss some of the newer algorithms proposed
for solving linear programming problems and their possible extensions to solve LCPs, and
we discuss several unsolved research problems in linear complementarity.

To make the book self-contained, in the appendix we provide a complete treatment
of theorems of alternatives for linear systems, properties of convex functions and convex
sets, and various optimality conditions for nonlinear programming problems.
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EXERCISES

Each chapter contains a wealth of various types of exercises. References are provided
for theoretical exercises constructed from published literature. A new sequence of exercise
numbers begins with each chapter (e.g. Exercise 3.2 refers to Exercise number 2 of Chapter
3).

HOW TO USE THE BOOK IN A COURSE

This book is ideally suited for first year graduate level courses in Mathematical Program-
ming. For teaching a course in nonlinear programming, the best order for presenting the
material may be the following: Section 10.1 (formulation example), 10.2 (types of solutions
in NLP), 10.3 (types of nonlinear programs and what can and cannot be done efficiently by
existing methods), 10.4 (can we at least compute a local minimum efficiently), 10.5 (pre-
cision in computation), 10.6 (rates of convergence), Appendix (theorems of alternatives
for linear systems of constraints; convex sets and separating hyperplane theorems; convex,
concave functions and their properties; optimality conditions), Chapters 1 to 9 in serial
order; remaining portions of Chapter 10; and some supplemental material on algorithms
for solving nonlinearly constrained problems like the GRG, penalty and barrier methods,
and augmented Lagrangian methods. For teaching a course in linear complementarity us-
ing the book, it is best to cover the Appendix first, and then go through Chapters 1 to 10
in serial order.

The material contained in Chapters 12, 14, 15, 16 of [2.26] can be combined with that
in Appendices 1, 2, Chapter 9 and Section 11.4 of this book to teach an advanced course
in linear programming.

Since the book is so complete and comprehensive, it should prove very useful for
researchers in LCP, and practitioners using LCP and nonlinear programming in applied
work.
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Superscript”

Rn
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NOTATION

Denotes transposition. A7 is the transpose of the
matrix A. If z is a column vector, 2T is the same
vector written as a row vector and vice versa. Col-
umn vectors are printed as transposes of row vec-
tors to conserve space in the text.

)T

w2 = (21,.. are the col-

umn vectors of variables in a linear complementar-

’w:(wl,-- <y Zn

ity problem of order n.

A linear complementarity problem in wich the data
is the column vector ¢ = (q1,...,q,)T, and square

matrix M = (m;;) of order n.

Real Euclidean n-dimensional vector space. It is
the set of all ordered vectors (x1, ..
each x; is a real number, with the usual operations

.y Tp), where
of addition and scalar multiplication defined on it.

Approximately equal to.
A tends to zero.

A tends to zero through positive values.

These bold face letters usually denote sets that are
defined in that section or chapter.

Summation sign.

Sum of terms a; over j contained in the set J.

Given two vectors ¢ = (z;), ¥y = (y;) n R", z >y
means that z; > y;, that is, z; —y; is nonnegative,
for all j. # > y means that x > y but x # y, that is,
x; —y; is nonnegative for all 7 and strictly positive
for at least one j. = > y means that z; —y; > 0,
strictly positive, for all . The vector x is said to
be nonnegative if z > 0, semipositive if z > 0, and
positive if x > 0.

The 7th row vector of the matrix A.

XV
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A

Superscripts

Exponents

log,x

NOTATION

The jth column vector of the matrix A.

We use superscripts to enumerate vectors or ma-
trices or elements in any set. When considering
a set of vectors, in R", " may used to denote
the rth vector in the set, and it will be the vector
(z7,...,2")T. In a similar manner, while consider-
ing a sequence of matrices, the symbol P" may be
used to denote the rth matrix in the sequence. Su-
perscripts should not be confused with exponents

and these are distinguished by different type styles.

In the symbol €*, r is the exponent. € = exex...
x €, where there are r €’s in this product. Notice the
difference in type style between superscripts and
exponents.

Defined only for positive numbers x. It is the log-
arithm of the positive real number x, with 2 as the
base (or radix).

Euclidean norm of a vector x € R". If z = (x4, .. .,
zn), |7l = +v/2T + ... + 2.

Defined only for real numbers a. It represents the
smallest integer that is greater than or equal to «,
and is often called the ceiling of . For example
[—4.3] = —4, [4.3] = 5.

Defined only for real numbers a. It represents the
larg-

est integer less than or equal to «, and is often
called the floor of a. For example |—4.3] = —5,
|14.3] = 4.

Infinity.

Set inclusion symbol. If F is a set, “F; € F” means
that “F} is an element of F”. Also “F5 ¢ F” means
that “F5 is not an element of F”.

Subset symbol. If E, T' are two sets, “E C IV
means that “E is a subset of I'’, or that “every
element in E is also an element of I'”.



— =

{1}

|F|

NOTATION

Set, union symbol. If D, H are two sets, D UH is
the set of all elements that are either in D or in H
or in both D and H.

Set intersection symbol. If D and H are two sets,
D N H is the set of all elements that are in both D
and H.

The empty set. The set containing no elements.

Set difference symbol. If D and H are two sets,
D \ H is the set of all elements of D that are not
in H.

Set brackets. The notation {z : some property}
represents the set of all elements x, satisfying the
property mentioned after the “:”.

If F is a set, this symbol denotes its cardinality,
that is, the number of distinct elements in the set
F.

o0
The base of the natural logarithms. e=1+ ) %,
n=1

if is approximately equal to 2.7.

The symbol e denotes a column vector, all of whose
entries are equal to 1. Its dimension is usually un-
derstood from the context. When we want to spec-
ify the dimension, e, denotes the column vector in
R", all of whose entries are equal to 1.

The symbol I denotes the unit matrix, its order
understood from the context. When we want to
specify the order, I, denotes the unit matrix of or-
der r.

Absolut value of the real number «.

This symbol indicates the end of a proof.

Ify = (y;) € R", let y;L = Maximum {0,y,},j =1
to n. Then y+ = (y7).

xvii
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Pos{Ay,..., Ay}

Pos(A)

(U1, .y U
c(M)
K(M)

Z(y), W(y)

NOTATION

Lexicographically greater than. Given two vectors
z = (z;), y = (y;) in R", > y means that for the
smallest j for which z;—y; # 0, we have z;—y; > 0.

If Ay,..., Ag are vectors in R" then Pos{A4y,...,
Ay ={y:y = A1+ +opAg, a1 20,..., 0 >

0}. It is the cone in R™ which is the nonnegative
hull of the set of vectors {A4,..., Ax}.

If A is a matrix, Pos(A) = {z : = Ay for some
y > 0}. It is the cone which is the nonnegative hull
of the column vectors of the matrix A.

n factorial. Defined only for nonnegative integers.
0! = 1. And n! is the product of all the positive
integers from 1 to n, whenever n is a positive inte-
ger.

Defined only for positive integers n > r. It is the
number of distinct subsets of r objects from a set
of n distinct objects. It is equal to #LT),

When vq,...,v,. are all column vectors from the
space R", say, and satisfy the property that the

set of column vectors {[ ! ] RN [ ! ]} is
V1 Up

linearly independent, then vq,...,v, are the ver-
tices of an (r — 1)-dimensional simplex, which is
their convex hull, this simplex is denoted by the
symbol (v, ...,v,). See Section 2.7.8.

The class of 2™ complementary cones associated
with the square matrix M of order n.

The union of all complementary cones in C(M). It
is the set of all vectors g for which the LCP (¢, M)
has at least one solution.

If y = (y1,...,9yn)T is a complementary vector for
the LCP (q, M) of order n, then Z(y) = {j : y; =
zi} and W(y) = {j : y; = w;}. See Section 3.1.



Miminum{ }

Infimum, minimum;
Supremum, maximum

NOTATION

The minimum number among the set of numbers
appearing inside the set brackets. Maximum{ }
has a similar meaning. If the set is empty we will
adopt the convention that the minimum in it is 400
and the maximum in it is —oo.

Let T' be a subset of R" and let f(x) be a real
valued function defined on I'. The infimum for
f(x) on T is defined to be the largest number «
satisfying: f(x) > « for all z € T'. If oy is the
infimum for f(x) on I', and there exists an Z €
T satisfying f(Z) = ao, then ay is said to be the
minimum value of f(z) on T' and Z is the point
which attains it. As an example let I' € R! be the
open interval 0 < z < 1, and let f(x) = x. The
infimum of f(z) on I in this example is 0, it is not
a minimum since 0 ¢ I', and there exists no point
z in ' where f(z) = 0. As another example let
I' ¢ R! be the unbounded set 1 < x < co and let
f(z) = 1. In this example, the infimum of f(z)
on I' is 0, and again this is not a minimum. In the
same manner, the supremum in I' of a real valued
function f(z) defined on I' C R", is the smallest
number v satisfying: f(z) < v for all z € T'. If
is the supremum of f(z) on I, and there exists an
% € T satisfying f(Z) = 7o, then 7 is said to be
the maximum value of f(x) on I'; and & is the
point which attains it.
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Local minimum,
global minimum

Cardinality

Principal Submatrix Fjj
of square matrix F'

BFGS updating formula

LCP
NLCP
LP

BFS

NOTATION

Consider an optimization problem in which an ob-
jective function 0(z), which is a real valued function
defined over R", is required to be minimized, sub-
ject to possibly some constraints on the decision
variables z. Let K C R" denote the set of feasible
solutions for this problem. A point £ € K is said
to be a global minimum for this problem if there
exists no z € K satisfying 0(z) < 6(&). A point
Z € K is said to be a local minimum for this prob-
lem if there exists an € > 0 such that the following
system has no feasible solution

rz e K
O(x) < 6(x)
|z —z|| <e

that is, z is a local minimum for this problem iff z is
a global minimum for 6(z) over KN{z : ||z — 7|| <
e}. See Section 10.2.

Defined only for sets. The cardinality of a set is
the number of distinct elements in it.

Let F = (fi;) be a given square matrix of order
n. Let J C {1,...,n}. The principal subma-
trix of F' determined by the subset J is the matrix
Fy3 = (fij: 1€ J,5 €J). See Section 1.3.1. The
determinant of Fyy is known as the principal sub-
determinant of F' corresponding to the subset J.

The Broyden-Fletcher-Goldfarb-Shanno formula for
updating a positive definite symmetric approxima-
tion to the Hessian (or its inverse) of a twice con-
tinuously real valued function 6(z) defined on R",

as the algorithm moves from one point to next. See
Sections 1.3.6 and 10.8.6.

Linear complementarity problem.
Nonlinear complementarity problem.
Linear program.

Basic feasible solution.



NLP

PD

PSD

ND

NSD

Section .55 i.7.k

Figure i.j

Reference [i.j]

Exercise i.j

Figure ¢, Exercise i,
Theorem i, Reference i,
Example 1

NOTATION

Nonlinear program.

Positive definite. A square matrix M of order n is
said to be PD if yT My > 0 for all y € R™, y # 0.

Positive semidefinite. A square matrix M of order
n is said to be PSD if y" My > 0 for all y € R".

Negative definite. A square matrix of order n is
said to be ND if y" My < 0 for all y € R", y # 0.

Negative semidefinite. A square matrix of order n
is said to be NSD if y" My < 0 for all y € R™.

Principal pivot transform. See Section 3.2.

This refer to the jth equation in the ith chapter.
Equations are numbered serially in each chapter.

The sections are numbered serially in each chapter.
“1.7” refers to section j in Chapter i. “i.7.k” refers
to subsection k in section z.j.

The jth figure in Chapter 7. The figures are num-
bered serially in this manner in each chapter.

The jth reference in the list of references given at
the end of the Chapter ¢. References given at the
end of each chapter are numbered serially.

The jth exercise in Chapter 7. Exercises are num-
bered serially in each chapter.

In the appendices, figures, examples, exercises, the-
orems, references, etc. are numbered serially using
a single number for each. So any figure, example,
exercise, theorem or reference with a single number
like this must be in the appendix.

xxi
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Linear Function,
affine function

Basis, basic vector,
basic solution,
basic feasible solution

Bounded set

Proper subset

Feasible solution

Optimum solution or
Optimum feasible
solution

Algorithm

NOTATION

The real valued function f(z) defined over x € R"
is called a linear function if f(z) = ciz1 + ... +
CnTy, Where cq,...,c, are constants, it satisfies the

property: f(ax' + Bz?) = af(z!) + Bf(x?) for all
z', 22 € R" and for all real numbers o, 3. The real
valued function g(z) defined over x € R" is said to
be an affine function if g(x) = vy + v121 + ... +
YnTn Where vo,7v1,...,7v, are constants, it satisfies
the property: g(az! + pr?) = ag(z!) + Bg(x?) for
all z', 22 € R" and for all real numbers a, /3 satis-
fying o + 8 = 1. Every affine function defined over

R" in a linear function plus a constant.

See Section 2.1.

A subset S C R” is bounded if there exists a finite
real number « such that ||z|| < a, for all z € S.

If E is a subset, of a set I', E is said to be a proper
subset of I' if E # I, that is, if '\ E # ().

A numerical vector that satisfies all the constraints
and restrictions in the problem.

A feasible solution that optimizes (i. e., either max-
imizes or minimizes as required) the objective value
among all feasible solutions.

The word from the last name of the Persian scholar
Abu Ja’far Mohammed ibn Misa alkhowéarizmi
whose textbook on arithmetic (about A.D. 825)
had a significant influence on the development of
these methods. An algorithm is a set of rules for
getting a required output from a specific input, in
which each step is so precisely defined that it can
be translated into computer language and executed
by machine.



Size

Polynomially bounded
algorithm

The class P of problems

NOTATION

The size of an optimization problem is a parameter
that measures how large the problem is. Usually
it is the number of digits in the data in the op-
timization problem, when it is encoded in binary
form.

A finitely terminating algorithm for solving an opti-
mization problem is said to be of order n* or O(n"),
if the computational effort required by the algo-
rithm in the worst case, to solve a version of the
problem of size n, grows as an®, where «, r are
numbers that are independent of the size n and
the data in the problem.

An algorithm is said to be polynomially bounded
if it can be proved that the computational efffort
required by it is bounded above by a fixed polyno-
mially in the size of the problem.

This is the class of all problems for solving which
there exists a polynomially bounded algorithm.

xxiii
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NP-complete class
of problems

Necessary conditions,
sufficient conditions,
necessary and sufficient
conditions

NOTATION

A decision problem is one for which the answer is
“yes” or “no”. For example, given an integer square
matrix D of R", the problem “is there an z € R"
satisfying 7 Dz < 07" is a decision problem. Also,
given a square matrix M of order n and a column
vector ¢ € R", the problem “does the LCP (¢, M)
have a solution?” is a decision problem. Often,
optimization problems can be handled by study-
ing decision problem versions of them. For exam-
ple, consider the problem of minimizing 6(z) over
x € K, where K represents the set of feasible solu-
tions of this problem. The decision problem version
of this optimization problem is “is there an z € K
satisfying 0(xz) < a?” where « is a specified real
number. Clearly, by examining this decision prob-
lem with varying values of a;, we can narrow down
the solution of the optimization problem.

The NP-complete class is a class of decision prob-
lems in discrete optimization, satisfying the prop-
erty that if a polynomially bound algorithm exists
for any one problem in the classs, then polynomi-
ally bounded algorithms exist for every problem in
the class. So far no polynomially bounded algo-
rithm is known for any problem in the N/P-complete
class, and it is believed that all these problems
are hard problems (in the worst case, the compu-
tational effort required for solving an instance of
any problem in the class by any known algorithm,
grows asymptotically, faster than any polynomial
in the size of the problem). See reference [8.12] for
a complete discussion of NP-completeness.

When studying a property of a system, a condi-
tion is said to be a necessary condition for that
property if that condition is satisfied whenever the
property holds. A condition is said to be a suffi-
cient condition for the property if the property
holds whenever the condition is satisfied. A neces-
sary and sufficient condition for the property
is a condition that is both necessary condition and
a sufficient condition for that property.



Active or tight
constraint

Infeasible system

Complementary pair

Complementary set
of vectors

Complementary matrix

Complementary cone

Complemetary basis

Complementary basic
vector

Complementary feasible
basis

NOTATION

An inequality constraint g,(xz) > 0 is said to be
active or tight, at a point z satisfying it, if g, () =
0. The equality constraint h;(xz) = 0 is always an
active constraint at any point Z satifying it.

A system of constraints in the variables z = (z;)
is said to be infeasible, if there exists no vector x
satisfying all the constraints.

A pair of variables in an LLCP, at least one of which
is required to be zero. Each variable in a comple-
mentary pair is said to be the complement of the
other. A pair of column vectors corresponding to
a complementary pair of variables in an LCP is a
complementary pair of column vectors. Each col-
umn vector in a complementary pair is the comple-
ment of the other. In an LCP of order n, there are
n complementary pairs, numbered 1 to n.

A vector of n variables in an LCP of order n is
a complementary vector if the jth variable in the
vector is from the jth complementary pair of vari-
ables, for each j. A complementary set of column
vectors is an ordered set in which the jth vector is
from the jth complementary pair for each j.

In an LCP of order n, this is a square matrix of
order n whose jth column vector is from the jth
complementary pair, for each j.

In an LCP of order n, this is Pos(A) where A is a
complementary matrix of this problem.

It is a complementary matrix which is nonsingular.

It is a complementary vector of variables associated
with a complementary basis.

It is a complementary basis which is a feasible basis
for the problem.

XXV
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Complementary feasible
basic vector

z leads to a solution
of the LCP (¢, M)

To process an LCP

Secondary ray
or terminal ray

Subcomplementary set,
vector

Almost complementary
vector

Copositive matrix

Strictly copositive
matrix

NOTATION

It is a complementary basic vector which is feasible
to the problem.

We say that the vector z leads to a solution of the
LCP (¢, M) if (w = MZ + q, Z) is a solution of the
LCP (g, M).

When an algorithm for solving LLCPs is applied on
an LCP, it may either obtain a solution of the LCP,
or terminate without obtaining a solution. It is pos-
sible that some algorithms may terminate without
a solution even though the LCP may have a so-
lution. An algorithm for solving LCPs is said to
process a specified class of LCPs if, when the
algorithm is applied on any LCP from this class
and it terminates without obtaining a solution, we
can prove that the LCP in fact has no solution.
In other words, an algorithm is said to process a
class of LCPs iff for every LCP in this class, the al-
gorithm either produces a solution or conclusively
establishes that the LCP cannot have a solution.

This is the half-line or ray obtained at the end of
executing the complementary pivot algorithm on
an LCP, if the algorithm terminates in ray termi-
nation. This secondary ray, if it is obtained, is dis-
tinct from the initial ray with which the algorithm
is initiated. See Section 2.2.6.

It is a complementary set or vector with one ele-
ment missing.

It is a vector that is complementary except for one
violation which is set up appropriately. See Sec-
tions 2.2.4, 2.4.

A square matrix M of order n is said to be copos-

itive if y" My > 0 for all y > 0 in R™.

A square matrix M of order n is said to be strictly
copositive if yT My > 0 for all y > 0 in R".



Copositive plus matrix

Py-matrix

P-matrix

(Q-matrix

Z-matrix

Qo-matrix

(Q-matrix, or

Completely (Q-matrix

Qo-matrix, or
Completely (Qp-matrix

NOTATION xxvii

A square matrix M of order n is said to be copos-
itive plus if it is copositive, and for y > 0 in R"™ if
yI' My =0 then (M + MT)y = 0.

A square matrix is a Py-matrix if all its principal
subdeterminants are > 0.

A square matrix is said to be a P-matrix if all its
principal subdeterminants are strictly positive.

A square matrix M of order n is said to be a Q-
matrix if the LCP (¢, M) has a solution for all ¢ €
R".

A square matrix M = (m;;) is a Z-matrix if m;; <

0 for all 7 # 7.

The square matrix M is said to be a (Qo-matrix if
K (M) is a convex cone.

A square matrix M such that M and all its princi-
pal submatrices are ()-matrices.

A square matrix M such that M and all its princi-
pal submatrices are (Qg-matrices.
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Faces, Facets

Principally degenerate,
principally
nondegenerate, matrices

Degenerate or
nondegenerate
complementary cone

NOTATION

Let K C R"™ be a convex polyhedron. H = {z :
ax = ag} where a # 0 is a given row vector in
R". H is a hyperplane in R". H is said to have
K on one of its sides if either axz > ag for all z €
K, or ar < ap for all z € K. If H has K on
one of its sides and HN K # (), H is said to be
a supporting hyperplane for K. A face of K
is either the empty set @, or the set K itself, or
H N K for some supporting hyperplane H for K.
See reference [2.26]. For example, extreme points
of K are its faces of dimension zero. Edges of K
are its faces of dimension 1, etc.

A face of K is said to be a facet if its dimension is
one less than the dimension of K.

For some special convex polyhedra, simplicial cones
or simplexes, it is possible to characterize all faces
easily. If {B.1,...,B.,} is a linearly independent
set of column vectors in R", then, for the simpli-
cial cone Pos{B.1, ..., B.,}, the cone Pos{B.q,.. .,
B.j_1,B.jt1,..., B.,} is a facet for any j, and the
cone Pos{B.; : j € J} is a face for any subset
J C {1,...,n} (this face is defined to be {0}, if
J=0). If {vg,...,v,} are the set of vertices of an
n-dimensonal simplex in R", the convex hull of {vy,
ey Uj1,Vj41, ..., Un} is a facet of this simplex for
all j, and the convex hull of {v; : j € J} is a face
of this simplex for all subsets J C {1,...,n} (this
face is defined to be the empty set if J = ().

A square matrix A is said to be principally non-
degenerate if all its principal subdeterminantes
are nonzero; principally degenerate if at least
one of its principal subdeterminantes has value zero.
In this book we are usually concerned only with
principal degeneracy or nondegeneracy of square
maftrices, and hence we usually omit the adjective
“principally” and refer to the matrices as being de-
generate or nondegenerate.

A complementary cone is nondegenerate if its inte-
rior is nonempty, degenerate otherwise.



Strongly degenerate
or weakly degenerate
complementary cone

Degenerate or
nondegenerate

basic solutions, vectors,
systems of linear
equations

Lipschitz continuous

Principal subproblem

Simplex

Vo(z)

NOTATION

A degenerate complementary cone Pos(A4.q,...,
A.,) is said to be strongly degenerate if there
exists (aq,...,q,) > 0such that 0 = a; A1 +...+
anA.,, that is, if the zero vector can be expressed
as a semipositive linear combination of the com-
plementary set of column vectors {A.1,...,A.,};
weakly degenerate otherwise.

Consider the system of linear constraints “Axz = b”
where A is a matrix of order m x n and rank m. A
basic solution z for this system is said to be non-
degenerate if the number of nonzero variables in
Z is m, degenerate if this number is < m. The
right hand side constants vector b in the system
is said to be degenerate if the system has at least
one degenerate basic solution, b is said to be non-
degenerate if the system has no degenerate basic
solution. Thus b is degenerate in the system if it
can expressed as a linar combination of m — 1 or
less column vectors of A, nondegenerate otherwise.
The system of constraints is itself said to be degen-
erate or nondegenerate depending on whether b is
degenerate or nondegenerate.

Let f(x) be a continuous real valued function de-
fined on K C R". It is said to be Lipschitz continu-
ous (or Lipschitzian) on K if there exists a nonneg-
ative number « such that |f(z) — f(y)| < af|lz —y||
for all z,y € K. The number « is known as the
Lipschitz constant for this function.

Consider the LCP (¢, M) with variables (wq,...,
wa)T, (z1,..0,20)T. Let J C {1,...,n}, I # 0.
Let qy — (qi 11 € J)T, Mj; = (mij 11 € J,
j € J). The LCP (g3, Mj3) in variables wy, zj
is called the principal subproblem of the LCP
(g, M) corresponding to the subset J.

See Section 2.7.

06(x)
By 0

), gradient vector, evaluated at x = 7.

The row vector of partial derivatives (
96(x)
Oxn

xxix
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0f (x)

Differentiable function

Continuously
differentiable function

H(0(z))

Twice differentiable
function

Twice continuously
differentiable function

NOTATION

The subdifferential set of the function f(x) at the
point . See Appendix 3 and Section 2.7.1.

A real valued function 6(z) defined on an open sub-
set I' € R" is said to be differentiable at a point
z € I, if all the partial derivatives 889—3(5), j=1to
n exist, and for any y € R", [0(Z + ay) — 6(Z) —
aVi(z)y]/a tends to zero as « tends to zero. If it
is differentiable at every point z € I', it is said to

be differentiable in T.

A real-valued function #(z) defined on an open sub-
set I' € R" is said to be continuously differen-
tiable at a point £ € T if it is differentiable at T’
and V0(x) is contiuous at z. If it is continuously
differentiable at every point Z € I, it is said to be
continuoulsy differentiable in I'.

The Hessian matrix of §(z) at z. It is the square

8%0(z)
0x; 0z ) eval-

matrix of second partial derivatives (
uated at 7.

A real valued function 0(x) defined over an open set
I' € R" is said to be twice differentiable at z € T
if VO(z) and H(0(z)) exist, and for all y € R",
0(@+ay) —6(%) - (VO(T))y — % yT H(0(®))y]/o?
tends to zero as « tends to zero. f(z) is said to be
twice differentiable in I' if it is twice differentiable
at every point in T'.

A real valued function 0(x) defined over an open set
I' € R" is said to be twice continuously differ-
entiable at 7 € T if it is twice differentiable at z
and H(A(x)) is continuous at Z. It is twice contin-
uously differentiable in I' if it is twice continuously
differentiable at every point in I'.



Smooth function

Optimization problems
in minimization form

Vh(z) when
h(z) = (hi(z), ..., hpm(x))T

Nonlinear programming
problem

NOTATION

Mathematically, a real valued function defined on
R" is said to be a smooth function if it has deriva-
tives of all orders. Many of the algorithms dis-
cussed in this book use only derivatives of the first
or at most second orders. So, for our purpose, we
will consider a smooth function to be one which is
continuously differentiable, or twice continuously
differentiable if the method under consideration

uses second order derivatives.

Whenever a function f(x) has to be maximized
subject to some conditions, we can look at the
equivalent problem of minimizing — f(x) subject to
the same conditions. Both problems have the same
set of optimum solutions and the maximum value
of f(z) = —minimum value of (—f(z)). Because of
this, we discuss only minimization problems.

Let h(x) denote the column vector of m differen-

tiable functions h;(x), i = 1 to m, defined over R".
dh; , .

Then Vh(z) = (%f):z:ltom,jzlton)

is the Jacobian matrix in which the ith row vec-

tor is the gradient vector of h;(z) written as a row

vector.

This refers to an optimization problem of the fol-
lowing general form :

minimize 6(x)
subject to h;(x)
(

0, 1=1tom
gpl‘) 0

p=1tot

v

where all the functions 6(z), h;(x), g,(z) are real
valued continuous functions of z = (xq,...,2,)T €
R"™. The problem is said to be a smooth non-
linear program if all the functions are in fact
continuously differentiable functions. In this book
we only consider smooth nonlinear programs. See
Chapter 10.
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Quadratic forms in
matrix notations

NOTATION

Consider the quadratic form in n variables x =

n n n
(150, )Ty fl2) = 3 gun?+ Y > gijziz;.
=1 =1 =it

An example for n = 3 is h(z) = 81z2 — 723 +
S5x1x9 — 6x123 + 18x2x3. Let F' = (f;;) be a square
matrix of order n satisfying

fis = gi, i=1ton
fij + fji = g9ij, fori# jand j > i.
Then it can be verified that f(z) = 2T Fz. In par-

ticular, if we define the symmetric matrix D = (d;;)
of order n, where

dis = gii, t=1ton

1
dij:dj¢:§g¢j, forv £ j and 57 > ¢
then f(z) = 27 Dx. For the quadratic form h(z)
in 3 variables, & = (v1,72,73)T, given above, the
matrix D turns out to be




Quadratic programming
problem;

convex Or nonconvex
quadratic programs

QP
Complemetary basis

Va(f(Z, 1), He(f (T, 1))

NOTATION xxxiii

An optimization problem in which a quadratic func-
tion of x = (21,...,2,)T € R" is to be optimized
subject to linear constraints on the variables, is
called a quadratic programming problem. Its gen-
eral form is:

minimize  Q(z) = cz + 227 Dz
subject to Az > b
Ex=d

where D is a square symmetric matrix of order n.
The inequality constraints here include any non-
negativity restrictions or the lower or upper bound
restrictions on the variables.

This problem is called a convex quadratic pro-
gram if D is a PSD matrix (in this case the objec-
tive function to be minimized, Q(z), is convex); a
nonconvex quadratic program otherwise.

Quadratic Programming Problem.

It is a complementary matrix which is nonsingular.

These are respectively the row vector of the partial
deri-vates, and the square matrix of the second or-
der partial derivates, of the function f(z,u), with
respect to the variables in the vector z, at (T, ).



XXXiv

Karush-Kuhn-Tucker
(or KKT) necessary
optimality conditions

NOTATION

Let 6(z), hi(z), gp(z), be real valued continuously
differentiable functions defined on R" for all i, p.
Consider the following mathematical program:

minimize 6(x)
subject to h;(x)
(

=0, 2=1tom
gp(z) 20

p=1tot

The Karush-Kuhn-Tucker (KKT) Lagrangian for
this problem is: L(z, pu,m) = 0(x) — >, pihi(z)
— Z;Zl mpgp(x) where p;, m, are the Lagrange
multipliers associated with the constraints. The
Karush-Kuhn-Tucker (KKT) necessary optimality

condition for this problem are :

8 m
%L(l', p, ) = Vo(x) — ; iV hi(x)—

t
— Z T Vgp(r) =0
p=1

hi(z) =0, i=1tom
gp(z) >0, p=1tot
20, p=1tot
Tpgp(x) =0, p=1tot

where V6(z) etc. are the vectors of partial deriva-
tives. If T is a local minimum for this problem, un-
der fairly general conditions (see Appendix 4) it can
be shown that there exist multiplier vectors j, 7
such that z, i1, 7 together satisfy these KKT condi-
tions. In the literature these conditions are usually
called first-order necessary optimality condi-
tions or Kuhn-Tucker conditions. But it has been
found recently that Karush was the first to discuss
them. Hence, nowadays, the name Karush-Kuhn-
Tucker necessary optimality conditions is coming
into Vogue.

A feasible solution x satisfying the property that
there exist Lagrange multiplier vectors 7, i such
that z, 1, © together satisfy the KKT conditions,
is called a KKT point for the problem.
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Stationary point Given an NLP, a stationary point for it usually
for an NLP refers to any feasible solution satisfying a neces-
sary optimality condition for it. Every optimum
solution is a stationary point, but, in general, there
may be stationary points which are not even locally
optimal to the problem.

Direction, half-line Any point y € R", y # 0 defines a direction in
R". Given z € R", points z + ay, o > 0 are
obtained when you move from Z in the direction y.
The set of all these points {z : 2 = T+ ay,a > 0}
is the half-line or ray through z in the direction
of y. See Section 1.1.1.

Step length Given z € R", y € R", y # 0; for a > 0, the point
T+ ay is obtained by taking a step of length a from
Z in the direction of y. In this process « is the step
length.

Feasible direction Given a set I' € R", and a point & € T'; the direc-
tion y € R"™, y # 0, is called a feasible direction
at Z for I’ if there exists a positive number @ such
that T +ay € I’ for all 0 < o < @. Thus the direc-
tion y is a feasible direction at = for I' iff an initial
segment of positive length on the half-line through
Z in the direction y is contained in I'.

Given an optimization problem, and a feasible solu-
tion T for it, the direction y (in the z-space) is said
to be a feasible direction at T for this optimization
problem if there exists an @ > 0 such that T+ ay is
a feasible solution to the problem for all 0 < o < @.

Descent direction Let A(x) be a real valued function defined over = €

R"™. The direction y € R", y # 0, is said to be a
descent direction for 0(z) at z if 0(z+ay) < 0(x)
whenever « is positive and sufficiently small. So by
moving from Z a small but positive step length in
a descent direction, 0(z) is guaranteed to strictly
decrease in value.
A descent direction for a minimization problem at
a feasible solution 7, is a feasible direction for the
problem at Z, which is a descent direction at T for
the objective function being minimized.
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Line search problem,
line search method

Hereditary symmetry,
hereditary PD

NOTATION

Let 6(x) be a real valued function defined on R".
Let z € R" be a given point and y € R", y # 0
a given direction. The problem of minimizing
0(Z + ay) over a < o < b where a, b are given
bounds on «, is called a line search problem or
a line minimization problem; and any method
for solving such a problem is called a line search
method. Since Z, y are given, 0(Z + ay) is purely
a function of the single variable «, if we denote
O(z + ay) = f(«a), the line search problem is the
one dimensional minimization problem of finding
the minimum of f(a) over a < a < b. Typi-
cally, in most line search problems encountered in
applications, we will have a = 0 and b is either
a finite positive number, or +o0o. When b is fi-
nite, the problem is often called a constrained
line search problem. Several line search meth-
ods are discussed in Section 10.7. Many nonlinear
programming algorithms use line search methods
repeatedly in combination with special subroutines
for generating feasible descent directions.

Many algorithms for nonlinear programming (for
example those discussed in Section 1.3.6 or Chapter
10) are iterative methods which maintain a square
matrix B of order n and update it in each step. Let
B, denote this matrix in the tth step. The updating
formula in this method provides By, as a function
of B; and other quantities which are computed in
the tth step or earlier. This updating procedure is
said to possess the hereditary symmetry prop-
erty if for any ¢, the fact that B; is symmetric
implies that B;,1 is also symmetric. Similarly, the
updating procedure possesses the hereditary PD
property if for any ¢ the fact that B, is PD implies
that By is also PD. Thus, if the updating proce-
dure has the hereditary symmetry and PD proper-
ties, and the initial matrix B used in the method is
both symmetric and PD, the matrices B; obtained
in all the steps of the method will also be symmet-
ric and PD.
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Active set method Any method for solving an NLP which partitions
the set of inequality constraints into two groups —
the active set consisting of those inequalities which
are to be treated as active, that is, as equality
constraints; and the inactive set. Inequality con-
straints in the inactive set are presumed to hold
as strict inequalities at the optimum solution and
are essentially ignored. The remaining problem is
solved (treating all the constraints as equality con-
straints) by any method for solving equality con-
strained optimization problems. Active set meth-
ods also have procedures for revising the active set
(either deleting inequality constraints from it, or
adding inequality constraints from the inactive set
into it) in each step, based on information accumu-
lated in the method so far.

Convex programming A problem in which a convex objective function is
problem, nonconvex to be minimized over a convex set (usually of the
programming problem form: minimize 0(x), subject to g;(z) > 0,4 =1 to

m and h(z) = 0, ¢t = 1 to p; where all the functions
are given and #(x) is convex; g;(x) are concave for
all i; and hy(x) is affine for all ¢) is said to be a
convex programming problem. A nonconvex
programming problem is one which is not con-
vex, that is, does not belong to the above class. For
a convex programming problem every local mini-
mum is a global minimum. In general, it is very
hard to find the global minimum in a nonconvex
programming problem. Necessary and sufficient
conditions for optimality are available for convex
programming problems. For nonconvex program-
ming problems we have some necessary conditions
for a point to be a local minimum, and sufficient
conditions for a given point to be a local minimum.
No simple set of conditions which are both neces-
sary and sufficient for a given point to be a local
minimum, are known for general nonconvex pro-
gramming problems.



xxxviii NOTATION

Merit function In a nonlinear program where an objective function
defined on R" is to be minimized subject to con-
straints, a merit function is a real valued function
defined on R", it consists of the objective function
plus penalty terms for constraint violations. Usu-
ally the penalty
terms come from either the absolute-value penalty
function (Lq-penalty function) or the quadratic penaltyl]

function. Minimizing the merit function balances
the two competing goals which result from the de-
sire to decrease the objective function while reduc-
ing the amount by which the constraints fail to be
satisfied. See Section 1.3.6.

Cauchy-Schwartz Let x, y be two column vectors in R"™. Then |z7y|
inequality < |lz||-||y||, this inequality is known as the

Cauchy-Schwartz inequality. To prove it con-
sider the quadratic equation in one variable A, f(\)
= Az +y)T Az +y) = A|[z]|2 + 2xaTy + ||y||* =
0. Since f(A) = ||Az + y||?, it is always > 0. This
implies that the equation f(\) = 0 can have at
most one real solution in A. It is well known that
the quadratic equation aA? 4+ b\ + ¢ = 0 has at
most one real solution iff b2 — 4ac < 0, applying
this to the equation f(A) = 0, we conclude that
(@Ty)? < |folP-llyll?, that is, o7y < lal Iyl
Also, the quadratic equation aA? + b\ + ¢ = 0 has
exactly one real solution if b2 — 4ac = 0. Apply-
ing this to f(A) = 0, we conclude that f(\) = 0
has a real solution if |zTy| = ||z||-||y]|, in this case
since f(A) = |[|Az + y||? = 0 for some real A, we
must have Az +y = 0, or y is scalar multiple of the
vector x. Thus, if the Cauchy-Schwartz inequality
holds as an equation for two vectors z,y € R", one
of these vectors must be a scalar multiple of the
other.
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Cholesky factor If M is a square matrix of order n which is sym-
metric and positive definite, there exists a lower
triangular matrix F' of order n with positive diag-
onal elements, satisfying M = FFT. This matrix
F' is known as the Cholesky factor of M. For
efficient methods for computing Cholesky factors,
see books on computational linear algebra, or [1.28,
2.26].

Homotopy method To solve a system by a homotopy method, we
continuously deform a simple system with a known
solution, into the system we are trying to solve. For
example, consider the problem of solving a smooth
system of n equations in n unknowns “g(z) = 0”.
Let a be an initial point from R", consider the
simple system of equations “xr = a” with a known
solution. Let F(z,\) = Ag(z) + (1 — A)(z — a), on
0<A<1, z€R" F(z,)) is continuous in z and
A. The system “F(z,\) = 07, treated as a sys-
tem of equations in z, with A as a parameter with
given value between 0 and 1; is the simple system
when A = 0, and the system we want to solve when
A = 1. As the parameter A varies from 0 to 1, the
system “F(z,A) = 0” provides a homotopy (con-
tiuous deformation) of the simple system “z = a”
into the system “g(x) = 0”. The method for solving
“g(x) = 0” based on the homotopy F'(z, A), would
follow the curve z(A) (where x()) is a solution of
F(x,\) =0 as a function of the homotopy param-
eter \) beginning with z(0) = a, until A assumes
the value 1 at which point we have a solution for
“g(xz) =0".
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Principal rearrangement
of a square matrix

Euclidean distance,
rectilinear distance

NOTATION

Let M be a given square matrix of order n. Let
p = (i1,...,%,) be a permutation of (1,...,n). The
square matrix P of order n whose rows are I;,.,
I;
trix corresponding to p. P is obtained by essen-

5.+ -y 15 . in that order is the permutation ma-
tially permuting the rows of the unit matrix I of
order n using the permutation p. The matrix M’ =
PMPT is known as the principal rearrangement of
M according to the permutation p. Clearly M’
is obtained by first rearranging the rows of M ac-
cording to the permutation p, and in the resulting
maftrix, rearranging the columns again accordng to
the same permutation p. See Section 3.2.1.

Let x = (z;), y = (y;) be two point in R". The
Euclidean distance between x and y is ||z — y|| =

n
Y. (zj —y;j)?. The rectilinear distance between
i=1

n
zand yis Y, |z; —y;|
j=1
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Steepest descent First, consider an unconstrained minimization prob-Ji
direction at a feasible lem
solution, in a continuous minimize 0(x) over z € R" (i)

minimization problem. . . .
p where 0(z) is a real valued continuous function de-

fined over R".

Given any direction y € R", y # 0, the directional
derivative of f(x) at a point Z in the direction y is
defined to be

0(T + ay) — 6(7)

(0%

limit

as @ — 0%, and denoted by ¢'(T;y), when it exists.
If () is differentiable at =, then 0'(z; y) = VO(T)y.
In general, #'(Z, y) may exist even if #(z) is not dif-
ferentiable at .

0'(T; y) measures the rate of change in 0(z) at x =
T, when moving in the direction .

The direction y is said to be a descent direction at
Z for problem (i), if 0'(%Z;y) < 0.

If Z is a local minimum for (i), there is no descent
direction for (i) at =, and hence no steepest descent
direction. Unfortunately, the converse of this state-
ment may not always be true, that is, the absence of
a descent direction at a point & does not imply that
T is a local minimum. See Exercise 20 in Appendix
6. This just means that descent methods are not
always guaranteed to find a local minimum.

If Z is not a local minimum for (i), an optimum
solution of

minimize @' (Z;y) subject to norm (y) =1 (i)

is called a steepest descent direction at T for (i),
under the particular norm used, if it is a descent
direction at T for (i). In (ii), norm (y) is a function
which measures the distance between the points 0
and y is R"™. Different norms may lead to different
steepest descent directions.

In optimization literature, usually norm (y) is takenlj
as y! Ay where A is some specified symmetric PD
matrix of order n (taking A = I, the unit matrix
of order n, leads to the Euclidean norm).
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NOTATION

Now consider a constrained continuous minimiza-
tion

problem. Let K C R" denote its set of feasible
solutions. Then this problem is of the form

minimize 6(x) subject to x € K (iii)

where the objective function 0(z) is a real valued
continuous function defined over R". Let T € K
be a given feasible solution.

Again, if T is a local minimum for (iii), there is
no descent direction and hence no steepest descent
direction for (iii) at . If Z is not a local minimum
for (iii), any optimum solution of

minimize 0’ (T; y)

subject to norm of (y) =1,
and y is a feasible direction (iv)
at T for K, and a descent

direction for 6(z) at T

is known as a steepest descent direction for (iii) at
the feasible solution 7.
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NOTATION

Descent methods for smooth minimization prob-
lems

have the following features. They are initiated with
a feasible solution, z", for the problem, and gen-
erate a sequence {z" : r = 0,1,2,...} of feasible
points. For each r, the objective value at 2"t is
strictly less than the objective value at z". For
r > 0, step 7 + 1 of the method consists of the
following two substeps.

1. Generate a feasible direction, y”, for the problem
at the present feasible point z”, which is a descent
direction for the objective function.

2. Carry out a line search on the half-line {z : z =
"+ Ay", A > 0} for improving the objective value.
For this, one has to determine the maximum value
of A\, say A, such that 2" + Ay" remains feasible
to the problem for all 0 < A < A and then solve
the line minimization problem of minimizing the
objective function over {z 1z =2" + Ay",0 <A <
A}, the output of which is the next point in the
sequence, "1,

If there exists no feasible descent direction at z”,
the method terminates with x” while carrying out
substep 1 (unfortunately, this does not guarantee
that =" is even a local minimum for the problem,
it just means that we are unable to improve on
the point " using descent methods.) If subsetp 1
does produce a direction y", from the definition of
feasible descent directions, A is guaranteed to be
positive in substep 2 (it may happen that A = co).
Different descent methods use different procedures
for carrying out substeps 1, 2.

Therefore, the important feature of descent meth-
ods is that each move is made along a straight line,
and results in a strict improvement in objective
value. Since the objective value strictly improves
in each step (assuming that the method does not
terminate in that step), the sequence of points gen-
erated by a descent method is called a descent
sequence.

xliii



xliv

Karmarkar’s algorithm
for LP and an intuitive
justification for it

NOTATION

A detailed description of Karmarkar’s algorithm,
including complete proofs of its polynomial bound-
edness are provided in Section 11.4. Here we give a
statement of this algorithm, with an intuitive jus-
tification, for someone interested in an overview
without all the technical details and the proofs.
Consider the problem of minimizing a linear func-
tion on a convex polytope.

One can improve the current solution substantially
by moving in the steepest descent direction, if the
current solution is near the center of the feasible
region, as in z° in the figure given above; but not
so if it is near the boundary, as in z'.

The main ideas behind Karmarkar’s algorithm are
the following:

i) If the current feasible solution is near the center
of the feasible region, it makes sense to move in the
steepest descent direction.

ii) If it is possible to transform the problem without
changing it in an essential way, that moves the cur-
rent, feasible solution near the center of the feasible
region, do it. Karmarkar uses a projective scaling
transformation to do exactly this.

A (relative) interior feasible solution to an LP is one
which satisfies all inequality constraints as strict
inequalities. The basic strategy of Karmarkar’s al-
gorithm is to start at a (relative) interior feasible
solution, and to carry out a projective scaling trans-
formation to move the current solution to the cen-
ter.
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In the transformed problem, move in the steepest
descent direction from this center, but not all the
way to the (relative) boundary. Repeat as often as
necessary.

Karmarkar considers linear programming problems
in the following form

minimize cx
subject to Az =20
efr=1 (P)
>0

where A is a given matrix of order m x n, and e”
is the row vector of all 1’s in R". The set S = {z :
r € R"and ez = 1,z > 0} is the standard (n—1)
dimensional simplex in R™. The problem (P) is
assumed to satisfy the following assumptions.

(1) The point a® = (1/n)e = (1/n,...,1/n)T, the
center of S, is feasible to (P).

(2) The problem (P) has an optimum solution, and
the optimum objective value in (P) is zero.
Methods for transforming any LP into the form
(P) satisfying conditions (1), (2), are discussed in
Section 11.4. This is the initialization work before
applying Karmarkar’s algorithm on an LP. While
these initialization methods are simple and math-
ematically correct, they can ruin the practical ef-
ficiency unless done in a clever way. Practically
efficient initialization techniques in implementing
Karmarkar’s algorithm, are the object of intense
research investigations at the moment.

Let us now consider the LP (P) satisfying (1) and
(2). Karmarkar’s method generates a sequence of
feasible solutions for (P), 0 = a®, 2%, 22,..., all of
them in the relative interior of S (i. e., " > 0 for
all ), with cz” monotonic decreasing. The method
is terminated when we reach a t such that the ob-
jective value cz? is sufficiently close to the optimum
objective value of 0. So the terminal solution z? is
a near optimum solution to (P). A pivotal method
(needing at most n pivot steps) that leads to an
optimum extreme point solution of (P) from a near
optimum solution, is discussed in Section 11.4, it

xlv
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NOTATION

can be used in a final step if necessary. We now
provide the general step.

General step 7+ 1 in Karmarkar’s algorithm:
Let " = a = (ay,...,a,)T > 0 be the current fea-
sible solution of (P). Define D as the n xn diagonal
matrix with diagonal entries a4, ..., a,, that is

aq 0
D =

0 an

Since the matrix D depends on the current solu-
tion, you get a different D in each step. Use the
projective transformation 7' : S — S, defining new
variables ¥y = (y1,...,yn) by

D1z

=T =
4 () el D-1z

Since D is a diagonal matrix with positive diagonal
entries, D~! is the diagonal matrix whose ith di-
agonal entry is (1/a;). For every z € S, T(z) € S.
Also, points in the relative interior of S in the z-
space map into points in the relative interior of S
in the y-space. The current feasible solution a of
(P) in the z-space, maps into the solution a’ =
(1/n,...,1/n), the center of the simplex S in the
y-space, under this transformation.

To transform the problem (P), we use the inverse
transformation

Dy
eI Dy’

v=T"(y) =

It can be verified that this transforms the original
LP into

L cDy
minimize Dy = 6(y)
subject to ADy=0 (Q)
eTy=1
y=>0.

The constraints remain linear and essentially in the
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same form as those in (P), but the objective func-
tion in (Q) is nonlinear.

Since the current solution for (Q) is a”, the center
of S, it makes sense to move from a°, in the steep-
est descent direction in (Q) at a®. Since a® > 0,
the set of feasible directions for (Q) at a° is {¢ :
£ € R", AD¢ = 0,eT¢ = 0}. Let

AD
B=| ...
oT
At a°, the denominator in 0(y), eI Dy, is equal to
(1/n), and it remains quite constant in a small
neighborhood of a®. So, the steepest descent di-
rection for (Q) at the current point a® can be ap-
proximated by the steepest descent direction for
the objective function cDy subject to the same con-
straints as in (Q), this is the solution of

minimize cD¢
subject to B&E=0
1€l = 1.

The optimum solution of this problem is ¢,/|¢pl|,
where
¢, = cD(I — BT (BBT)™'B)

Cp is the orthogonal projection of ¢D onto the sub-
space {& : B¢ = 0}. So, the next point for (Q) is of
the form

y' = a® = B, /||&|

where 3 is a positive step length. 3 can be chosen
as large as possible, but keeping y’ > 0. This leads
to the new solution 2" %! for the original problem
(P), where

xr—}-l _ Dy/ )

el Dy’

If cz"*! is sufficiently close to 0, terminate with
cx™™! as a near optimum solution for (P), other-
wise, go to the next step with 2"+! as the current
solution.



Chapter 1

LINEAR, COMPLEMENTARITY
PROBLEM, ITS GEOMETRY,

AND APPLICATIONS

1.1 THE LINEAR COMPLEMENTARITY
PROBLEM AND ITS GEOMETRY

The Linear Complementarity Problem (abbreviated as LCP) is a general problem
which unifies linear and quadratic programs and bimatrix games. The study of LCP
has led to many far reaching benefits. For example, an algorithm known as the com-
plementary pivot algorithm first developed for solving LCPs, has been generalized
in a direct manner to yield efficient algorithms for computing Brouwer and Kakutani
fixed points, for computing economic equilibria, and for solving systems of nonlinear
equations and nonlinear programming problems. Also, iterative methods developed for
solving LLCPs hold great promise for handling very large scale linear programs which
cannot be tackled with the well known simplex method because of their large size and
the consequent numerical difficulties. For these reasons the study of LCP offers rich
rewards for people learning or doing research in optimization or engaged in practical
applications of optimization. In this book we discuss the LCP in all its depth.

Let M be a given square matrix of order n and ¢ a column vector in R". Through-

out this book we will use the symbols wq, ..., w,; 21, ..., 2, to denote the variables in
the problem. In an LCP there is no objective function to be optimized. The
problem is: find w = (w1, ...,w,)T, 2= (21,...,2,)7T satisfying
w—Mz=q
(1.1)

w>0,2>0 and w;z =0 foralls
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The only data in the problem is the column vector ¢ and the square matrix M. So we
will denote the LCP of finding w € R", z € R" satisfying (1.1) by the symbol (g, M).
It is said to be an LCP of order n. In an LCP of order n there are 2n variables. As

a specific example, let n =2, M = [ i ; ] , q = [ :2 ] . This leads to the LCP
w1 - 221— Z9 = -5
W9 — 21—222 = —6. (12)

wy, Ww2,21,22 2 0 and wiz; = waze = 0.

The problem (1.2) can be expressed in the form of a vector equation as

w(3) () () ()2 o

wi,w, 21,22 > 0 and  wiz; = waze =0 (1.4)

In any solution satisfying (1.4), at least one of the variables in each pair (wj, z;),
has to equal zero. One approach for solving this problem is to pick one variable from
each of the pairs (wy, 21), (w2, 22) and to fix them at zero value in (1.3). The remaining
variables in the system may be called usable variables. After eliminating the zero
variables from (1.3), if the remaining system has a solution in which the usable variables
are nonnegative, that would provide a solution to (1.3) and (1.4).

Pick wy, we as the zero-valued variables. After setting wq, ws equal to 0 in (1.3),

[g; ] — 1 (1.5)

the remaining system is

a5 e (5) = (5

(2) +

Figure 1.1 A Complementary Cone

Equation (1.5) has a solution iff the vector ¢ can be expressed as a nonnegative
linear combination of the vectors (—2, —1)T and (-1, —2)T. The set of all nonnegative
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linear combinations of (—2,—1)T and (—1,—2)T is a cone in the gy, go-space as in
Figure 1.1. Only if the given vector ¢ = (=5, —6)7 lies in this cone, does the LCP
(1.2) have a solution in which the usable variables are z1, zo. We verify that the point
(—5,—6)T does lie in the cone, that the solution of (1.5) is (z1,2) = (4/3,7/3) and,
hence, a solution for (1.2) is (w1, we; 21, 22) = (0,0;4/3,7/3). The cone in Figure 1.1
is known as a complementary cone associated with the LCP (1.2). Complementary
cones are generalizations of the well-known class of quadrants or orthants.

1.1.1 Notation

The symbol I usually denotes the unit matrix. If we want to emphasize its order, we
denote the unit matrix of order n by the symbol I,,.

We will use the abbreviation LP for “Linear Program” and BFS for “Basic Feasible
Solution”. See [1.28, 2.26]. LCP is the abbreviation for “Linear Complementarity
Problem” and NLP is the abbreviation for “Nonlinear Program”.

Column and Row Vectors of a Matrix

If A = (a;5) is a matrix of order m x n say, we will denote its jth column vector
(a1jy---yami)T by the symbol A.;, and its ith row vector (a1, ...,ain) by A..

Nonnegative, Semipositive, Positive Vectors

Let © = (w1,...,2,)7 € R". > 0, that is nonnegative, if z; > 0 for all j. Clearly,
0 > 0. z is said to be semipositive, denoted by = > 0, if z; > 0 for all j and at least
one z; > 0. Notice the distinction in the symbols for denoting nonnegative (> with
two lines under the >) and semipositive (> with only a single line under the >). 0 2 0,
the zero vector is the only nonnegative vector which is not semipositive. Also, if z > 0,
2?21 x; > 0. The vector z > 0, strictly positive, if z; > 0 for all j. Given two vectors
z,y € R";wewritex >y, ife —y>0,z>yifr—y>0,and z >y ifz —y > 0.

Pos Cones
If {z',...,2"} C R", the cone {z:z = ayz’ + ...+ @, 2", 1, ..., > 0} is denoted
by Pos{x!,...,2"}. Given the matrix A of order m x n, Pos(A) denotes the cone

Pos{A.1,..., A} ={z:2x=Aa for a = (ai,...,a,)T > 0}.

Directions, Rays, Half-Lines, and Step Length

Any point y € R", y # 0, defines a direction in R". Given the direction y, it’s ray
is the half-line obtained by joining the origin 0 to y¥ and continuing indefinitely in the



4  CHAPTER 1. LINEAR COMPLEMENTARITY PROBLEM, ITS GEOMETRY, AND APPLICATIONS

same direction, it is the set of points {ay : & > 0}. Given T € R", by moving from
7 in the direction y we get points of the form T + ay where o > 0, and the set of all
such points {Z + ay : @ > 0} is the halfline or ray through 7 in the direction y. The
point T + ay for a > 0 is said to have been obtained by moving from T in the direction
y a step length of a. As an example, if y = (1,1)T € R", the ray of y is the set of all
points of the form {(a, @)” : @ > 0}. In addition, if, T = (1, —1)7, the halfline through
T in the direction y is the set of all points of the form {(1+ a, -1+ )T : @ > 0}. See
Figure 1.2. In this half-line, letting o = 9, we get the point (10,8)T, and this point is
obtained by taking a step of length 9 from Z = (1, —1)T in the direction y = (1,1)7.

Figure 1.2 Rays and Half-Lines

1.1.2 Complementary Cones

In the LCP (g, M), the complementary cones are defined by the matrix M. The point
q does not play any role in the definition of complementary cones.

Let M be a given square matrix of order n. For obtaining C(M), the class of
complementary cones corresponding to M, the pair of column vectors (I.;, —M.;) is
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known as the jth complementary pair of vectors, 1 < j < n. Pick a vector from
the pair (I.;, —M.;) and denote it by A.;. The ordered set of vectors (A.1,...,A.,) is
known as a complementary set of vectors. The cone Pos(A.1,...,A.,) ={y:y=
arAqg+. . tagAniar 20,0000, 2 0} is known as a complementary cone in the
class C(M). Clearly there are 2™ complementary cones.

Example 1.1

Let n =2 and M = I. In this case, the class C(I) is just the class of orthants in R?. In
general for any n, C(I) is the class of orthants in R". Thus the class of complementary
cones is a generalization of the class of orthants. See Figure 1.3. Figures 1.4 and 1.5
provide some more examples of complementary cones. In the example in Figure 1.5
since {I.1,—M.o} is a linearly dependent set, the cone Pos(I.;,—M.3) has an empty
interior. It consists of all the points on the horizontal axis in Figure 1.6 (the thick
axis). The remaining three complementary cones have nonempty interiors.

Pos(—le1,1e2) | Pos(l.1,1.2) Pos(—M.1, 1.2) | Pos(l.1,1.2)

l.o

7'-2 *Mll PoqlalliMuz)

Pos(—1.1,-1.2) | Pos(l.1,~1.2) 1 —M.2

Pos(—M.1,—M.2)

Figure 1.3 When M = I, the Complementarity Cones are the Orthants.

Figure 1.4 Complementary Cones when M = [ i _é ] .
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Degenerate, Nondegenerate Complementary Cones

Let Pos(A.1,...,A.,) be a complementary cone in C(M). This cone is said to be a non-
degenerate complementary cone if it has a nonempty interior, that is if {A.1,..., 4., }
is a linearly independent set; degenerate complementary cone if its interior is empty,
which happens when {A.1,..., A.;} is a linearly dependent set. As examples, all the
complementary cones in Figures 1.3, 1.4, 1.5, are nondegenerate. In Figure 1.6 the
complementary cone Pos(I.1,—M.s) is degenerate, the remaining three complemen-
tary cones are nondegenerate.

Figure 1.5 Complementary Cones when M = [ _? _; ] .

Figure 1.6 Complementary Cones when M = [ ; [1)] .

1.1.3 The Linear Complementary Problem

Given the square matrix M of order n and the column vector ¢ € R", the LCP (¢, M),
is equivalent to the problem of finding a complementary cone in C(M) that contains
the point ¢, that is, to find a complementary set of column vectors (A.q, ..., A.,) such
that

(i) A.j S {I.j, —M.j} for 1 é J é n

(ii) g can be expressed as a nonnegative linear combination of (A.1,...,A.,)
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where I is the identity matrix of order n and I.; is its jth column vector. This is
equivalent to finding w € R", z € R" satisfying 37, Ljw; =7 M.j2; = q,w; > 0,
zj 2 0 for all j, and either w; = 0 or z; = 0 for all j. In matrix notation this is

w—Mz=q (1.6)
w=>0 220
w;z; =0 for all j. (1.8)

T2 = 0; this con-

Because of (1.7), the condition (1.8) is equivalent to Y7, w;z; = w
dition is known as the complementarity constraint. In any solution of the LCP
(g, M), if one of the variables in the pair (wj, z;) is positive, the other should be zero.
Hence, the pair (wj, ;) is known as the jth complementary pair of variables and
each variable in this pair is the complement of the other. In (1.6) the column vector
corresponding to w; is I.;, and the column vector corresponding to z; is —M.;. For
j =1 to n, the pair (I.;,—M.;) is the jth complementary pair of column vectors in
the LCP (¢, M). For j =1 to n, let y; € {wj,7;} and let A.; be the column vector
corresponding to y; in (1.6). So A.; € {I.; — M.;}. Then y = (y1,...,¥yn) is a com-
plementary vector of variables in this LCP, the ordered set (A.1,...,A.,) is the
complementary set of column vectors corresponding to it and the matrix A
with its column vectors as A.1,..., A., in that order is known as the complemen-
tary matrix corresponding to it. If {A.1,..., A.,} is linearly independent, y is a
complementary basic vector of variables in this LCP, and the complementary
matrix A whose column vectors are A.{,..., A., in that order, is known as the com-
plementary basis for (1.6) corresponding to the complementary basic vector y. The
cone Pos(A.i,...,A,) ={z:0=0A1 +...+ yA,, a1 20,...,a, > 0} is the
complementary cone in the class C(M) corresponding to the complementary set of
column vectors (A.1,..., A.,), or the associated complementary vector of variables y.
A solution of the LCP (q, M), always means a (w;z) satisfying all the constraints
(1.6), (1.7), (1.8).

A complementary feasible basic vector for this LCP is a complementary basic
vector satisfying the property that ¢ can be expressed as a nonnegative combination of
column vectors in the corresponding complementary basis. Thus each complementary
feasible basic vector leads to a solution of the LCP.

The union of all the complementary cones associated with the square matrix M
is denoted by the symbol K(M). K(M) is clearly the set of all vectors ¢ for which the
LCP (g, M) has at least one solution.

We will say that the vector Z leads to a solution of the LCP (¢, M) iff (w =
M?Z + q,Z) is a solution of this LCP.

As an illustration, here are all the complementary vectors of variables and the
corresponding complementary matrices for (1.2), an LCP of order 2.



8 CHAPTER 1. LINEAR COMPLEMENTARITY PROBLEM, ITS GEOMETRY, AND APPLICATIONS

Complementary The corresponding
vector of variables complementary matrix
- )
(1.2 Lo )
(a2 )
(1,22 )

Since each of these complementary matrices is nonsingular, all the complemen-
tary vectors are complementary basic vectors, and all the complementary matrices are
complementary bases, in this LCP. Since ¢ = (—5,—6)T in (1.2) can be expressed
as a nonnegative combination of the complementary matrix corresponding to (21, 22);
(21, 22) is a complementary feasible basic vector for this LCP. The reader should draw
all the complementary cones corresponding to this LCP on the two dimensional Carte-
sian plane, and verify that for this LCP, their union, the set K(M) = R?.

The Total Enumeration Method for the LCP

Consider the LCP (g, M) of order n. The complementarity constraint (1.8) implies
that in any solution (w, z) of this LCP, for each j =1 to n, we must have
either w; =0
or z; =0.
This gives the LCP a combinatorial, rather than nonlinear flavour. It automatically

leads to an enumeration method for the LCP.
There are exactly 2™ complementary vectors of variables. Let

v =(il,...,y,), r=1 to 2"
where y% € {wj, z;} for each j = 1 to n, be all the complementary vectors of variables.
Let A, be the complementary matrix corresponding to y", » = 1 to 2". Solve the
following system (P;.).
Aryr =4q
y">0.
This system can be solved by Phase I of the simplex method for LLP, or by other methods
for solving linear equality and inequality systems. If this system has a feasible solution,

(Pr)

y", say, then
y =7

all variables not in y", equal to zero
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is a solution of LCP (g, M). If the complementary matrix A, is singular, the system
(P,) may have no feasible solution, or have one or an infinite number of feasible solu-
tions. Each feasible solution of (P,) leads to a solution of the LCP (g, M) as discussed
above. When this is repeated for 7 = 1 to 2™, all solutions of the LCP (¢, M) can be
obtained. The method discussed at the beginning of Section 1.1 to solve an LCP of
order 2 is exactly this enumeration method.

This enumeration method is convenient to use only when n = 2, since 2% = 4 is
small; and to check whether the system (P,.) has a solution for any r, we can draw the
corresponding complementary cone in the two dimensional Cartesian plane and check
whether it contains ¢q. When n > 2, particularly for large n, this enumeration method
becomes impractical since 2™ grows very rapidly. In Chapter 2 and later chapters we
discuss efficient pivotal and other methods for solving special classes of LCPs that arise
in several practical applications. In Section 8.7 we show that the general LCP is a hard
problem. At the moment, the only known algorithms which are guaranteed to solve
the general LCP are enumerative methods, see Section 11.3.

1.2 APPLICATION TO
LINEAR PROGRAMMING

In a general LP there may be some inequality constraints, equality constraints, sign
restricted variables and unrestricted variables. Transform each lower bounded variable,
say x; > l;, into a nonnegative variable by substituting z; = I; + y; where y; > 0.
Transform each sign restricted variable of the form z; < 0 into a nonnegative variable
by substituting z; = —y; where y; > 0. Eliminate the unrestricted variables one
after the other, using the equality constraints (see Chapter 2 of [1.28 or 2.26]). In the
resulting system, if there is still an equality constraint left, eliminate a nonnegative
variable from the system using it, thereby transforming the constraint into an inequality
constraint in the remaining variables. Repeat this process until there are no more
equality constraints. In the resulting system, transform any inequality constraint of
the “<” form into one of “>" form, by multiplying both sides of it by *-1". If the objetive
function is to be maximized, replace it by its negative which should be minimized, and
eliminate any constant terms in it. When all this work is completed, the original LLP
is transformed into:

Minimize cx
Subject to Az > b (1.9)
x>0

which is in symmetric form. Here, suppose A is of order m x N. If x is an optimum
feasible solution of (1.9), by the results of the duality theory of linear programming
(see [1.28, 2.26]) there exists a dual vector y € R, primal slack vector v € R™, and
dual slack vector u € RN which together satisfy
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-1 6
[3]20 [Z]go and [:}‘] [;]:0'

Conversely, if u, v, x, y together satisfy all the conditions in (1.10), z is an optimum
solution of (1.9). In (1.10) all the vectors and matrices are written in partitioned
form. For example, (Z) is the vector (uq,...,un,v1,.-.,0m)L. if n=m+ N,

o= (1) = )= (00 )= (5]

(1.10) is seen to be an LCP of order n of the type (1.6) to (1.8). Solving the LP (1.9)
can be achieved by solving the LCP (1.10).
Also, the various complementary pairs of variables in the LCP (1.10) are exactly

those in the pair of primal, dual LPs (1.9) and its dual. As an example consider the
following LP.

(1.10)

Minimize =13z + 4224
Subject to 8ry— xo+ 3xp > —16
— 3x1+ 2w — 1323 > 12
r; 20,5 = 1,2,3

Let (v1,y1), (v2,y2) denote the nonnegative slack variable, dual variable respectively,
associated with the two primal constraints in that order. Let wi, uo, ug denote the
nonnegative dual slack variable associated with the dual constraint corresponding to
the primal variable xq1, z3, x3, in that order. Then the primal and dual systems
together with the complementary slackness conditions for optimality are

8r1— o+ 33— =-16
—3x1+ 21— 1323 —vy = 12
8y1 — 3y2 + uq =-13
— y1+ 2y +up = 42
3y1 — 13y2 +uz = 0.

Tj,uj,Y;,v; > 0 for all 4, 5.
zju; = y;v; =0 for all 4, 7.
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This is exactly the following LCP.

Up Uz U3 Vi V2 T1 T2 T3 Y1 Y2

10 0 00 O O O 8 —=3|-13
1 0 0 0 0 0 0-1 2 42
o100 O O 0 3 -13 0
0o 01 0-8 1-3 0 0 16

o o o O

o 001 3-213 0 0| —12

All variables > 0. urry = upws = uzx3z = v1y1 = vay2 = 0.

1.3 QUADRATIC PROGRAMMING

Using the methods discussed in Section 1.2 any problem in which a quadratic objective
function has to be optimized subject to linear equality and inequality constraints can
be transformed into a problem of the form

Minimize  Q(z) = cx + 127 Dz
Subject to Az > b (1.11)
x>0

where A is a matrix of order m x N, and D is a square symmetric matrix of order
N. There is no loss of generality in assuming that D is a symmetric matrix, because if
it is not symmetric replacing D by (D + DT)/2 (which is a symmetric matrix) leaves
Q(x) unchanged. We assume that D is symmetric.

1.3.1 Review on Positive Semidefinite Matrices

A square matrix F' = (f;;) of order n, whether it is symmetric or not, is said to be a
positive semidefinite matrix if y” Fy > 0 for all y € R". It is said to be a positive
definite matrix if y“ Fy > 0 for all y # 0. We will use the abbreviations PSD, PD
for “positive semidefinite” and “positive definite”, respectively.

Principal Submatrices, Principal Subdeterminants

Let F' = (fi;) be a square matrix of order n. Let {i1,...,i,} C {1,...,n} with its
elements arranged in increasing order. Erase all the entries in F' in row ¢ and column
i for each i & {iy,...,i.}. What remains is a square submatrix of F' of order r:
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fiviv oo Jivin

Jivin oo Jiri,

This submatrix is known as the principal submatrix of F' determined by the subset
{i1,...,4-}. Denoting the subset {iy,...,i.} by J, we denote this principal submatrix
by the symbol Fyy. It is (fi;; : ¢ € J,j € J). The determinant of this principal
submatrix is called the principal subdeterminant of F' determined by the subset J. The
principal submatrix of F' determined by ¢, the empty set, is the empty matrix which
has no entries. Its determinant is defined by convention to be equal to 1. The principal
submatrix of F' determined by {1,...,n} is F itself. The principal submatrices of F'
determined by nonempty subsets of {1,...,n} are nonempty principal submatrices
of F. Since the number of distinct nonempty subsets of {1,...,n} is 2™ — 1, there are
2™ —1 nonempty principal submatrices of F'. The principal submatrices of F' determined
by proper subsets of {1,...,n} are known as proper principal submatrices of F.
So each proper principal submatrix of F' is of order < n — 1.

0 -1 2
F=11 3 41 .
1 5 —3

The principal submatrix corresponding to the subset {1, 3} is [

Example 1.2

Let

0 2
1 -3
pal submatrix corresponding to the subset {2} is 3, the second element in the principal
diagonal of F'.

] . The princi-

Several results useful in studying P(S)D matrices will now be discussed.

Results on P(S)D Matrices

Result 1.1  If B = (by11) is a matrix of order 1 x 1, it is PD iff b3; > 0, and it is
PSD iff b1y > 0.

Proof. Let y = (y1) € R*. Then "By = by1y2. So y"By > 0 for all y € R, y # 0,
iff b1y > 0, and hence B is PD iff b1 > 0. Also yTBy > 0 for all y € R, iff byy > 0,
and hence B is PSD iff by; > 0.

[

Result 1.2  If F' is a PD matrix all its principal submatrices must also be PD.
Proof. Consider the principal submatrix, G, generated by the subset {1, 2}.

o A R Y
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Pick ¥y = (y1,¥2,0,0,...,0)T. Then yT Fy = tT Gt. However, since F is PD, yT Fy > 0
for all y # 0. So tTGt > 0 for all t # 0. Hence, G is PD too. A similar argument can
be used to prove that every principal submatrix of F'is also PD.

[
Result 1.3  If F'is PD, f;; > 0 for all <. This follows as a corollary of Result 1.2.

Result 1.4  If F is a PSD matrix, all principal submatrices of F' are also PSD. This
is proved using arguments similar to those in Result 1.2.

Result 1.5  If F' is PSD matrix, f;; > 0 for all 2. This follows from Result 1.4.
Result 1.6  Suppose F' is a PSD matrix. If f;; = 0, then f;; + f;; = 0 for all j.
Proof. To be specific let f1; be 0 and suppose that fi2 + fo1 # 0. By Result 1.4 the

principal submatrix
[ i1 Jfi2 ] [ 0 fio ]
Jo1 fo2 Jo1 fo2

must be PSD. Hence fzzy% + (le + f21)y1y2 g 0 for all Y1,Y2. Since f12 + f21 7& 0,
take y1 = (—f22 — 1)/(f12 + f21) and y2 = 1. The above inequality is violated since
the left-hand side becomes equal to —1, leading to a contradiction.

[]

Result 1.7 If D is a symmetric PSD matrix and d;; = 0, then D.; = D;. = 0. This
follows from Result 1.6.

Definition: The Gaussian Pivot Step

Let A = (ai;) be a matrix of order m x n. A Gaussian pivot step on A, with row r as
the pivot row and column s as the pivot column can only be carried out if the element
lying in both of them, a,s, is nonzero. This element a,.; is known as the pivot element
for this pivot step. The pivot step subtracts suitable multiples of the pivot row from
each row ¢ for ¢ > r so as to transform the entry in this row and the pivot column into
zero. Thus this pivot step transforms

( 411 . a1g . A1n )
Ar1 . Arg .. Ayn
A=
ary1,1 -+ Op4ls  --- OGr4lon
\ am1 . Am,s .. Amn 7
( ail N AT QA1n )
. Ar1 e Qpg ... Ayn
nto / 0 !
aT+1,1 e - .. ar+1’n
/ /
\ O 0 A,/
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where a;j = ai; — (arjais)/ars, for i =r+1tom, j =1 to n. As an example consider
the Gaussian pivot step in the following matrix with row 2 as the pivot row and column
3 as the pivot column. The pivot element is inside a box.

1 -2 10 -4 -1

L6 2] -

—4
-3 1 -1 2 3
1 —4 2 3 0

This Gaussian pivot step transforms this matrix into

1 2 10 —4 -1
4 6 2 -8 —4
-1 4 0 — 2 1
-3 10 0 11 4

Result 1.8 Let D be a square symmetric matrix of order n > 2. Suppose D is PD.
Subtract suitable multiples of row 1 from each of the other rows so that all the entries
in column 1 except the first is transformed into zero. That is, transform

d11 PN dln d11 5 [P dvln

d21 e dgn . 0 d22 e dgn
D = . . mto D; = ) ) .

dpi oo dpn 0 dyy ... dpn,

by a Gaussian pivot step with row 1 as pivot row and column 1 as pivot column, clearly
Jij = d;; — dy;d;1/dy; for all 4, j > 2. Ey, the matrix obtained by striking off the first
row and the first column from Dy, is also symmetric and PD.

Also, if D is an arbitrary square symmetric matrix, it is PD iff dy; > 0 and the
matrix F; obtained as above is PD.

Proof. Since D is symmetric d;; = dj; for all 7, j. Therefore,

?JTD?J = Zzyzy] ij — d11y1 + 2y1 Zdljy] + Z yzy] ij

=1 5=1 ,_]>2

=d <y1 + (zn: d1jyj)/d11)2 + Z yifiijyj :
j=2

0,j>2

Letting y; = —(2?22 d1;y;)/d11, we verify that if D is PD, then )=, .o, yidijy; > 0 for
all (ya,...,yn) # 0, which implies that F; is PD. The fact that F; is also symmetric
is clear since ciij =d;j — dyjdin/d11 = in by the symmetry of D. If D is an arbitrary
symmetric matrix, the above equation clearly implies that D is PD iff dy; > 0 and E;
is PD.

[
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Result 1.9 A square matrix F is PD (or PSD) iff F + FT is PD (or PSD).

Proof. This follows because 27 (F + F1)z = 22T Fz.
[

Result 1.10 Let F' be a square matrix of order n and E a matrix of order m x n.

T
F=b ] of order (m + n) is PSD iff F' is PSD.

The square matrix A = [ I 0

Proof. Let &€ = (y1,...,Ynst1,...,tm)T €R™™ and y = (y1,...,y,)T. For all £, we
have (¢TAE = yTFy. So ¢TAE > 0 for all € € R iff yT Fy > 0 for all y € R". That
is, A is PSD iff F' is PSD.

[

Result 1.11 If B is a square nonsingular matrix of order n, D = BT B is PD and
symmetric.

Proof. The symmetry follows because DT = D. For any y € R", y # 0, y' Dy =
yT BT By = ||lyB||2 > 0 since yB # 0 (because B is nonsingular, y # 0 implies y B # 0).
So D is PD.

[

Result 1.12  If A is any matrix of order m x n, AT A is PSD and symmetric.

Proof. Similar to the proof of Result 1.11.

Principal Subdeterminants of PD, PSD Matrices

We will need the following theorem from elementary calculus.

Theorem 1.1 Intermediate value theorem: Let f(\) be a continuous real valued
function defined on the closed interval A\g < A < Ay where A\g < Aq. Let f be a real

number strictly between f(\o) and f()\1). Then there exists a X satisfying Ao < A < Ay,
and f(\) = f.
[

For a proof of Theorem 1.1 see books on calculus, for example, W. Rudin, Prin-
ciples of Mathematical Analysis, McGraw-Hill, second edition, 1964, p. 81. Theorem
1.1 states that a continuous real valued function defined on a closed interval, assumes
all intermediate values between its initial and final values in this interval.

Now we will resume our discussion of PD, PSD matrices.

Theorem 1.2  If F' is a PD matrix, whether it is symmetric or not, the determinant
of F' is strictly positive.

Proof. Let F' be of order n. Let I be the identity matrix of order n. If the determinant
of F'is zero, F' is singular, and hence there exists a nonzero column vector z € R" such
that 27 F = 0, which implies that 27 Fa2 = 0, a contradiction to the hypothesis that F
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is PD. So the determinant of F' is nonzero. In a similar manner we conclude that the
determinant of any PD-matrix is nonzero. For 0 < A < 1, define F(A\) = AF +(1—-M)1,
and f(\) = determinant of F'()\).

Obviously f(A) is a polynomial in A, and hence f(A) is a real valued continuous
function defined on the interval 0 < A < 1. Given a column vector z € R", = # 0,
tTF(N)z = MTFz 4+ (1 — X)zTz > 0 for all 0 < XA < 1 because F is PD. So F(})
is a PD matrix for all 0 < XA < 1. So from the above argument f(A) # 0 for any A
satisfying 0 < XA < 1. Clearly, f(0) = 1, and f(1) = determinant of F'. If f(1) < 0
by Theorem 1.1 there exists a A satisfying 0 < XA < 1 and f(A) = 0, a contradiction.
Hence f(1) £ 0. Hence the determinant of F' cannot be negative. Also it is nonzero.
Hence the determinant of F'is strictly positive.

[

Theorem 1.3 If F is a PD matrix, whether it is symmetric or not, all principal
subdeterminants of F' are strictly positive.

Proof. This follows from Result 1.2 and Theorem 1.2.
[]

Theorem 1.4 If F' is a PSD matrix, whether it is symmetric or not, its determinant
is nonnegative.

Proof. For 0 < A < 1, define F'(X), f(\) as in the proof of Theorem 1.2. Since I is
PD, and F is PSD; F()) is a PD matrix for 0 < A < 1. f(0) = 1, and f(1) is the
determinant of F. If f(1) < 0, there exists a A satisfying 0 < A < 1, and f(A\) =0, a

contradiction since F'(\) is a PD matrix. Hence f(1) £ 0. So the determinant of F is
nonnegative.

[

Theorem 1.5 If F' is a PSD matrix, whether it is symmetric or not, all its principal
subdeterminants are nonnegative.

Proof. Follows from Result 1.4 and Theorem 1.4.

[
Theorem 1.6 Let
d “ e d n d n
11 1 1’ +1 d]_]_ .« .. d]_n
dn1 co dpn dn,n+1 dp1 ... d
dn—i—l,l .« dn_i_l,n dn+1,n+1

be symmetric matrices. H is of order n + 1 and D is a principal submatrix of H.
So d;j = dj; for alli, j =1ton+1. Let v € R", d = (d1,n41,.--,dnnt1)T, and
Q(z) = 2T Dz +2d"x +d, 1 1,11. Suppose D is a PD matrix. Let x* = —D~'d. Then
x* is the point which minimizes Q(x) over x € R", and

Q(z*) = (determinant of H) / (determinant of D). (1.12)
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Also for any v € R"

Q(r) = Q(z*) + (z — 2*)'D(z — z*). (1.13)

Proof. Since H is symmetric %(wx) = 2(Dzx + d). Hence z* is the only point in R"
which satisfies %(;) = 0. Also Dz* = —d implies

T

Q(z*) =% Da* 4+ 2dT 2" + dpy1m1

(1.14)

= dT.T* + dn—{—l,n—{—l .

For:=1ton+ 1, if Ji;nt+1 = di,n—i—l + Z?:l dijl';f, and if g = (91,n+1, Cen ,gn’n+1)T,

then g = d + Dz* = 0. Also gni1n41 = dpt1nr1 +dz* = Q(x*) from (1.14). Now,

from the properties of determinants, it is well known that the value of a determinant

is unaltered if a constant multiple of one of its columns is added to another. For j = 1

to n, multiply the jth column of H by z} and add the result to column n + 1 of H.
This leads to

( din RN dip, g1,n+1
Determinant of H = determinant of
dnl see dnn In,n+1
\dng11 --- dutin Gntlmsl
( di . din 0
= determinant of . . :
dn1 e dpn, 0
\ dn+1,1 cee dn—i-l,n Q($*)

= (Q(z*)) (determinant of D)

which yields (1.12). (1.13) can be verified by straight forward expansion of its right

2
hand side, or it also follows from Taylor expansion of Q(z) around z*, since %(29:) =

2D and z* satisfies %gf) = 0. Since D is a PD matrix, we have (z—z*)T D(z—x2*) > 0,
for all x € R™, © # z*. This and (1.13) together imply that: Q(z) > Q(x*), for all
x € R", x # x*. Hence z* is the point which minimizes Q(z) over x € R".

[]

Theorem 1.7  Let H, D be square, symmetric matrices defined as in Theorem 1.6.
H is PD iff D is PD and the determinant of H is strictly positive.

Proof. Suppose H is PD. By Theorem 1.2 the determinant of H is strictly positive,
and by Result 1.2 its principal submatrix D is also PD.
Suppose that D is PD and the determinant of H is strictly positive. Let x = (z1,
o)t and € = (z1,..., 20, Tne1). Define d, Q(z) as in Theorem 1.6. If x,, .1 = 0,
but £ #0 (i. e., # # 0), ¢THE = 27Dz > 0, since D is PD. Now suppose x,1 # 0.
Let n = (1/zng1)2. Then ¢THE = 27 Dx 4 22 11d"x + dpgr ny122 4 = 22,,Q(n).
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So, when 41 # 0, THE = 22, ,Q(n) > 22, (minimum value of Q(n) over n € R™)
= z2 ; ((determinant of H)/determinant of D)) > 0. So under our hypothesis that D
is PD and the determinant of H is strictly positive, we have €T HE > 0 for all € € R" !,
¢ # 0, that is H is PD.

[

Theorem 1.8 Let H be the square symmetric matrix defined in Theorem 1.6. H
is PD iff the determinants of these n + 1 principal submatrices of H,

d11 d12 dll d12 d13
(d11)7 [ d d ] ) d21 d22 d23 7"'7D7H
2 dsy dgy dss

are strictly positive.

Proof. Proofis by induction on the order of the matrix. Clearly, the statement of the
theorem is true if H is of order 1. Now suppose the statement of the theorem is true
for all square symmetric matrices of order n. By this and the hypothesis, we know that
the matrix D is PD. So D is PD and the determinant of H is strictly positive by the
hypothesis. By Theorem 1.7 these facts imply that H is PD too. Hence, by induction,
the statement of the theorem is true in general.

[]

Theorem 1.9 A square symmetric matrix is PD iff all its principal subdeterminants
are strictly positive.

Proof. Let the matrix be H defined as in Theorem 1.6. If H is PD, all its principal
subdeterminants are strictly positive by Theorem 1.3. On the other hand, if all the
principal subdeterminants of H are strictly positive, the n+1 principal subdeterminants
of H discussed in Theorem 1.8 are strictly positive, and by Theorem 1.8 this implies
that H is PD.

[

Definition: P-matrix
A square matrix, whether symmetric or not, is said to be a P-matrix iff all its principal
subdeterminants are strictly positive.

As examples, the matrices I, [ [2) 2;1 ] , [ ; ; ] are P-matrices. The matrices

0 1 -1 0 2 2 .
[0 1],[ 0 10], [2 2] are not P-matrices.

Theorem 1.10 A symmetric P-matrix is always PD. If a P-matrix is not symmetric,
it may not be PD.

Proof. By Theorem 1.9 B, a symmetric matrix is PD iff it is a P-matrix. Consider

the matrix B,
(1 0 T (2 6
B_[6 1]’ B+B_[6 2]
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Since all its principal subdeterminants are 1, B is a P-matrix. However, the determi-
nant of (B + BT) is strictly negative, and hence it is not a PD matrix by Theorem
1.9, and by Result 1.9 this implies that B is not PD. Actually, it can be verified that,
(1,-1)B(1,-1)T = -4 <0.

[

Note 1.1 The interesting thing to note is that if H is a symmetric matrix, and if
the n+1 principal subdeterminants of H discussed in Theorem 1.8 are strictly positive,
by Theorems 1.10 and 1.8 all principal subdeterminants of H are positive. This result
may not be true if H is not symmetric.

FExercises

1.1 If H is a square symmetric PSD matrix, and its determinant is strictly positive,
then prove that H is a PD matrix. Construct a numerical example to show that this
result is not necessarily true if H is not symmetric.

1.2 Is the following statement true? “H is PSD iff its (n+1) principal subdeterminants
discussed in Theorem 1.8 are all nonnegative.” Why? Illustrate with a numerical
example.

By Theorem 1.9 the class of PD matrices is a subset of the class of P-matrices.
By Theorem 1.10 when restricted to symmetric matrices, the property of being a PD
matrix is the same as the property of being a P-matrix. An asymmetric P-matrix may
not be PD, it may be a PSD matrix as the matrix M(n) below is, or it may not even
be a PSD matrix. Let

(1.0 0 0 0)
2 1 0 0 0

_ 2 21 ... 00

Mmy= |7 7 0 U0 T (1.15)
2 22 ... 10
(2 2 2 ... 2 1)

M (n) is a lower triangular matrix in which all the diagonal entries are 1, and all entries
below the diagonal are 2. All the principal subdeterminants of M (n) are clearly equal
to 1, and hence M (n) is a P-matrix. However, M (n)+ (M (n))7 is the matrix in which
all the entries are 2, and it can be verified that it is a PSD matrix and not a PD matrix.

Theorem 1.11  Let F' be a square PSD matrix of order n, whether it is symmetric
or not. If T € R" is such that T' FT = 0, then (F + FT)T = 0.
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Proof. Let D = F+FT. D is symmetric and by Result 1.9, D is PSD. For all 2 € R",
2T Dx = 22T Fx. So T' DT = 0 too. We wish to prove that DZ = 0. Let z € R". For
all real numbers A, (Z + Az)T D(T + Az) > 0, that is

N2 Dz +2)7"Dx > 0 (1.16)

since Z' DT = 0. If 2T Dx = 0, by taking A = 1 and then —1 in (1.16), we conclude
that T Dz = 0. If 27 Dx # 0, since D is PSD, 27Dz > 0. In this case, from (1.16)
we conclude that 2Z7 Dz > —XzT Dz for A > 0, and 277 Dz < —AzT Dz for A < 0.
Taking A to be a real number of very small absolute value, from these we conclude
that ZZ Dz must be equal to zero in this case. Thus whether zT Dz = 0, or zT Dz > 0,
we have Z' Dz = 0. Since this holds for all z € R"™, we must have ZI D = 0, that is
Dz = 0.

[]

Algorithm for Testing Positive Definiteness

Let F = (fi;) be a given square matrix of order n. Find D = F + FT. F is PD iff
D is. To test whether F' is PD, we can compute the n principal subdeterminants of
D determined by the subsets {1},{1,2},...,{1,2,...,n}. F is PD iff each of these n
determinants are positive, by Theorem 1.8. However, this is not an efficient method
unless n is very small, since the computation of these separate determinants is time
consuming.

We now describe a method for testing positive definiteness of F' which requires at
most n Gaussian pivot steps on D along its main diagonal; hence the computational
effort required by this method is O(n3). This method is based on Result 1.8.

(i) If any of the principal diagonal elements in D are nonpositive, D is not PD.

Terminate.

(ii) Subtract suitable multiples of row 1 from all the other rows, so that all the entries
in column 1 and rows 2 to n of D are transformed into zero. That is, transform

D into D; as in Result 1.8. If any diagonal element in the transformed matrix,

D+, is nonpositive, D is not PD. Terminate.

(iii) In general, after r steps we will have a matrix D, of the form:

rdir dio oo din 7
0 d22 o s e d]_n
0o . B
drr oo dpn
0 dr+1,r+1 .- dr+1,n
L0 0 0 dupyr oo dpp

Subtract suitable multiples of row r» + 1 in D, from rows ¢ for ¢ > r + 1, so that
all the entries in column r 4+ 1 and rows ¢ for ¢ > r + 1 are transformed into 0.
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This transforms D, into D,y ;. If any element in the principle diagonal of D,
is nonpositive, D is not PD. Terminate. Otherwise continue the algorithm in the
same manner for n — 1 steps, until D,,_; is obtained, which is of the form

di1 diz ... dip

0 d22 N dzn
0

0 0 ... dyn

D,,_1 is upper triangular. That’s why this algorithm is called the superdiago-
nalization algorithm. If no termination has occured earlier and all the diagonal
elements of D,,_; are positive, D, and hence, F' is PD.

Example 1.3

Test whether

3.1 2 2 6 0 2 2
-1 2 0 2] . T 0 4 4 0
F= 5| isPD, D=F+FT = 8
0o 4 4 3 2 4 8 -%
0 -2 -2 6 2 0 -3 12

All the entries in the principal diagonal of D (i. e., the entries d;; for all i) are strictly
positive. So apply the first step in superdiagonalization getting D;. Since all elements
in the principal diagonal of D; are strictly positive, continue. The matrices obtained
in the order are:

6 0 2 2 6 0 2 2
b 04 4 0 b 04 4 0
== 22 10 ) — 10 10 )
10 3 10 3
00 —F 5 00 -5 3
6 0 2 27
. 04 4 0
- 10 10
I U St
00 0 8,

The algorithm terminates now. Since all diagonal entries in D3 are strictly positive,
conclude that D and, hence, F' is PD.

Example 1.4

Test whether D = is PD.

o NN O
O =N O
U = N
w ot O O
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D is already symmetric, and all its diagonal elements are positive. The first step of
the algorithm requires performing the operation: (row 3) — 2(row 1) on D. This leads

to
1 0 2 0
0 2 4 0
Di=10 4 0 5
0 0 5 3

Since the third diagonal element in D; is not strictly positive, D is not PD.

Algorithm for Testing Positive Semidefiniteness

Let F' = (fi;) be the given square matrix. Obtain D = F + FT. If any diagonal
element of D is 0, all the entries in the row and column of the zero diagonal entry
must be zero. Otherwise D (and hence F) is not PSD and we terminate. Also, if any
diagonal entries in D are negative, D cannot be PSD and we terminate. If termination
has not occurred, reduce the matrix D by striking off the rows and columns of zero
diagonal entries.

Start off by performing the row operations as in (ii) above, that is, transform D
into D;. If any diagonal element in D; is negative, D is not PSD. Let E; be the
submatrix of D; obtained by striking off the first row and column of D;. Also, if a
diagonal element in F; is zero, all entries in its row and column in F; must be zero.
Otherwise D is not PSD. Terminate. Continue if termination does not occur.

In general, after r steps we will have a matrix D, as in (iii) above. Let FE, be the
square submatrix of D, obtained by striking off the first r rows and columns of D,.
If any diagonal element in F, is negative, D cannot be PSD. If any diagonal element
of E, is zero, all the entries in its row and column in F, must be zero; otherwise D is
not PSD. Terminate. If termination does not occur, continue.

Let dss be the first nonzero (and, hence, positive) diagonal element in E,.. Subtract
suitable multiples of row s in D, from rows ¢, ¢ > s, so that all the entries in column
s and rows 4, i > s in D,, are transformed into 0. This transforms D, into Dy and
we repeat the same operations with D,. If termination does not occur until D,,_; is
obtained and, if the diagonal entries in D,,_; are nonnegative, D and hence F' are
PSD.

In the process of obtaining D,,_;, if all the diagonal elements in all the matrices
obtained during the algorithm are strictly positive, D and hence F'is not only PSD
but actually PD.

Example 1.5

Is the matrix

0 -2 -3 —4 5 00 0 0 0
2 3 3 0 0 06 6 00
F=| 3 3 3 0 0| PSD? D=F+F'=]0 6 6 0 0
4 0 0 8 4 00 0 16 8
-5 0 0 4 2 00 0 8 4
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D.; and D;. are both zero vectors. So we eliminate them, but we will call the remaining
matrix by the same name D. All the diagonal entries in D are nonnegative. Thus we
apply the first step in superdiagonalization. This leads to

D, = Ei=10 16 8
0 0 16 8 0 8 4
0 0 8 4

The first diagonal entry in F4 is 0, but the first column and row of E; are both zero
vectors. Also all the remaining diagonal entries in D are strictly positive. So continue
with superdiagonalization. Since the second diagonal element in D; is zero, move to
the third diagonal element of D;. This step leads to

0
0
Ds = 16

0

S OO
S OO
S oo O O

All the diagonal entries in D3 are nonnegative. D and hence F' is PSD but not PD.

Example 1.6

Is the matrix D in Example 1.4 PSD? Referring to Example 1.4 after the first step in
superdiagonalization, we have
2 4 0
EFi=14 0 5

0 5 3

The second diagonal entry in F; is 0, but the second row and column of F; are not
zero vectors. So D is not PSD.

1.3.2 Relationship of Positive Semidefiniteness

to the Convexity of Quadratic Functions

Let I be a convex subset of R", and let g(x) be a real valued function defined on I
g(z) is said to be a convex function on T, if

glaz + (1 — a)z?) < ag(zh) + (1 — a)g(z?) (1.17)
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for every pair of points z', 22 in T, and for all 0 < o < 1. g(=) is said to be a strictly
convex function on I if (1.17) holds as a strict inequality for every pair of distinct
points 21, 22 in T (i. e., 2! # 2%) and for all 0 < a < 1. See Appendix 3.

Let F' be a given square matrix of order n and ¢ a row vector in R". Let
f(x) = cx + 2T Fz. Here we discuss conditions under which f(x) is convex, or strictly
convex. Let D = (1/2)(F + FT). If F is symmetric then F' = D, otherwise D is
the symmetrized form of F. Clearly f(r) = cx + 2T Dx. Tt can be verified that

%(;) = (8gw(f),..., 88];(’”")) =l + (F—}-FT):E — T + 2Dz, and that & f(m) = the
Hessian of f( ) = F +'FT = 2D. Let ! , #2 be two arbitrary column vectors in R"
and let ¢ = ! — 22. Let o be a number between 0 and 1. By expanding both sides it
can be Verlﬁed that af (x1) + (1 — ) f(2?) — f(azr' + (1 — a)z?) = a(l — a)éT DE where
¢ =2t —2% Soaf(z!) + (1 —a)f(2?) — flaz' + (1 — a)z?) > 0 for all 2*, 2% € R"
and 0 < a < 1, iff €TDE > 0 for all £ € R™, that is iff D (or equivalently F)) is PSD.
Hence f(x) is convex on R"™ iff F' (or equivalently D) is PSD.

Also by the above argument we see that a.f (x1)+ (1 — ) f(2?) — f(az* + (1 — a)z?)
> 0 for all z' # 22 in R" and 0 < o < 1, iff £TDE > 0 for all ¢ € R”, € # 0.
Hence f(z) is strictly convex on R” iff ¢TD¢ > 0 for all & # 0, that is iff D (or
equivalently F') is PD. These are the conditions for the convexity or strict convexity
of the quadratic function f(x) over the whole space R". It is possible for f(x) to
be convex on a lower dimensional convex subset of R" (for example, a subspace of

R") even though the matrix F' is not PSD. For example, the quadratic form f(z) =
(1, 72) [ _[1) (1)] (z1,22)T is convex over the subspace {(x1,72) : 1 = 0} but not

over the whole of R2.

FExercise

1.3 Let K C R" be a convex set and Q(z) = cz + 1”7 Dz. If Q(z) is convex over K
and K has a nonempty interior, prove that Q(x) is convex over the whole space R".

1.3.3 Necessary Optimality Conditions

for Quadratic Programming

We will now resume our discussion of the quadratic program (1.11).

Theorem 1.12  If7 is an optimum solution of (1.11), T is also an optimum solution
of the LP
minimize  (c+7ZT D)z
subject to Az >b (1.18)
x2>0.
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Proof. Notice that the vector of decision variables in (1.18) is x; T is a given point
and the cost coefficients in the LP (1.18) depend on Z. The constraints in both (1.11)
and (1.18) are the same. The set of feasible solutions is a convex polyhedron. Let & be
any feasible solution. By convexity of the set of feasible solutions xy = A&+ (1 —\)T =
T + A(Z — T) is also a feasible solution for any 0 < A < 1. Since T is an optimum
feasible solution of (1.11), Q(zx) — Q(T) > 0, that is A(c + TTD)(Z — 7) + (1/2)
A2(2—7)TD(2—7) > 0 for all 0 < A < 1. Dividing both sides by A leads to (c+z* D)
(2—7) > (—=1/2)(2 —2)TD(2 —7) for all 0 < A < 1. This obviously implies (c+z* D)
(2 —T) >0, that is, (c+ 2T D)% > (¢ + 7 D)Z. Since this must hold for an arbitrary
feasible solution &, T must be an optimum feasible solution of (1.18).

[]

Corollary 1.1 If 7 is an optimum feasible solution of (1.11), there exist vectors
7 € R™ and slack vectors w € RY, v € R™ such that T, §, U, U together satisfy

526 - ()
(12 (a0 w (2 (5)0

Proof. ;From the above theorem T must be an optimum solution of the LP (1.18).
The corollary follows by using the results of Section 1.2 on this fact.

(1.19)

v
8|

[]

Necessary and Sufficient Optimality Conditions
for Convex Quadratic Programs

The quadratic minimization problem (1.11) is said to be a convex quadratic pro-
gram if Q(z) is convex, that is, if D is a PSD matrix (by the results in Section
1.3.2, or Theorem 17 of Appendix 3). If D is not PSD, (1.11) is said to be a non-
convex quadratic program. Associate a Lagrange multiplier y; to the ¢th constraint
“Aj.x > b;” i =1 to m; and a Lagrange multiplier u; to the sign restriction on z; in
(1.11), 5 =1to N. Let y = (y1,...,¥ym)%, u= (u1,...,un)?. Then the Lagrangian
corresponding to the quadratic program (1.11) is L(z,y,u) = Q(z) —y* (Azx —b) —ul'x.
The Karush-Kuhn-Tucker necessary optimality conditions for (1.11) are

8—L(glz,y,u) =cl'+Dr—ATy—u=0

ox

y=>0,u=>0

yT(Az —b) =0, uTz =0
Ar—b2>0,2>0.

(1.20)

Denoting the slack variables Az — b by v, the conditions (1.20) can be verified to
be exactly those in (1.19), written out in the form of an LCP. A feasible solution x
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for (1.11), is said to be a Karush-Kuhn-Tucker point (or abbreviated as a KKT
point) if there exist Lagrange multiplier vectors y, u, such that x, y, u together satisfy
(1.20) or the equivalent (1.19). So the LCP (1.19) is the problem of finding a KKT
point for (1.11). We now have the following results.

Theorem 1.13  If7 is an optimum solution for (1.11), T must be a KKT point for
it, whether Q(z) is convex or not.

Proof. Follows from Theorem 1.12 and Corollary 1.1.
[
Thus (1.20) or equivalently (1.19) provide the necessary optimality conditions for a
feasible solution z of (1.11) to be optimal. Or, in other words, every optimum solution
for (1.11) must be a KKT point for it. However, given a KKT point for (1.11) we
cannot guarantee that it is optimal to (1.11) in general. In the special case when D
is PSD, every KKT point for (1.11) is optimal to (1.11), this is proved in Theorem
1.14 below. Thus for convex quadratic programs, (1.20) or equivalently (1.19) provide
necessary and sufficient optimality conditions.

Theorem 1.14 If D is PSD and T is a KKT point of (1.11), T is an optimum
feasible solution of (1.11).

Proof. ;From the definition of a KKT point and the results in Section 1.2, if T is a
KKT point for (1.11), it must be an optimum feasible solution of the LP (1.18). Let x
be any feasible solution of (1.11).

Q(r) — Q@) = (c+7"D)(x —7) + %(m ~-7)'D(z - 7).

The first term on the right-hand side expression is nonnegative since = is an optimal
feasible solution of (1.18). The second term in that expression is also nonnegative since
D is PSD. Hence, Q(z) — Q(%) > 0 for all feasible solutions, z, of (1.11). This implies
that Z is an optimum feasible solution of (1.11).
[
Clearly (1.19) is an LCP. An optimum solution of (1.11) must be a KKT point for
it. Solving (1.19) provides a KKT point for (1.11) and if D is PSD, this KKT point is
an optimum solution of (1.11). [If D is not PSD and if a KKT point is obtained when
(1.19) is solved, it may not be an optimum solution of (1.11).]

Example 1.7 Minimum Distance Problem.

Let K denote the shaded convex polyhedral region in Figure 1.7. Let P, be the point
(—=2,—1). Find the point in K that is closest to Py (in terms of the usual Euclidean
distance). Such problems appear very often in operations research applications.
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Figure 1.7

Every point in K can be expressed as a convex combination of its extreme points (or
corner points) Py, P», P;, P;. That is, the coordinates of a general point in K are:
()\1 + 4)\2 + 5)\3 + 5)\4, 3)\1 + 0)\2 + 2)\3 + 4)\4) Where the )\z satisfy )\1 + )\2 —+ )\3 + )\4 =1
and A; > 0 for all ¢. Hence, the problem of finding the point in K closest to Py is
equivalent to solving:

Minimize (AL +4X2 +5X3 + 5y — (—=2))2 + (BAL +2A3 + 40y — (—1))2
Subject to A+ A+ A3+ A0 =1
Ai 20 foralli.

A4 can be eliminated from this problem by substituting the expression Ay = 1—A;—As—
A3 for it. Doing this and simplifying, leads to the quadratic program

. 34 16 4
Minimize (—66,—54,—20)>\+<§))\T 16 34 16| A

4 16 8
Subject to —)\1 — )\2 — )\3 i -1
A> 0

where A = (A1, A2, A3)T. Solving this quadratic program is equivalent to solving the
LCP

Uy 34 16 4 1 A1 —66
Us 16 34 16 1 | | 54
us | 4 16 8 1 M| | =20
(% -1 -1 -1 0 Y1 1
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All variables wy, ua, u3, v, A1, A2, Az, y1 > 0
and Ul)\l = Uz)\z = U3)\3 = V1Y1 = 0.

Let (uy, o, U3, U1, 5\1, 5\2, 5\3,311) be a solution to this LOP. Let Ay = 1 — A; — Ao — As.

Then z = (5\1 + 4Ny + 5A3 + BAa, 31 + 203 + 45\4) is the point in K that is closest to
P,.

1.3.4 Convex Quadratic Programs and LCPs
Associated with PSD Matrices

Consider the LCP (¢, M), which is (1.6) — (1.8), in which the matrix M is PSD.
Consider also the quadratic program

Minimize 2T (Mz + q)
Subject to Mz+q2>0
z20.

This is a convex quadratic programming problem since M is PSD. If the optimum
objective value in this quadratic program is > 0, clearly the LCP (g, M) has no solution.
If the optimum objective value in this quadratic program is zero, and Z is any optimum
solution for it, then (w = MZ + ¢, %) is a solution of the LCP. Conversely if (w, 2) is
any solution of the LCP (¢, M), the optimum objective value in the above quadratic
program must be zero, and z is an optimum solution for it. Thus every LCP associated
with a PSD matrix can be posed as a convex quadratic program.

Now, consider a convex quadratic program in which Q(z) = cx+ %xTDa: (where D
is a symmetric PSD matrix) has to be minimized subject to linear constraints. Replace
each equality constraint by a pair of opposing inequality constraints (for example,
Az = b is replaced by Az < b and Az > b). Now the problem is one of minimizing
Q(x) subject to a system of linear inequality constraints. This can be transformed into
an LCP as discussed in Section 1.3.3. The matrix M in the corresponding LCP will
be PSD by Result 1.10, since D is PSD. Thus every convex quadratic programming
problem can be posed as an LCP associated with a PSD matrix.
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1.3.5 Applications of Quadratic Programming

The Portfolio Problem

A big investment firm has a total of $ a to invest. It has a list of n stocks in which this
money can be invested. The problem is to determine how much of the available money
should be invested in each stock. The solution of this problem is called a portfolio. In
this problem, it is well known that “one should never put all of their eggs in one basket”.
So after a thorough study, the manager of the company has determined a lower bound
$ [; and an upper bound $ k; for the amount to be invested in stock j, j = 1 to n.
The yield from each stock varies randomly from year to year. By the analysis of past
data, p;, the expected (or average) yield per dollar invested in stock j per year has
been estimated. The yields from various stocks are not mutually independent, and the
analysis of past data has also provided an estimate of the variance-covariance matrix,
D, for the annual yields from the various stocks per dollar invested. D is a symmetric
positive definite matrix of order n. If § z; is the amount invested in stock j, j = 1 to n,
the portfolio is © = (1,...,2,)T, the expected annual yield from it is 2?21 pix; and
the variance of the yield is 7 Dz. The variance is a measure of the random fluctuation
in the annual yield and hence it should be minimized. The company would, of course,
like to see its expected yield maximized. One way of achieving both of these objectives
is to specify a target or lower bound, say pu, on the expected yield and to minimize the
variance subject to this constraint. This leads to the problem:

Minimize T Dx
Subject to YT, pjry > p

dorjsa
ljé.Tjékj,jthO’rL

which is a quadratic programming problem.

Constrained Linear Regression

We will illustrate this application with an example of eggs and chickens due to C. Mar-
molinero [1.22]. The first step in chicken farming is hatching, carried out by specialized
hatcheries. When hatched, a day-old-chicken is born. It needs no food for the first
two days, at the end of which it is called a growing pullet and moved out of the
hatchery. Pullets have to grow over a period of approximately 19 weeks before they
start producing eggs, and this is done by specialized growing units under optimum
conditions of diet, heating, lighting etc. After 19 weeks of age, pullets are moved into
the laying flock and are then called hens. Consider a geographical region, say a State.
Data on the number of chickens hatched by hatcheries in the state during each month
is available from published state government statistics. But, day-old-chickens may be
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bought from, or sold to firms outside the state, statistics on which are not available.
Define

y¢ = number (in millions) of growing pullets in the state, on the first day of

month ¢.
d; = number (in millions) of day-old-chickens hatched by hatcheries in the

state in month ¢ (from government statistics).

Here d; are not variables, but are the given data. People in the business of producing
chicken feed are very much interested in getting estimates of y; from d;. This provides
useful information to them in their production planning, etc. Not all the day-old-
chickens placed by hatcheries in a month may be alive in a future month. Also, after
five months of age, they are recorded as hens and do not form part of the population of
growing pullets. So the appropriate linear regression model for y; as a function of the
dy’s seems to be y; = Gy + Z?Zl Bidi_;, where 3y is the number of pullets in census,
which are not registered as being hatched (pullets imported into the State, or chickens
exported from the State), and [3; is a survival rate (the proportion of chickens placed in
month ¢ —i that are alive in month ¢, i = 1 to 5). We, of course, expect the parameters
(; to satisfy the constraints

0<Bs<Bu<Ps<B<B 1. (1.21)

To get the best estimates for the parameters 3 = (B, 1, B2, B3, B, B5)T from past
data, the least squares method could be used. Given data on y;, d; over a period of
time (say for the last 10 years), define Lo(8) = >, (y+ — Bo — 21.5:1 Bidi—_;)?. Under the
least squares method the best values for [ are taken to be those that minimize Lo (03)
subject to the constraints (1.21). This is clearly a quadratic programming problem.

One may be tempted to simplify this problem by ignoring the constraints (1.21)
on the parameters 4. The unconstrained minimum of Ly(3) can be found very easily
by solving the system of equations %ﬁgm = 0.

There are two main difficulties with this approach. The first is that the solution of
this system of equations requires the handling of a square matrix (a;;) with a;; = 1/(i+
j — 1), known as the Hilbert matrix, which is difficult to use in actual computation
because of ill-conditioning. It magnifies the uncertainty in the data by very large
factors. We will illustrate this using the Hilbert matrix of order 2. This matrix is

me (1),

2

Consider the following system of linear equations with Hy as the coefficient matrix.

T T2

[y
N[
(=l
iy

N~
Wl
>
[\V]
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It can be verified that the solution of this system of linear equations is T = (4b; — 6b2,
—6by + 12b2)T. Suppose we have the exact value for b; but only an approximate
value for bs. In the solution 7, errors in by are magnified by 12 times in T3, and 6
times in ;. This is only in a small system involving the Hilbert matrix of order 2.
The error magnification grows very rapidly in systems of linear equations involving
Hilbert matrices of higher orders. In real world applications, the coefficients in the
system of linear equations (constants corresponding to by, by in the above system)
are constructed using observed data, which are always likely to have small errors.
These errors are magnified in the solution obtained by solving the system of equations,
making that solution very unreliable. See reference [1.36]. The second difficulty is
that even if we are able to obtain a reasonable accurate solution B for the system of

equations aLgﬂ(ﬂ ) — 0, B may violate the constraints (1.21) that the parameter vector

[ is required to satisfy. For example, when this approach was applied on our problem
with actual data over a 10-year horizon from a State, it led to the estimated parameter
vector B = (4,.22,1.24,.70 — .13,.80)7. We have 34 < 0 and Bz > 1, these values are
not admissible for survival rates. So = B does not make any sense in the problem.
For the same problem, when Lo(/3) was minimized subject to the constraints (1.21),
using a quadratic programming algorithm it gave an estimate for the parameter vector
which was quite good.

Parameter estimation in linear regression using the least squares method is a very
common problem in many statistical applications, and in almost all branches of sci-
entific research. In a large proportion of these applications, the parameter values are
known to satisfy one or more constraints (which are usually linear). The parameter es-
timation problem in constrained linear regression is a quadratic programming problem
when the constraints on the parameters are linear.

1.3.6 Application of Quadratic Programming
in Algorithms for NLP, Recursive Quadratic
Programming Methods for NLP

Recently, algorithms for solving general nonlinear programs, through the solution
of a series of quadratic subproblems have been developed [1.41 to 1.54]. These methods
are called recursive quadratic programming methods, or sequential quadratic
programming methods, or successive quadratic programming methods in the
literature. Computational tests have shown that these methods are especially efficient
in terms of the number of function and gradient evaluations required. Implementation
of these methods requires efficient algorithms for quadratic programming. We provide
here a brief description of this approach for nonlinear programming. Consider the
nonlinear program:
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Minimize  6(z)
Subject to  gi(x) =0, i=1tok (1.22)
gi(r) >0, i=k+1tom

where 6(z) and g¢;(z) are real valued twice continuously differentiable functions defined
over R™. Let g(x) = (g1(2),...,gm(x))T. Given the Lagrange multiplier vector 7 =
(1, ey Ty Tkt 1y - - -, T ), the Lagrangian corresponding to (1.22) is L(z,m) = 0(z) —
mwg(xz). The first order (or Karush-Kuhn-Tucker) necessary optimality conditions for
this problem are

V.L(z,m) =V0(x)—mVg(z) =0
>0 t=k+1tom
migi(x) =0 i=k+1tom (1.23)
gi(x) =0 i=1tok
gi(z) >0 i=k+1tom.

The methods described here for tackling (1.22) try to obtain a solution Z and a La-
grange multiplier vector 7, which together satisfy (1.23), through an iterative process.
In each iteration, a quadratic programming problem is solved, the solution of which
provides revised estimates of the Lagrange multipliers and also determines a search
direction for a merit function. The merit function is an absolute value penalty func-
tion (Li-penalty function) that balances the two competing goals of decreasing 6(x)
and reducing the amounts by which the constraints are violated. The merit function
is then minimized in the descent direction by using a line minimization procedure.
The solution of this line minimization problem produces a revised point z. With the
revised x and m, the method goes to the next iteration. The first iteration begins with
an initial point x and Lagrange multiplier vector = satisfying m; > 0, i = k + 1 to m.
At the beginning of an iteration, let Z, 7 be the current vectors. Define

2L (3, 7)

1
Q(d) = L(&,7) + (V4 L(&, 7))d + 5l —5 5 (1.24)
x
where d = x—2. Q(d) is the Taylor series approximation for L(z, 7r) around the current
point & up to the second order. Clearly % changes in each iteration. Since this

is an n X n matrix, recomputing it in each iteration can be very expensive computa-

2 ~ A
tionally. So in computer implementations of this method, % is approximated by

a matrix B which is revised from iteration to iteration using the BFGS Quasi-Newton
update formula that is widely used for unconstrained minimization. In the initial step,
approximate ‘2,272 by By = I, the unit matrix of order n. Let z?, n, B;, denote the
initial point, the initial Lagrange multiplier vector, and the approximation for ‘327% in
the t-th iteration. Let z't! be the point and 7'*! the Lagrange multiplier vector at
the end of this iteration. Define

£t+1 t+1 t

= -
qt+1 _ (VZL(:L‘Hl,WHl) N VZL(.TJt,TrH_l))T

pitt = 7"t+1qt+1 +(1- T‘t+1)Btft+1
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where
=1 if (£ 7g 0 2 (0.2)(6H)T B!+

0.8 t+1 TB t+1
"= @ e T ETE < 02BN

Then update ‘ZQTE by the formula

Biy1 = B + P - (Bet™)(BiE™) : (1.25)
(§t+1)Tpt+1 (Et+1)TBtEt+1
This updating formula is a slight modification of the BFGS (Broyden-Fletcher-Gold-
farb-Shanno) formula for updating the Hessian (the BFGS updating formula discussed
in Section 10.8.6 is for updating the inverse of the Hessian, the one given here is for
updating the actual Hessian itself).

If r;41 = 1, then pt*™! = ¢'*1 and the updating formula reduces to the standard
BFGS formula for the approximation of the Hessian. The definition of p!*! using ry 1
is introduced to assure that (¢+1)Tpt*! > 0, which guarantees the hereditary positive
definiteness of the updates B;. The quantities 0.2, 0.8 are choosen from numerical ex-
periments, they can be changed. This updating formula provides a symmetric positive
definite approximation for g%. Also, in actual implementation, the second term in
Q(d) in (1.24) is replaced by (VO(z))d.

Therefore, the quadratic program solved in this iteration is: find d that

minimizes  (V0(2))d + (1/2)d" Bd
=0, i=1tok (1.26)

bject t i(Z Vgi(2))d
subject to  g;(%) + (Vgi(%)) >0,i=k+1tom

where B is the current approximation for ?,272.

Let d denote the optimum solution of the quadratic program (1.26), and let 7 =
(1,...,Tm) denote the associated Lagrange multiplier vector corresponding to the
constraints in (1.26). If d = 0, from the optimality conditions for the quadratic program
(1.26), it can be verified that (&, 7) together satisfy (1.23) and we terminate. If d # 0,
it will be a descent direction for the merit function at . In the quadratic programm
(1.26), to make sure that the Taylor series approximations remain reasonable, one
could add additional bound conditions of the form —d; < d; < d;, 7 = 1 to n, where
d; are suitably choosen small positive numbers.

The form of the function that is minimized in the line search in this iteration is
the merit function which is a Lq-penalty function

k m
S(w) =0(x)+ Y fulgi(x)| + Y ji|minimum {0, g;(z)}] (1.27)
=1 i=k+1

where the last two terms are weighted sums of the absolute constraint violations. The
weights fi; used in (1.27) satisfy p; > |7;|, they are usually obtained from

fr; = maximum {|7;], (1/2)(@; + |m])}, i =1 to m,
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where 71, are the weights used in the previous iteration. In Theorem 1.15 given below
we prove that if d = 0, it is a descent direction at the current point Z, for the specially
choosen merit functions S(z) defined in (1.27) (this means that for & > 0 and small
S(&+ad) < S(&), i. e., that S(x) strictly decreases as we move from & in the direction
d). The merit function S(z) is minimized on the half-line {z : z = # + ad, « > 0}.
For this we define f(a) = S(# + ad) and minimize f(a) over a > 0 by using some
one dimensional line search algorithm (see Chapter 10). If & is the value of «a that
minimizes f(a) over a > 0, let & = 2 + @d. The point Z is the new point, it is obtained
by moving a step length of & from & in the direction d.

If Z, 7 satisfy (1.23) to a reasonalbe degree of approximation, the method termi-
nates, otherwise it moves to the next iteration with them.

The Descent Property

Theorem 1.15  Suppose B is symmetric and PD. Let ci, 7 be the optimum solution
and the associated Lagrange multiplier vector for the quadratic program (1.26). If
d # 0, it is a descent direction for the merit function S(x) at .

Proof. By the first order necessary optimality conditions for the quadratic program
(1.26) we have
VO(&) + (Bd)T — #Vg(&) =0
7i(gi(2) + (Vgi(#))d) =0, i =1 to m..

So, for o positive and sufficiently small, since all the functions are continuously differ-

(1.28)

entiable, we have

fla) = S(&+ ad) = 0(&) + a(VO(2))d+

k
;/1’ |gz +O! ng( ))d| (1.29)

m

— > fu(min{0, g;(#) + (Vgi(2))d}) + o(a)

i=k+1

where o(a) is a function of « satisfying the property that the limit (o(«)/a) as o — 0
s 0 (the reason for the minus sign in the last line of (1.29) is the following. Since

min{0, gi(x)} < 0, [min{0, gi(z)}| = —min{0, g;()}).
Let J={i: k+1<i<m,g;(z) <0}, the index set of inequality constraints in
the original problem (1. 22) violated by the current point &. For k +1<i<m, i ¢ J,

if g;(#) = 0, then (Vg;(#))d > 0, from the constraints in (1.26). So, when « is positive

but sufficiently small, for K +1 < i < m, i ¢ J, min{0, g;(&) + a(Vyg;(Z ))d} = 0.
Therefore,

m

Z f1;(min{0, g;(2) + a(Vg;(& Z“’ 9:(%) + a(Vgi(i))d) . (1.30)
i=k+1 ieJ
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Also, for 1 <i <k, (Vg;(2 ))d = —gi(&) by the constraints in (1.26). Therefore

k
Z/Mgz +a(Vgi(2) ~|=(1—04)Zﬂz’k}z’(ﬂf?)I- (1.31)

d=—d"Bd+3" | 7i(Vgi(2))d =

;From (1.28) we have (V0(z))d = —dT Bd+(7Vg(&))
(1.31) in (1.29), we get

—d"Bd — Y™ | 7;gi(#). Using this and (1.30),

1€J

k
a[—dNTBCz— Zﬂﬁg; | - Zﬂ-zgz i; Z ﬂz(vyz(j)) N] + O(O")
i=1 ied (1.32)

k
= f(0) + a[-d"Bd - Z(ﬂi|gi(f@)| + 7igi (%))

=Y wigi(®) = Y (i(Vgi(@))d + 7igi(2))] + o(a)

ieJ 1€J

where J = {k +1,...,m}\ J. Now d"Bd > 0 since B is PD and d # 0. Also,
Z§:1(ﬂ¢|gi(§7)|+7~r¢g¢(§r)) > 0, since ji; > |7;| for all i = 1 to k. Again ), 5 7;gi(%) >0
since 7; > 0 and g;(#) > 0 for all i € J = {k + 1,...,m} \ J. Further, for i € J,
9:(Z) < 0, the constraints in the quadratic program 1mply (Vgi(2))d > —gi() > 0;
therefore, >, (s (Vgi(& Nd + 7igi(2)) > Y ica 19:(®)|(f1; — 7;) = 0. All this implies
that the coefficient of o on the right hand side of (1.32) is strictly negative, that is,
f(a) — f(0) < 0 when « is sufficiently small and positive.
[]
It is possible that even though the original problem is feasible and has a KKT
point, the quadratic program (1.26) may be infeasible in some steps. See Example
1.8. In such steps, it is possible to define an alternate quadratic program of higher
dimension which is always feasible, whose solution again provides a descent direction
for the merit function S(x). One such modification is given by the following quadratic
programming problem

m k
minimize  (VO(@))d + (1/2)d" Bd+ p(3 ui + 3 v;)

i=1 i=1
subject to ¢;(%) + (Vgi(Z))d+u; —v; =0, i=1to k (1.33)
9i(2) +(Vgi(2))d+u; 20, i=k+1tom

u;,v; > 0, for all

where p is a positive penalty parameter.
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The quadratic program (1.33) is always feasible, since, d = 0 leads to a feasible
solution to it. Let J, 7 be an optimum solution and the associated Lagrange multiplier
vector for (1.33). If d # 0, it can be shown that it provides a descent direction for
the merit function S(z) at the current point & using arguments similar to those in the
proof of Theorem 1.15, and the method proceeds as usual. If (1.26) is infeasible and
d = 0 is an optimum solution of (1.33), we cannot conclude that # is a KKT point for
the original problem (1.22), and the method breaks down; however, the possibility of
this occurrence can be discounted in practice.

Example 1.8

Consider the following nonlinear program from the paper of K. Tone [1.53].

Minimize 0(z) = z3+123

Subject to  g1(z) = 23+23-10=0 (1.34)
g2(z) = 11 - 120 '
g3(z) = ra— 120

The set of feasible solutions for this problem is the thick chord of the circle in R? in
Figure 1.8. It can be verified that = = (1,3)7 is an optimum solution of this problem.

[——

1\\r

Figure 1.8
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We have:
Vo(z) = (322, 225)
Vi (z) = (221, 222)
ng(l‘) = (1,0)
Vgs(z) = (0,1).

We try to solve this problem by the recursive quadratic programming method using
2° = (=10, —10)T as the initial point. The constraints for the initial quadratic pro-
gramming subproblem are

g1(z°) + (Vg1(x°)) 190—20d;,—20dy = 0

d
g2(z°) + (V (a:"))d = — 11+ dy >0
d= + dy>0.

Even though the original NLP is feasible and has an optimum solution, it can be
verified that this quadratic subproblem is infeasible. So, we use the quadratic pro-
gramming subproblem as in (1.33). Taking the initial approximation to the Hessian
of the Lagrangian to be B, = I, this leads to the following quadratic programming
problem.

minimize  300d;—20d2+(1/2)(d? + d3)
+p(u1 + us + us + ’Ul)

subject to 20d1+20d5 +u1—v; = 190
d, Sty > 11 (1.35)
d2 +’U,3§ 11
U1, U1, U, U > 0.

Taking the penalty parameter p = 1000, this quadratic program has d = (-1.5,1)T
as the optimum solution with 7 = (=35 -75,1000,692 - 5) as the associated Lagrange
multiplier vector corresponding to the constraints.

If we take penalty parameter vector p = (1100,1100,1100) for constructing the
merit function, we get the merit function

S(z) = 2% + 23 + 1100|122 + 22 — 10| 4+ 1100 min{0, z; — 1}| + 1100| min{0, z5 — 1}|.

We minimize S(z) on the half-line {z° + Ad = (=10 —1-5X, =10+ 11\)7, A > 0}. This
problem can be solved using some of the line minimization algorithms discussed in
Chapter 10. If the output of this problem is ', we update the Hessian approximation
B, and with !, ¥ move over to the next quadratic programming subproblem and
continue in the same way.

Under the assumptions:

(i) the quadratic program has an optimum solution in each step,

(i) if (z,7) satisfies the KKT optimality conditions (1.23), then letting J(Z) = {i :
1 <i<m,g;(T) =0}, we have {Vg;(Z) : i € J(Z)} is linearly independent; 7; > 0
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for alliEJ(_)ﬂ{k+1,...,m}; and for any y # 0, y € {y: (Vgi(T)) y =0, i €

d’L ac X
I@)}, y7 (S5 )) >0,
(iii) the initial pomt 70 is sufficiently close to a KKT point for (1.22);

it has been proved (see references [1.44, 1.45]) that the sequence (x", ") generated by
the algorithm converges superlinearly to (Z,7) which together satisfy (1.23).

These recursive quadratic programming methods have given outstanding numer-
ical performance and thereby attracted a lot of attention. However, as pointed out
above, one difficulty with this approach is that the quadratic programming problem
(1.26) may be infeasible in some steps, even if the original nonlinear program has an
optimum solution, in addition the modified quadratic program (1.33) may have the
optimum solution d= 0, in which case the method breaks down. Another difficulty is
that constraint gradients need to be computed for each constraint in each step, even for
constraints which are inactive. Yet another difficulty is the function f(«) minimized
in the line search routine in each step, which is a non-differentiable L;-penalty func-
tion. To avoid these and other difficulties, the following modified sequential quadratic
programming method has been proposed for solving (1.22) by K. Schittkowski [1.50,
1.51].

Choose the initial point 2°, multiplier vector 7%, By = I or some PD symmetric
approximation for %, po € R, 4% € R™ (pg > 0,+" > 0) and constants ¢ > 0,
7 >1,0< 6 < 1. The choice of e = 1077, § = 0.9, p = 100, and suitable positive
values for pg, 7° is reported to work well by K. Schittkowski [1.51]. Evaluate 0(2°),
gi(2°), Vgi(z°), i = 1 to m and go to stage 1.

General Stage r+1: Let 2", 7" denote the current solution and Lagrange multiplier
vector. Define

Ji={1,...,k}U{i: k+1<14i<m, and either g;(z") < e or m; > 0}
Jzz{l,...,m}\.]l.

The constraints in (1.22) corresponding to i € J; are treated as the active set of
constraints at this stage, constraints in (1.22) corresponding to i € Jo are the current
inactive constraints.

Let B, be the present matrix which is a PD symmetric approximation for %,
this matrix is updated from step to step using the BFGS quasi-Newton update formula
discussed earlier. The quadratic programming subproblem to be solved at this stage

contains an additional variable, x,, 11, to make sure it is feasible. It is the following

1 1
minimize P(d) = §dTBTd + (VO(x"))d + 3 (pra2 )

. - ~[=0, i=1tok
subject to (Vg;(x"))d 4+ (1 — 2py1)gi(z") >0, ieJin{k+1,....,m} (1.36)

(Vgi(a:si))d+gi(x’") i 0,2€Jy
0 é Tn+1 é 1
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where, for each i € Jo, 2% denotes the most recent point in the sequence of points
obtained under the method, at which Vg;(x) was evaluated; and p, is a positive penalty
parameter which is updated in each step using the formula

p*((dr—l)TAT_lur—l)Z
(1= a7 (d )T B,_ydr—t

pr = maximum { 0 5 (1.37)

r—1 , r—1 r—1
where ;7 v, d

are the value of z,41 in the optimum solution, the optimum
Lagrange multiplier vector, and the optimum d-vector, associated with the quadratic
programming problem in the previous stage; p* > 1 is a constant; and A,_; is the
n X m matrix, whose jth column is the gradient vector of g;(x) computed at the most
recent point, written as a column vector.

By definition of the set Js, the vector (d = 0,x,41 = 1) is feasible to this quadratic
program, and hence, when B,. is PD, this quadratic program (1.34) has a finite unique
optimum solution. One could also add additional bound constraints on the variables
of the form §; < d; < 4d;, 7 = 1 to n, where §; are suitable chosen positive numbers,
to the quadratic programming subproblem (1.34), as discussed earlier.

Let (d", 27, 1), u", be the optimum solution and the optimum Lagrange multiplier
vector, for the quadratic program (1.36). The solution of the quadratic programming
subproblem (1.36) gives us the search direction d”, for conducting a line search for a
merit function or line search function corresponding to the original nonlinear program
(1.22). If 27, > 4, change p, into pp, in (1.36) and solve (1.36) after this change. If

this fails to lead to a solution with the value of z,, 1 within the upper bound, define
(s — T r T
d :—BTl(Vm(¢7r(a; , T ))) (1.38)

u" =7" = Vi(pyr(a", "))

where ¢, (2", 7") is the line search function or the merit function defined later on in
(1.39).
The new point in this stage is of the form

2 = o 4 a,d”
Tt =71" +a, (v — ")
where «,. is a step length obtained by solving the line search problem
minimize h(a) = ¢yri1 (2" + ad”", 7" 4+ a(u” — "))
over a € R!, where
by, m) = 0(w) = 3 (migil@) — (@) — 5 o (139)
i€l i€A

where T' = {1,...,k}U{i: k <i<m, gi(z) < m/vi}, A ={1,...,m}\T, and the
penalty parameters «; are updated using the formula

r . rT 2m ’U/: — 7T;' 2 .
v/ = maximum {Ui’yi o a:’"(+1)(d")723,ﬂd”} , i=1tom. (1.40)
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The sequence {o} : r = 0,1,...} is a bounded sequence with o] < 1 for all 7, and it
allows the possibility of decreasing the penalty parameters 7;. A possible choice for
updating these parameters ¢” from stage to stage is by the formula

T

The function ¢, (z,7) is a differentiable augmented Lagrangian function. If (d",u")

'S
g;

:minimum{l, },r:1,2,...,i:1t0m.

are obtained from the solution of the quadratic program (1.36), let y"*! be obtained
using (1.40). On the other hand, if (d",u") are obtained from (1.38), let 4" +! = 4".
If %&0) > 0, replace p, by ppr, and go back to solving the modified quadratic
subproblem (1.36). Otherwise, perform a line search to minimize h(«) with respect
to a, over > 0, and let o, be the optimum value of « for this line minimization
problem. Define
et =2 + a,d"
7rr+1 ="+ O!,«(’U,T o ’/TT)
update the matrix B, by the BEGS updating formula (1.25) and go to the next stage
with these new quantities.
The algorithm can be terminated in the rth stage, if the following conditions are

satisfied
(dT)TBTdT é 82

m
Y lufgi(a") <e
=1

IVaL(a",u"))I* <€

k m
> lgi(z")l+ Y | minimum (0, g;(«")) < Ve
i=1 i=k+1

For a global convergence analysis of this algorithm under suitable constraint qualifica-
tion assumptions, see [1.51].

Algorithms for Quadratic Programming Problems

In this book we will discuss algorithms for quadratic programming problems which
are based on its transformation to an LCP as discussed above. Since the quadratic
program is a special case of a nonlinear program, it can also be solved by the reduced
gradient methods, linearly constrained nonlinear programming algorithms, and various
other methods for solving nonlinear programs. For a survey of all these nonlinear
programming algorithms, see Chapter 10.

1.4 TWO PERSON GAMES

Consider a game where in each play of the game, player I picks one out of a possible
set of his m choices and independently player II picks one out of a possible set of his
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N choices. In a play, if player I has picked his choice, ¢, and player IT has picked his
choice j, then player I loses an amount a,;j dollars and player II loses an amount b;j
dollars, where A’ = (a;;) and B’ = (b;;) are given loss matrices.

If a;; + bj; = 0 for all 4 and j, the game is known as a zero sum game; in
this case it is possible to develop the concept of an optimum strategy for playing
the game using Von Neumann’s Minimax theorem. Games that are not zero sum
games are called nonzero sum games or bimatrix games. In bimatrix games it is
difficult to define an optimum strategy. However, in this case, an equilibrium pair
of strategies can be defined (see next paragraph) and the problem of computing an
equilibrium pair of strategies can be transformed into an LCP.

Suppose player I picks his choice ¢ with a probability of x;. The column vector
x = (x;) € R™ completely defines player I's strategy. Similarly let the probability
vector y = (y;) € RY be player IT’s strategy. If player I adopts strategy x and player
II adopts strategy y, the expected loss of player I is obviously z7 A’y and that of player
II is 27 B'y.

The strategy pair (Z,7) is said to be an equilibrium pair if no player benefits
by unilaterally changing his own strategy while the other player keeps his strategy in
the pair (Z,7) unchanged, that is, if

7T A5 < 2T A’y for all probability vectors = € R™

and
T nl— =T ! 18 N
z- By <% B'y for all probability vectors y € R" .

Let «, 8 be arbitrary positive numbers such that a;; = a;j +a > 0and b;; = b;j +
B> 0 for all i, j. Let A= (a;j), B = (bi;). Since 2T A’y = 2T Ay — a and 2T B'y =
2T By — B for all probability vectors z € R™ and y € RY, if (Z,y) is an equilibrium
pair of strategies for the game with loss matrices A’, B’, then (Z,7) is an equilibrium
pair of strategies for the game with loss matrices A, B, and vice versa. So without any
loss of generality, consider the game in which the loss matrices are A, B.

Since z is a probability vector, the condition Z* Ay < T Ay for all probability
vectors € R™ is equivalent to the system of constraints

zZ!L Ay <Ay foralli=1tom.

Let e, denote the column vector in R" in which all the elements are equal to 1. In
matrix notation the above system of constraints can be written as (z% Ay)e,, < A7.

In a similar way the condition Z! By < Z! By for all probability vectors y € R is
equivalent to (ZT BY)en < BTz. Hence the strategy pair (Z,7) is an equilibrium pair
of strategies for the game with loss matrices A, B iff

(1.41)
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Since A, B are strictly positive matrices, Z1 Ay and T' By are strictly positive numbers.
Let ¢ = 2/(ZT By) and 71 = 7/ (z% Ay). Introducing slack variables corresponding to
the inequality constraints, (1.41) is equivalent to

0 A EY  (—ém
(2) - (o o) (5) - ()
_ = T ,=
(520 (=0 () (50
- nJ) — v n
Conversely, it can easily be shown that if (%, 9, £,7) is a solution of the LCP (1.42) then
an equilibrium pair of strategies for the original game is (Z,%) where 7 = £/(3_¢;) and

v =1n/(3_7;). Thus an equilibrium pair of strategies can be computed by solving the
LCP (1.42).

SIS

(1.42)

S{I~

Example 1.9

Consider the game in which the loss matrices are

! ]-]-0 ! _]. ]_ 0
A_[Oll] B_[O—l 1]'

Player I's strategy is a probability vector x = (x1,z2)T and player II's strategy is a
probability vector ¥ = (y1,%2,%3)T. Add 1 to all the elements in A’ and 2 to all the
elements in B’, to make all the elements in the loss matrices strictly positive. This

2 2 1 1 3 2
A‘[122] B_[213]'

The LCP corresponding to this game problem is

leads to

Uy 002 2 17T7& 1
Us 001 2 2| |& ~1
vl =120 0 0| |m|=1-1 (1.43)
Vs 3100 0f |n —1
VU3 2 3 0 0 O 3 -1

u,v,§,n >0 and u1§; = uly = viny = vame = v3n3 = 0.

Example 1.10

The Prisoner’s Dilemma:

Here is an illustration of a bimatrix game problem from [1.31]. Two well known
criminals were caught. During plea bargaining their Judge urged them both to confess
and plead guilty. He explained that if one of them confesses and the other does not,
the one who confesses will be acquitted and the other one given a sentence of 10 years
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in prison. If both of them confess, each will get a 5 year prison sentence. Both of
them know very well that the prosecution’s case against them is not strong, and the
established evidence against them rather weak. However, the Judge said that if both
of them decide not to confess, he will book both of them on some traffic violations for
a year’s prison term each. For each prisoner, let 1 refer to his choice of confessing and
2 to the choice of pleading not guilty. Measuring the loss in years in prison, their loss
matrices are:

A B
Player IT’s Choice — 1 2 1 2
1 5 0] 5 10
Player I's Choice
2 10 110 1

In this game it can be verified that the probability vectors (Z = (1,0)T, ¥ = (1,0)T)
provide the unique equilibrium pair for this game, resulting in a loss of a five year prison
term for each player. But if both player’s collude and agree to use the probability
vectors (& = (0,1)T, § = (0,1)T), the result, loss of a year’s prison term for each
player, is much better for both. The trouble with the strategy (&, 7) is that each can
gain by double-crossing the other.

Example 1.11

The Battle of the Sexes:

Here is another illustration of a bimatrix game from [1.31]. A newly married couple
have to decide how they will spend Friday evening. The husband (player II) proposes
to go to a boxing match and the wife (player I) proposes to go to a musical concert.
The man rates the pleasure (or gain, or negative loss) he derives by going to the concert
and the boxing match to be 1 and 4 units respectively on a scale from 0 to 5; and the
corresponding figure for the woman are 4 and 1 units respectively. For each player let
1, 2 refer to the choices of insisting on going to concert, boxing match respectively. If
their choices disagree, there is a fight, and neither gains any pleasure from going out
that evening. Treating loss as negative pleasure, here are the loss matrices.

Player II's Choice — 1 2 1 2

1 —4 0| —1 0

Player I's Choice
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For this game, it can be verified that the probability vectors (z = (1,0)T, 5 = (1,0)%).
(# = (0,1)T, § = (0,1)T) are both equilibrium pairs. The losses from the two equi-
librium pairs (Z,7), (Z,9) are distinct, (Z,7) will be preferred by player I, whereas IT
will prefer (Z,9). Because of this, these equilibrium pairs are unstable. Even if player
I knows that IT will use the strategy ¢, she may insist on using strategy 7 rather than
Z, hoping that this will induce II to switch to 3. So, in this game, it is difficult to
foresee what will happen. The probability vectors (Z = (4/5,1/5), 5 = (1/5,4/5)T) is
another equilibrium pair. In this problem, knowledge of these equilibrium pairs seems
to have contributed very little towards the development of any “optimum” strategy.

Even though the theory of equilibrium strategies is mathematically elegant, and
algorithms for computing them (through the LCP formulation) are practically efficient,
they have not found many real world applications because of the problems with them
illustrated in the above examples.

1.5 OTHER APPLICATIONS

Besides these applications, LCP has important applications in the nonlinear analysis of
certain elastic-plastic structures such as reinforced concrete beams, in the free bound-
ary problems for journal bearings, in the study of finance models, and in several other
areas. See references [1.1 to 1.5, 1.8, 1.12, 1.13, 1.19, 1.21, 1.29, 1.32, 1.35].

1.6 THE NONLINEAR
COMPLEMENTARITY PROBLEM

For each j = 1 to n, let f;(z) be a real valued function defined on R™. Let f(z) =
(fi(2),..., fa(2))T. The problem of finding z € R" satisfying

220, f(2)=>0

, (1.44)
zjfj(z) =0, foreachj=1ton

is known as a nonlinear complementarity problem (abbreviated as NLCP). If we define
fi(z) = Mj.z + q; for j = 1 to n, it can be verified that (1.44) becomes the LCP
(1.1). Thus the LCP is a special case of the NLCP. Often, it is possible to transform
the necessary optimality conditions for a nonlinear program into that of an NLCP and
thereby solve the nonlinear program using algorithms for NLCP. The NLCP can be
transformed into a fixed point computing problem, as discussed in Section 2.7.7, and
solved by the piecewise linear simplicial methods presented in Section 2.7. Other than
this, we will not discuss any detailed results on NLCP, but the references [1.14 to 1.16,
1.24, 1.25, 1.39] can be consulted by the interested reader.
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1.7 Exercises

1.4 Consider the two person game with loss matrices A, B. Suppose A + B = 0.
Then the game is said to be a zero sum game (see references [1.28, 1.31]). In this
case prove that every equilibrium pair of strategies for this game is an optimal pair
of strategies in the minimax sense (that is, it minimizes the maximum loss that each
player may incur. See references [1.28, 1.31]). Show that the same results continue to
hold as long as a;; + b;; is a constant independent of 7 and j.

1.5 Consider the bimatrix game problem with given loss matrices A, B. Let © =
(1, 2m)T and y = (y1,-..,9n)T be the probability vectors of the two players. Let
X=(21,. s T, Tms1)T and Y = (Y1, .+, Yn,Yns1)’. Let e, be the column vector in
R" all of whose entries are 1. Let S = {X : BTz — el'x,,11 > 0,el 2z = 1,2 > 0} and
T={Y:Ay—ehtnr1 2 0,efy=1,4>0}. Let Q(X,Y) = 2" (A+B)y—Tmi1—Ynt1-
If (Z,7) is an equilibrium pair of strategies for the game and %, 4+, = Z! BY, 7, 41 =
T! Ay, prove that (X,Y) minimizes Q(X,Y) over Sx T ={(X,Y): X €S, Y € T}.
(O. L. Mangasarian)

1.6 Consider the quadratic program:

Minimize —Q(z) = cx + 22" Dz
Subject to Az > b
x>0

where D is a symmetric matrix. K is the set of feasible solutions for this problem. T
is an interior point of K (i. e., AT > b and T > 0).

(a) What are the necessary conditions for T to be an optimum solution of the problem?

(b) Using the above conditions, prove that if D is not PSD, T could not be an optimum
solution of the problem.

1.7 For the following quadratic program write down the corresponding LCP.

Minimize  —6z; — 4xy — 223 +37% + 2232 + %x%
Subject to r1+ 220+ w3 < 4
x; > 0 forallj.

If it is known that this LCP has a solution in which all the variables z1,x2,z3 are
positive, find it.
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1.8 Write down the LCP corresponding to

Minimize cx + %xTDa:
Subject to x> 0.

1.9 Let
-2 1 1
M_[ 1 —2]’ q_[l]'

Show that the LCP (¢, M) has four distinct solutions. For n = 3, construct a square
matrix M of order 3 and a ¢ € R® such that (¢, M) has eight distinct solutions.

2 -1 -1 1
Hint. Try —M=] -1 3 —1 g=|1|;ortry M=—-1,q>0.
-1 -1 4 1

1.10 Let

00 1 0
M=|00 1| q¢g=]-1].
00 0 0

Find out a solution of the LCP (¢, M) by inspection. However, prove that there exists
no complementary feasible basis for this problem.
(L. Watson)

1.11 Test whether the following matrices are PD, PSD, or not PSD by using the
algorithms described in Section 1.3.1

0 1 -1 4 3 -7 4 100 2 5 —2 -2
o o -2|,1 0o o —2|.,]0o 21w0,] 0o 5 —2].
1 2 1 0O 0 6 0o 0 1 O 0 5

1.12 Let Q(x) = (1/2)2T Dz — cx. If D is PD, prove that Q(z) is bounded below.

1.13 Let K be a nonempty closed convex polytope in R™. Let f(z) be a real valued
function defined on R"™. If f(z) is a concave function, prove that there exists an
extreme point of K which minimizes f(z) on K.

1.14 Let D be an arbitrary square matrix of order n. Prove that, for every positive
and sufficiently large A, the function Qy(z) = 27 (D — AI)z + cz is a concave function
on R".
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1.15 Consider the following quadratic assignment problem.

n n n n
minimize Z(.T):E E § E CijpqLijTpq

i=1 j=1p=1q=1

n
subject to inj =1, forallt=1ton

pa (1.45)
n
inj =1, forallj=1ton
i=1
z;j >0, foralli,j =1ton
and
z;; integral for ¢,5 =1 to n. (1.46)

Show that this discrete problem (1.45), (1.46) can be posed as another problem of the
same form as (1.45) without the integrality constraints (1.46).

1.16 Consider an optimization problem of the following form

o (xTDa?)l/z
minimize —_—
dz + (3
subject to Az > b
x>0

where D is a given PSD matrix and it is known that dz + 8 > 0 on the set of fea-
sible solutions of this problem. Using the techniques of fractional programming (see
Section 3.20 in [2.26]), show how this problem can be solved by solving a single con-
vex quadratic programming problem. Using this, develop an approach for solving this
problem efficiently by algorithms for solving LCPs

(J. S. Pang, [1.33]).

1.17 Let D be a given square matrix of order n. Develop an efficient algorithm which
either confirms that D is PSD or produces a vector y € R" satisfying y7 Dy < 0.

1.18 Consider the following quadratic programming problem

1
minimize  Q(z)= cx + §$TDCL‘

subject to al Az <b
ISz<u

where A, D, ¢, a, b, I, u are given matrices of orders m x n, n xn, 1 X n, m x 1,
m x 1, nx 1, nx1 respectively, and D is symmetric. Express the necessary optimality
conditions for this problem in the form of an LCP. (R. W. H. Sargent, [1.37])
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1.19 Suppose D is a symmetric matrix of order n. Show that the KKT necessary
optimality conditions for the quadratic program

minimize  cx + (1/2)zT Dx
subject to 0<z<b

where b > 0 is a given vector, are of the form: find, z,y > 0 in R" satisfying ' +
Dr+y>0,b—x>0,27(c" + Dz +y) = yT(b—x) = 0. Express these conditions in
the form of an LCP. Also prove that this is equivalent to finding an z € R" satisfying
0<z<band (u—z)T(Dz+c’) >0 for all 0 < u < b. Prove that this LCP always
has a solution and that the solution is unique if D is a P-matrix.

(B. H. Ahn [9.4], S. Karamardian [1.15])

1.20 Weighted Min-Max Location Problem: Given m points a* = (a},...,a)T
€ R", i = 1 to m, and positive weights d;, 7 = 1 to m associated with these points,
define the function (z) = maximum {0;\/(z —a®)T(z —a’) : i = 1 to m} over x €
R"™. The weighted min-max location problem is to find an z € R" that minimizes
O(x). Show that this problem is equivalent to the problem

minimize A . .
subject to A — 62(||a’||® + ijz — QZa}xj) >0,i=1tom (1.47)

where A is treated as another variable in (1.47). Consider the following quadratic
program

n
minimize  Q(X) = Z L5 — Tng
i=1

- (1.48)
bj 2 aia; < a2+ N, i=1
subject to w41 — Za,jxj <lla"]|* + 20 0= to m
j=1 i
where z,41 is an additional variable in (1.48), X = (z1,...,%n,Tpy1). Prove that

Iz
with Q(X) = 0. Conversely if (&, ) is feasible to (1.48) with Q(X) < 0, then show
that (& = (21,...,4n),A) is feasible to (1.47). Also, for each A > 0, prove that the
optimum solution of (1.48) is unique. Treating A as a parameter, denote the optimum
solution of (1.48) as a function of A by X(\). Let A be the smallest value of A for
which Q(X (A)) < 0. Prove that z(\) is the optimum solution of the min-max location
problem. Use these results to develop an algorithm for the min-max location problem
based on solving a parametric right hand side LCP.

(R. Chandrasekaran and M. J. A. P. Pacca, [1.2])

if (Z,)) is feasible to (1.47), (T, \, Tp41) where T,y = Z?:1 72, is feasible to (1.48)

1.21 Let F be a square matrix of order n. In general there may be no relation
between determinant ((F + FT)/2) and determinant (F'). Establish conditions under
which determinant ((F + F7)/2) < determinant (F).
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1.22 Let K C R" convex and Q(z) = cx + 127 Dz. If Q(z) is convex over K and K
has nonempty interior, prove that Q(z) is convex over the whole space R".

1.23 Concave Regression Problem: Here, given a real valued function 0(t) de-
fined on an interval, it is desired to find a convex (or concave, depending on the
application) function that approximates it as closely as possible. Specifically, suppose
we are given 0; = 6(«;), i = 1 to n, where a; < as < ... < a,. So we are given the
values of () at the points t = ay, ..., a,. It is required to find real values fy,..., f,
so that f; = f(a;), i = 1 to n where f is a convex function defined on the real line,
that minimizes the measure of deviation Y., v;(0; — fi)? where v;, i = 1 to n are
given positive weights. Formulate this problem as an LCP.

1.24 K; and K; are two convex polyhedra in R", each of them provided as the set
of feasible solutions of a given system of linear inequalities. Develop an algorithm for
the problem

minimize ||z — y||

.TEKl,yEKQ.

1.25 Sylvester’s Problem: We are given a set of n points in R™, {A.1,..., A},
where A.; = (a1j,...,am;)T, j =1 to n. It is required to find the smallest diameter
sphere in R"™ containing all the points in the set {A.1,..., A.,,}. Transform this into a
quadratic program and discuss an algorithm for solving it. Apply your algorithm to find
the smallest diameter circle containing all the points in {(1, 1), (=3, 2), (1, =5), (—2,4)}
in R”.

(References [1.5, 1.29))

1.26 Let K be any convex polyhedral subset of R™ (you can assume that K is the
set of feasible solutions of Az > b where A, b are given). Let 2°, z! be given points in
R". Let %,  be respectively the nearest points in K (in terms of the usual Euclidean

1

distance) to °, ' respectively. Prove that ||z — || < [|2° — z!||.

1.27 Let a = (ay,...,a,) be a given row vector of R™ and let z° € R"™ be another
given column vector. It is required to find the nearest point in K = {z : ax < 0,z > 0}
to 0, in terms of the usual Euclidean distance. For this, do the following. Let A\ be
a real valued parameter. Let Ao be the smallest nonnegative value of A for which
the piecewise linear, monotonically decreasing function a(z® — AaT)* assumes a non-
positive value. Let T = (z° — Aoa™)T. (For any vector y = (y;) € R", y* = (y)
where y;” = Maximum {0, y;} for each j.) Prove that 7 is the nearest point in K to

20,
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Extend this method into one for finding the nearest point in I' = {z : 2 > 0,z <
5} to 2%, where § is a given number, assuming that T # .
(W. Oettli [1.30])

1.28 Let M be a square matrix of order n and ¢ € R". Let 2z € R" be a vector of
variables. Define: f;(z) = minimum {z;, M;.z + ¢;}, that is
fz(Z) = I;.z if (M, - I,)Z +q; i 0
= M;.z+q; if (M, —Ii.)z+ql~§0

for each 1 =1 to n.
(a) Show that f;(z) is a piecewise linear concave function defined on R"
(b) Consider the system of equations

fi(z) =0 i=1ton.

Let Z be a solution of this system. Let w = MZ + q. Prove that (w,Zz) is a
complementary feasible solution of the LCP (¢, M).
(¢) Using (b) show that every LCP is equivalent to solving a system of piecewise linear

equations.

(R. Saigal)
1.29 For j = 1 to n define a:;L = Maximum {0, z;}, z;; = — Minimum {0, z;}. Let
= (z;) e R", ot = (a:j), x~ = (z; ). Given the square matrix M of order n, define

the piecewise linear function
Ty(z) =2t — Mz~ .

Show that Ths(z) is linear in each orthant of R". Prove that (w = zT,z = 27) solves
the LCP (q, M) iff ¢ = T/ ().
(R. E. Stone [3.71])

1.30 Let D be a given square matrix of order n, and f(x) = 7 Dx. Prove that there
exists a nonsingular linear transformation: y = Az (where A is a square nonsingular
matrix of order n) such that

F@) =yi+. .ty —Ypr— Yy

where 0 < p < 7 < n. Discuss an efficient method for finding such a matrix A, given
D.

Find such a transformation for the quadratic form f(x1, x2, 23) = 23 +22 +22 — 22122 —
2x1x3 — 2z2x3 (this dates back to Lagrange in 1759, see D. E. Knuth [10.20]).
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1.31 Sylvester’s Law of Inertia (dates from 1852): Let D be a given square
matrix of order n, and f(x) = 7 Dz. If there exist nonsingular linear transformations:
y = Az, z = Bx (A, B are both square nonsingular matrices of order n) such that

f(.r):yf+...—}—y§—y§+1—...—yf:zf—l—...+z§—zg+1—...—z82

then prove that p = ¢ and r = s.
This shows that the numbers p and r associated with a quadratic form, defined in

Exercise 1.30 are unique
(see D. E. Knuth [10.20]).

1.32 Using the notation of Exercise 1.30 prove that r = n iff the matrix (D + DT)/2
has no zero eigenvalues and that p is the number of positive eigenvalues of
(D + DT)/2.

Let Do, Dy be two given square matrices of order n, and let D, = (1 — a)Dg +
aD;. Let r(D,), p(Dy) be the numbers r, p, associated with the quadratic form f, =
2T Doz as defined in Exercise 1.30. If r(D,) = n for all 0 < o < 1, prove that p(Dg) =
p(D1).

(See D. E. Knuth [10.20].)

1.33 To Determine Optimum Mix of Ingredients for Moulding Sand in a
Foundry: In a heavy casting steel foundry, moulding sand is prepared by mixing
sand, resin (Phenol formaledhyde) and catalyst (Para toluene sulfonic acid). In the
mixture the resin undergoes a condensation polymerization reaction resulting in a
phenol formaldehyde polymer that bonds and gives strength. The bench life of the
mixed sand is defined to be the length of the time interval between mixing and the
starting point of setting of the sand mix. In order to give the workers adequate time
to use the sand and for proper mould strength, the bench life should be at least 10
minutes. Another important characteristic of the mixed sand is the dry compression
strength which should be maximized. An important variable which influences these
characteristics is the resin percentage in the mix, extensive studies have shown that the
optimum level for this variable is 2 % of the weight of sand in the mix, so the company
has fixed this variable at this optimal level. The other process variables which influence
the output characteristics are:

r1 = temperature of sand at mixing time
2o = % of catalyst, as a percent of resin added

x3z = dilution of catalyst added at mixing.

The variable z3 can be varied by adding water to the catalyst before it is mixed. An
experiment conducted yielded the following data.
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Dry Compression Strength

3 =0 10

Ty | w2 =25 | 30 35 40 25 30 35 40

20¢ 31.4 32.4 | 33.7 | 37.3 | 32.7 | 33.7 | 36.3 | 34.0
30¢ 33.4 34.1 | 349 | 32.6 | 30.1 | 31.1 | 35.0 | 35.2

40¢ 33.8 31.4 | 38.0 | 32.4 | 31.6 | 32.3 | 34.7 | 34.8

Bench Life

1'3:0 10

r1 | 2 =25 30 35 40 25 30 35 40

20¢ 13.3 11.5 | 10.8 | 10.3 | 15.8 | 14.0 | 12.8 | 11.8
30¢ 10.3 90| 80| 6.8 | 123 | 11.0 | 10.3 | 9.3
40¢ 7.0 6.3 5.0 | 4.3 | 11.8 | 10.5 7.3 5.8

Bench life can be approximated very closely by an affine function in the variables z1,
Z9, x3; and dry compression strength can be approximated by a quadratic function in
the same variables. Find the functional forms for these characteristics that provide the
best approximation. Using them, formulate the problem of finding the optimal values
of the variables in the region 0 < w3 < 10, 25 < x5 < 40, 20 < 7y < 40, so as to
maximize the dry compression strength subject to the additional constraint that the
bench life should be at least ten, as a mathematical programming problem. Find an
optimum solution to this mathematical program. (Hint: For curve fitting use either
the least squares method discussed in Section 1.3.5, or the minimum absolute deviation
methods based on linear programming discussed in [2.26, Section 1.2.5].)

(Bharat Heavy Electricals Ltd., Hardwar, India).

1.34 Synchronous Motor Design Problem: There are 11 important design vari-
ables (these are variables like the gauge of the copper wring used, etc. etc.) denoted by
x1 to x11 and let x = (zq, ..., a:ll)T. These variables effect the raw material cost for
this motor, denoted by fo(x); the efficiency of the motor (= (output energy)/(input
energy) measured as a percentage) denoted by fi(z); and the power factor (this mea-
sures leakage, it is a loss measured as a percentage) denoted by fz(x). Subroutines
are available for computing each of the functions fo(x), fi(x), fo(x) for given z. The
problem is to find optimal values for the variables which minimizes fo(z) subject to
fi(z) > 86.8 and fo(x) < 90 and [ < x < u, where [, u are specified lower and upper
bound vectors for the variables. Discuss a method for solving this problem.
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1.35 Quadratic Programming Model to Determine State Taxes: It is re-
quired to determine optimum levels for various state government taxes that minimizes
instability while meeting constraints on growth rates over time. Seven different taxes
are considered, sales, motor fuel, alcoholic beverages, tobacco, motor vehicle, personal
income, and corporate taxes. State government finance is based on the assumption
of predictable and steady growth of each tax over time. Instability in tax revenue is
measured by the degree to which the actual revenue differs from predicted revenue.

Using past data, a regression equation can be determined to measure the growth
in tax revenue over time. Let s be the tax rate for a particular tax and S; the expected
tax revenue from this tax in year ¢. Then the regression equation used is

log, S = a + bt +cs

where a, b, ¢ are parameters to be determined using past data to give the closest fit.
Data for the past 10 years from a state is used for this parameter estimation. Clearly,
the parameter ¢ can only be estimated, if the tax rate s for that tax has changed during
this period, this has happened only for the motor fuel and the tobacco taxes. The best
fit parameter values for the various taxes are given below (for all but the motor fuel
and tobacco taxes, the tax rate has remained the same over the 10 years period for
which the tax data is available, and hence the parameter a given below for these taxes,
is actually the value of a + c¢s, as it was not possible to estimate a and ¢ individually
from the data).

Table 1: Regression coefficient values

J Tax j a b c
Sales 12.61 108

2 Motor fuel 10.16 .020 276

3 Alcoholic beverages 10.97 .044

4 Tobacco 9.79 .027 102

5 Motor vehicle 10.37 .036

6 Personal income 11.89 .160

7 Corporate 211.09 112

The annual growth rate is simply the regression coefficient b multiplied by 100 to
convert it to percent.

For 1984, the tax revenue from each tax as a function of the tax rate can be
determined by estimating the tax base. This data, available with the state, is given
below.
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J Tax j Tax base (millions of dollars)
1 Sales 34,329

2 Motor fuel 3,269

3 Alcoholic beverages 811

4 Tobacco 702

5 Motor vehicle 2,935

6 Personal income 30,809

7 Corporate 4,200

If s; is the tax rate for tax j in 1984 as a fraction, x; = tax revenue to be collected in
1984 in millions of dollars for the jth tax is expected to be: (tax base for tax j) s;.

Choosing the decision variables to be z; for j = 1 to 7, let z = (z4,... ,x7)T.
The total tax revenue is 237':1 x;. Then the variability or instability in this revenue is
measured by the quadratic function Q(z) = 27V where V, the variance-covariance
matrix estimated from past data is

(.00070 —.00007 .00108 —.00002 .00050  .00114  .00105
00115 .00054 —.00002 .00058 —.00055  .00139
00279  .00016 .00142  .00112  .00183
.00010 .00009 —.00007 —.00003
00156 .00047  .00177
00274 .00177
\ .00652 )

Since V is symmetric, only the upper half of V' is recorded above.

The problem is to determine the vector z that minimizes Q(z), subject to several
constraints. One of the constraints is that the total expected tax revenue for 1984
should be T = 3300 in millions of dollars. The second constraint is that a specified
growth rate of A in the total tax revenue should be maintained. It can be assumed
that this overall growth rate is the function 2:21 %;j which is a weighted average of
the growth rates of the various taxes. We would like to solve the problem treating A
as a nonnegative parameter. Of particular interest are values A = 9 % and 13 %.

The other constraints are lower and upper bounds on tax revenues x;, these are

of the form 0 < z; < u; for each j; where u; is twice the 1983 revenue from tax j. The

vector u = (u;) is (2216, 490, 195, 168, 95, 2074, 504) in millions of dollars.
Formulate this problem as an LCP and solve it using the complementary pivot al-

gorithm discussed in Chapter 2. Using the tax base information given above, determine

the optimal tax rates for 1984 for each tax.

(F. C. White [1.40], my thanks to H. Bunch for bringing this paper to my attention.)



1.7. EXERCISES 55

1.36 Consider the equality constrained nonlinear program

minimize 0(x)
subject to  hi(z) =0, i=1tom.
The quadratic merit function for this problem is S(z) = 0(z) + (p/2) Yiv, (hi(x))?
where p is a positive penalty parameter. Let T € R"™ be an initial point and 77 =
(Fiys---s1,,) € R™ be a given Lagrange multiplier vector. Consider the equality
constrained quadratic program in variables d = (dy,...,d,)T
minimize ~ V6(T)d + 3d" Bd
subject to  (h(Z))T + (Vh(Z))d = 1/p
where B is a symmetric PD matrix of order n. If d # 0 is an optimum solution of this

quadratic program, and ™ = (7q,...,7y) the associated Lagrange multiplier vector,
prove that d is a descent direction for S(z) at .

1.37 Let A = (a;;) be a given square matrix of order n. Consider the usual assignment

problem
n n
minimize  z(z) = E E AijTij

i=1 j=1
n
subject to inj =1, j=1ton
i=1
n
subject to inj =1, 1=1ton
Jj=1
subject to z;; 20, 4,7=1ton.

i) Prove that if A is PD and symmetric, T = I,, = unit matrix of order n, is an
optimum solution for this problem. Is the symmetry of A important for this
result to be valid?

ii) Using the above, prove that if A is PD and symmetric, there exists a vector
u = (uy,...,u,) satisfying

ui—ujiaij—ajj, i,jzlton.

1.38 Consider the problem of an investor having one dollar to invest in assets i =
1,...,n. If z; is invested in asset ¢, then &;x; is returned at the end of the investment
period, where ({1, ...,&,) are random variables independent of the choice of z;s, with
the row-vector of means p = (p1,...,1n) (1 > 0) and a positive definite symmetric
variance-covariance matrix D. In portfolio theory, under certain assumptions, it is
shown that optimal investment proportions, © = (x1,...,z,)T, may be obtained by
maximizing the fractional objective function
_ Hx
g(z) = (T D)1/



56 CHAPTER 1. LINEAR COMPLEMENTARITY PROBLEM, ITS GEOMETRY, AND APPLICATIONS

i) A real valued function f(x) defined on a convex set K C R" is said to be pseudo-
concave on K if it is differentiable on K and for every z!, 2% € K, Vf(2?)(z! —
z?) < 0 implies f(z') < f(2?).

Prove that g(z) is pseudo-concave in {z : z > 0}, even though it is not in general
concave on this set.

For the problem of maximizing a pseudo-concave function on a convex set, prove
that every local maximum is a global maximum.
Consider the problem

maximize  g(x)
n
subject to ij =1
j=1
x; >0, for all j.

Show that this problem has a unique optimum solution. Also, show that an optimum
solution of this problem can be obtained from the solution of the LCP (—pu, D).
(W. T. Ziemba, C. Parkan and R. Brooks-Hill [3.80])

1.39 In Section 1.3.5, the computational problems associated with the Hilbert matrix
were mentioned briefly. Consider the following linear program

maximize  cx
subject to Az <b

where f 1 BN
2 3 n+1
1 1 1
A: 3 4 n—+2
1 1 1
n+1 n+2 2n
“1
i tonT= (301
Gezi=tton = (37
7j=1
2 "1
c= c-:'zltonz(_——F - )
(¢i ¢ ) J+1 Z]+2

i=2
Clearly, this problem has the unique optimum solution = (1,1,...,1)T and the dual
problem has the unique optimum solution 7 = (2,1,1,...,1). The coefficient matrix
A is related to the Hilbert matrix of order n. Verify that when this problem is solved
by pivotal algorithms such as the simplex algorithm, or by the complementary pivot
algorithm through an LCP formulation, using finite precision arithmetic, the results
obtained are very bad, if n exceeds 10, say.
(E. Bernarczuk, “On the results of solving some linear programming problems using
program packages of IBM and Robotron computers”)
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1.40 Consider the LCP (g, M). Define

f(z) = Z[minimum {0, M.z + q; — 2z} + 2.
i=1

Show that the LCP (g, M) is equivalent to the following concave minimization problem
minimize  f(2)

subject to  Mz+q> 0
z =0

(O. L. Mangasarian [8.15])

1.41 Let n be a positive integer. Consider a square matrix z = (z;;) of order n.
2
Order the entries x;; in the matrix in the form of a vector in R™ , in some order. Let

K C R™ denote the set of all such vectors corresponding to PSD matrices z. Prove
that K is a convex cone, but not polyhedral, and has a nonempty interior.

1.42 Consider the LCP (¢, M) (1.6) to (1.8), of order n. Now consider the following
mixed 0-1 integer programming problem (MIP)

maximize  Yp4+1
subject to 0 < My +qynt1 <e—=x

1.49
0<y<z,0<5yp11 =1 ( )
z;=0or1lforalli=1ton

where y = (y1,...,yn)%, . = (v1,...,2,)T and e is the vector of all 1s in R"™. Suppose

the optimum objective value in the MIP (1.49) is y: ;.

If 1 = 0, prove that the LCP (¢, M) has no solution.
If y».y > 0 and (y*, 2%, y;,1) is any optimum solution of the MIP (1.49), prove
that (w*, z*) is a solution of the LCP (g, M), where

25 =1/ ypi1)y”
w* = Mz*+q

(J. Ben Rosen, “Solution of general LCP by 0-1 Mixed integer programming”,
Computer Science Tech. Report 86-23, University of Minnesota, Minneapolis, May,
1986).
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Chapter 2

THE COMPLEMENTARY PIVOT
ALGORITHM AND ITS EXTENSION
TO FIXED POINT COMPUTING

LCPs of order 2 can be solved by drawing all the complementary cones in the ¢, q2-
plane as discussed in Chapter 1.

Example 2.1

-1 1 -2
complementary cones corresponding to this problem is shown in Figure 1.5.

Let ¢ = [ 4] , M = [_2 1] and consider the LCP (¢, M). The class of

w1 Wo 21 22 q
1 0 2 —1 4
0 1 —1 2 -1

wy,Wg, 21,22 2 0, wi1z1 = w222 =0

q lies in two complementary cones Pos (—M.1, I.5) and Pos (—M.1, —M.5). This implies
that the sets of usable variables (z1,w2) and (z1, 22) lead to solutions of the LCP.
Putting w; = 23 = 0 and solving the remaining system for the values of the
usable variables (z1,ws) lead to the solution (z1,ws) = (2,1). Here (wq,ws, 21, 22) =
(0,1,2,0) is a solution of this LCP. Similarly putting w; = ws = 0 and solving it for
the value of the usable variables (21, z2) leads to the second solution (wy, we, 21, 22) =

(0,0, Z,2) of this LCP.
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Example 2.2

Let ¢ = [ :1 ] and M = [ _? _; ] and consider the LCP (¢, M). The class of

complementary cones corresponding to this problem is in Figure 1.5. Verify that ¢ is
not contained in any complementary cone. Hence this LCP has no solution.

This graphic method can be conveniently used only for LCPs of order 2. In
LCPs of higher order, in contrast to the graphic method where all the complementary
cones were generated, we seek only one complementary cone in which ¢ lies. In this
chapter we discuss the complementary pivot algorithm (which is also called the
complementary pivot method) for solving the LCP. In the LCP (1.1) if ¢ > 0,
(w,z) = (q,0) is a solution and we are done. So we assume ¢ Z 0. First we will briefly
review some concepts from linear programming. See [2.26] for complete details.

2.1 BASES AND BASIC FEASIBLE SOLUTIONS

Consider the following system of linear equality constraints in nonnegative variables

Az =b
x>0

(2.1)

where A is a given matrix of order m x n. Without any loss of generality we assume
that the rank of A is m (otherwise either (2.1) is inconsistent, or redundant equality
constraints in (2.1) can be eliminated one by one until the remaining system satisfies
this property. See [2.26]). In this system, the variable z; is associated with the column
A, j =1ton. A basis B for (2.1) is a square matrix consisting of m columns of
A which is nonsingular; and the column vector of variables xp associated with the
columns in B, arranged in the same order, is the basic vector corresponding to it.
Let D be the matrix consisting of the n — m columns of A not in B, and let zp be
the vector of variables associated with these columns. When considering the basis B
for (2.1), columns in B, D, are called the basic, nonbasic columns respectively;
and the variables in xp, xp are called the basic, nonbasic variables respectively.
Rearranging the variables, (2.1) can be written in partitioned form as

Bxg + Dxp = b
ZL‘BEO, ZL‘DEO.

The basic solution of (2.1) corresponding to the basis B is obtained by setting zp = 0
and then solving the remaining system for the values of the basic variables. Clearly it
is (xp = B~'b, zp = 0). This solution is feasible to (2.1) iff B~'b > 0, and in this
case B is said to be a feasible basis for (2.1) and the solution (zp = B~!b, zp = 0)
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is called the basic feasible solution (abbreviated as BFS) of (2.1) corresponding to
it. A basis B which is not feasible (i. e., if at least one component of B~!b is strictly
negative) is said to be an infeasible basis for (2.1). Thus each feasible basis B for
(2.1) determines a unique BFS for it.

When referring to systems of type (2.1), the word solution refers to a vector z
satisfying the equality constraints ‘Az = b’, that may or may not satisfy the nonneg-
ativity restrictions ‘¢ > 0’. A solution z of (2.1) is a feasible solution if it satisfies
x> 0.

Definition: Degeneracy, Nondegeneracy of Basic Solutions for (2.1); of (2.1)
itself: and of the b-Vector in (2.1) The basic solution associated with a given
basis B for (2.1), whether it is feasible or not, is said to be degenerate if at least one
component in the vector B~1b is zero, nondegenerate otherwise.

A system of constraints of the form (2.1) is said to be nondegenerate if it has no
degenerate basic solutions (i. e., iff in every solution of (2.1), at least m variables are
nonzero, when the rank of A is m), degenerate otherwise. When A has full row rank,
the system (2.1) is therefore degenerate iff the column vector b can be expressed as a
linear combination of r columns of A, where r < m, nondegenerate otherwise. Thus
whether the system of constraints (2.1) is degenerate or nondegenerate depends on the
position of the right hand side constants vector b in R™ in relation to the columns of
A; and if the system is degenerate, it can be made into a nondegenerate system by just
perturbing the b-vector alone.

The right hand side constants vector b in the system of constraints (2.1) is said to
be degenerate or nondegenerate in (2.1) depending on whether (2.1) is degenerate or
nondegenerate. See Chapter 10 in [2.26].

The definitions given here are standard definitions of degeneracy, nondegeneracy
that apply to either a system of constraints of the form (2.1) or the right hand con-
stants vector b in such a system, or a particular basic solution of such a system. This
should not be confused with the concepts of (principal) degeneracy or (principal) non-
degeneracy of square matrices defined later on in Section 2.3, or the degeneracy of
complementary cones defined in Chapter 1.

As an example, consider the system of constraints given in Example 2.4 in Section
2.2.2. The BFS of this system associated with the basic vector (x1, 22, x3,24) is T =
(3,0,6,5,0,0,0,0)T and it is degenerate since the basic variable xo is zero in this
solution. The BFS of this system associated with the basic vector (xg,xs,x3,24) can
be verified to be = = (0,1,2,3,0,0,0,1)7 which is a nondegenerate BFS. Since the
system has a degenerate basic solution, this system itself is degenerate, also the b-
vector is degenerate in this system.

Definition: Lexico Positive A vector a = (ai,...,a,) € R, is said to be lexico
positive, denoted by a > 0, if a # 0 and the first nonzero component in a is strictly
positive. A vector a is lexico negative, denoted by a < 0, if —a > 0. Given two
vectors z,y € R", v =y iff z —y = 0; x < y iff x —y < 0. Given a set of vectors
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{a',...,a®} C R", alexico minimum in this set is a vector a’ satisfying the property
that a’ = a’ for each i = 1 to k. To find the lexico minimum in a given set of
vectors from R, compare the first component in each vector and discard all vectors
not corresponding to the minimum first component, from the set. Compare the second
component in each remaining vector and again discard all vectors not corresponding to
the minimum in this position. Repeat in the same manner with the third component,
and so on. At any stage if there is a single vector left, it is the lexico minimum. This
procedure terminates after at most r steps. At the end, if two or more vectors are left,
they are all equal to each other, and each of them is a lexico minimum in the set.

Example 2.3

The vector (0,0,0.001,—1000) is lexico positive. The vector (0,—1,20000,5000) is
lexico negative. In the set of vectors { (—2,0,—1,0),(-2,0,-1,1),(—2,1,—-20,—30),
(0,—10,—40, —50) }, the vector (—2,0,—1,0) is the lexico minimum.

Perturbation of the Right Hand Side Constants Vector
in (2.1) to make it Nondegenerate.

If (2.1) is degenerate, it is possible to perturb the right hand side constants vector b
slightly, to make it nondegenerate. For example, let € be a parameter, positive and
sufficiently small. Let b(e) = b+ (g,e2,...,e™)T. It can be shown that if b in (2.1) is
replaced by b(g), it becomes nondegenerate, for all € positive and sufficiently small
(this really means that there exists a positive number ¢; > 0 such that whenever
0 < € < &1, the stated property holds). This leads to the perturbed problem

Az = b(e)
x>0

(2.2)

which is nondegenerate for all ¢ positive and sufficiently small. See Chapter 10 in
[2.26] for a proof of this fact. A basis B and the associated basic vector zp for (2.1)
are said to be lexico feasible if they are feasible to (2.2) whenever ¢ is positive and
sufficiently small, which can be verified to hold iff each row vector of the m x (m + 1)

matrix (B~1b : B™!) is lexico positive. Thus lexico feasibility of a given basis for (2.1)

can be determined by just checking the lexico positivity of each row of (B~'b : B™1)
without giving a specific value to €. For example, if b > 0, and A has the unit matrix
of order m as a submatrix, that unit matrix forms a lexico feasible basis for (2.1).

Canonical Tableaus

Given a basis B, the canonical tableau of (2.1) with respect to it is obtained by mul-
tiplying the system of equality constraints in (2.1) on the left by B=1. Tt is
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Tableau 2.1 :  Canonical Tableau of (2.1) with
Respect to the Basis B

basic variables T

rB B 1A B~ 1b

Let D be the matrix consisting of the n — m columns of A not in B, and let zp be
the vector of variables associated with these columns. When the basic and nonbasic
columns are rearranged in proper order, the canonical Tableau 2.1 becomes

Tableau 2.2
basic variables TB D
B I B~'D B b =10

b is known as the updated right hand side constants vector in the canonical
tableau. The column of x; in the canonical tableau, B~1A.; = A.; is called the
update column of z; in the canonical tableau. The inverse tableau corresponding
to the basis B is

Tableau 2.3 : Inverse Tableau
basic variables Inverse basic values
rp B! B~ b

It just provides the basis inverse and the updated right-hand-side constants column.
From the information available in the inverse tableau, the update column corresponding
to any nonbasic variable in the canonical tableau can be computed using the formulas
given above.

2.2 THE COMPLEMENTARY PIVOT
ALGORITHM

We will now discuss a pivotal algorithm for the LCP introduced by C. E. Lemke,
known as the Complementary Pivot Algorithm (because it chooses the entering
variable by a complementary pivot rule, the entering variable in a step is always
the complement of the dropping variable in the previous step), and also referred to as
Lemke’s Algorithm in the literature.
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2.2.1 The Original Tableau

An artificial variable zo associated with the column vector —e,, (e, is the column
vector of all 1’s in R™) is introduced into (1.6) to get a feasible basis for starting the
algorithm. In detached coefficient tableau form, (1.6) then becomes

(2.3)

2.2.2 Pivot Steps

The complementary pivot algorithm moves among feasible basic vectors for (2.3). The
primary computational step used in this algorithm is the pivot step (or the Gauss-
Jordan pivot step, or the Gauss-Jordan elimination pivot step), which is also the
main step in the simplex algorithm for linear programs. In each stage of the algorithm,
the basis is changed by bringing into the basic vector exactly one nonbasic variable
known as the entering variable. Its updated column vector is the pivot column
for this basis change. The dropping variable has to be determined according to the
minimum ratio test to guarantee that the new basis obtained after the pivot step
will also be a feasible basis.

For example, assume that the present feasible basic vector is (y1, ..., yn) with y,
as the 7 basic variable, and let the entering variable be x. (The variables in (2.3) are
Wi, . vvy Wy 21, -4 2Zn, 20- Exactly n of these variables are present basic variables. For
convenience in reference, we assume that these basic variables are called yy,...,y,).
After we rearrange the variables in (2.3), if necessary, the canonical form of (2.3), with
respect to the present basis is of the form :

Basic YlyeoosYn T Other Right-hand
variable variables constant vector
Y1 1 e 0 5,15 e q_l
Yn 0...1 Ans N qn

Keeping all the nonbasic variables other than z, equal to zero, and giving the
value A to the entering variable, x,, leads to the new solutions :

Ts = A
Yi = @ — Mg, 1=1,...,m (2.4)
All other variables = 0
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There are two possibilities here.

1. The pivot column may be nonpositive, that is, a;; < 0 forall 1 <i <mn. In
this case, the solution in (2.4) remains nonnegative for all A > 0. As X varies
from 0 to oo, this solution traces an extreme half-line (or an unbounded
edge) of the set of feasible solutions of (2.3). In this case the minimum ratio,
f, in this pivot step is +00. See Example 2.4.

2. There is at least one positive entry in the pivot column. In this case, if the
solution in (2.4) should remain nonnegative, the maximum value that A can
take is 0 = ,qT = mlnnnum{ i . j such that a;5 > 0} This @ is known as
the minimum ratio in this plvot step. For any ¢ that attains the minimum
here, the present i** basic variable y; is eligible to be the dropping variable
from the basic vector in this pivot step. The dropping basic variable can be
chosen arbitrarily among those eligible, suppose it is y,.. y, drops from the
basic vector and z; becomes the 7** basic variable in its place. The r** row
is the pivot row for this pivot step. The pivot step leads to the canonical
tableau with respect to the new basis.

If the pivot column (@y,...,ams)? is placed by the side of the present inverse
tableau and a pivot step performed with the element a,¢ in it in the pivot row as the
pivot element, the inverse tableau of the present basis gets transformed into the inverse
tableau for the new basis.

The purpose of choosing the pivot row, or the dropping variable, by the minimum
ratio test, is to guarantee that the basic vector obtained after this pivot step remains
feasible.

In this case (when there is at least one positive entry in the pivot column) the
pivot step is said to be a nondegenerate pivot step if the minimum ratio computed
above is > 0, degenerate pivot step if it is 0. See Examples 2.5, 2.6.

Let B be the basis for (2.3) corresponding to the basic vector (y1,...,yn). As
discussed above, the basic vector (y1,...,y,) is lexico feasible for (2.3) if each row

vector of (7 : B7!) is lexico positive. If the initial basic vector (yi,...,¥y,) is lexico
feasible, lexico feasibility can be maintained by choosing the pivot row according to the
lexico minimum ratio test. Here the pivot row is chosen as the r** row where r is
the ¢ that attalns the lexico minimum in { (q“ﬂlaw sBin) . such that ais > 0 }, where
B = (Bij) = . The lexico minimum ratio test identifies the pivot row (and hence
the dropping basic variable) unambiguously, and guarantees that lexico feasibility is
maintained after this pivot step. In the simplex algorithm for linear programming,
the lexico minimum ratio test is used to guarantee that cycling will not occur under
degeneracy (see Chapter 10 of [2.26]). The lexico minimum ratio test is one of the rules
that can be used to resolve degeneracy in the simplex algorithm, and thus guarantee
that it terminates in a finite number of pivot steps.
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Example 2.4 Extreme Half-line

Consider the following canonical tableau with respect to the basic vector (x1,xs,x3,

1'4).

basic 1 To T3 T4 Ts Tg T7r Xg b
variables

1 1 0 0 0 1 -1 2 3 3

o 0 1 0 0 1 -2 1 -1 0

xs3 0 0 1 0 -1 0 5 4 6

T4 0 0 0 1 -1 -3 8 2 5

x; > 0 for all j.

Suppose g is the entering variable. The present BFS is 2 = (3,0,6,5,0,0,0,0)T.
The pivot column (—1,—2,0,—3)T has no positive entry. Make the entering variable
equal to A, retain all other nonbasic variables equal to 0, this leads to the solution
z(A) = (3+X,2X,6,54+3X,0,1,0,0)7 = 2+ A", where 2" = (1,2,0,3,0,1,0,0)T. z*,
the coefficient vector of A in z(A), is obtained by making the entering variable equal
to 1, all other nonbasic variables equal to zero, and each basic variable equal to the
negative of the entry in the pivot column in its basic row. Since the pivot column is
nonpositive here, 2" > 0. it can be verified that x satisfies the homogeneous system
obtained by replacing the right hand side constants vector by 0. Hence 2" is known as
a homogeneous solution corresponding to the original system. Since z" > 0 here,
z(X) remains > 0 for all A > 0. The half-line {Z 4+ Az" : A > 0} is known as an
extreme half-line of the set of feasible solutions of the original system.

A half-line is said to be a feasible half-line to a system of linear constraints, if
every point on the half-line is feasible to the system.

Example 2.5 Nondegenerate Pivot Step

See Tableau 2.4 in Example 2.8 of Section 2.2.6 a few pages ahead. This is the canonical
tableau with respect to the basic vector (wy, ws, zp, w4) and z3 is the entering variable.
The minimum ratio occurs uniquely in row 4, which is the pivot row in this step, and wy
is the dropping variable. Performing the pivot step leads to the canonical tableau with
respect to the new basic vector (wq, wa, 2g, 2z3) in Tableau 2.5. This is a nondegenerate
pivot step since the minimum ratio in it was (%) > 0. As a result of this pivot step
the BFS has changed from (wq,ws, ws, wy; 21, 22, 23, 24; 20) = (12,14,0,4;0,0,0,0;9)
to (6,8,0,0;0,0,2,0;5).
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Degenerate Pivot Step

Consider the following canonical tableau :

Basic Tq TIo I3 T4 Ty Te Ratio
variable
T 1 0 0 1 2 -3 3 s
s 0 1 0 2 1 |0 | %
3 0 0 1 -1 12 0

x; > 0 for all j.

Here the BFS is # = (3,0,0,0,0,0)T. Tt is degenerate. If 4 is chosen as the entering
variable, it can be verified that the minimum ratio of 0 occurs in row 2. Hence row 2
is the pivot row for this step, and x5 is the dropping variable. Performing the pivot
step leads to the canonical tableau with respect to the new basic vector (z1, x4, x3).

basic T1 Ty T3 T4 Ty Tg
variable
1 1 -1 0 0 4 —4 3
Ty 0 1 0 1 -2 1 0
xs3 0 1 1 0 -1 3 0

Eventhough the basic vector has changed, the BF'S has remained unchanged through
this pivot step. A pivot step like this is called a degenerate pivot step.

A pivot step is degenerate, if the minimum ratio  in it is 0, nondegenerate
if the minimum ratio is positive and finite. In every pivot step the basic vector changes
by one variable. In a degenerate pivot step there is no change in the correponding
BFS (the entering variable replaces a zero valued basic variable in the solution). In a
nondegenerate pivot step the BFS changes.

Example 2.7 Ties for Minimum Ratio lead to Degenerate Solution

Consider the following canonical tableau.

basic 1 To T3 T4 Ts Tg b Ratio
variable
1 1 0o o0 1 -2 1 3 3
T2 o 1 0 2 11 6 s
T3 0o 0 1 2 1 -2 16 oy
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The present BFSis z = (3,6, 16,0,0,0)T. Suppose x4 is chosen as the entering variable.
There is a tie for the minimum ratio. Both x, x5 are eligible to be dropping variables.
Irrespective of which of them is chosen as the dropping variable, it can be verified
that the other remains a basic variable with a value of 0 in the next BFS. So the BFS
obtained after this pivot step is degenerate.

In the same way it can be verified that the BFS obtained after a pivot step is
always degenerate, if there is a tie for the minimum ratio in that step. Thus, if we
know that the right hand side constants vector ¢ is nondegenerate in (2.3), in every
pivot step performed on (2.3), the minimum ratio test identifies the dropping variable
uniquely and unambiguously.

2.2.3 Initialization

The artificial variable zp has been introduced into (2.3) for the sole purpose of obtaining
a feasible basis to start the algorithm.

Identify row ¢ such that ¢, = minimum {¢; : 1 < ¢ < n}. Break ties for ¢ in
this equation arbitrarily. Since we assumed q 2 0, ¢; < 0. When a pivot is made in
(2.3) with the column vector of 2y as the pivot column and the t** row as the pivot
row, the right-hand side constants vector becomes a nonnegative vector. The result is
the canonical tableau with respect to the basic vector (w1, ..., w1, 20, Wity ..., Wy).

This is the initial basic vector for starting the algorithm.

2.2.4 Almost Complementary Feasible Basic Vectors

The initial basic vector satisfies the following properties :

(i) There is at most one basic variable from each complementary pair of variables
(w5, 2)-

(ii) It constains exactly one basic variable from each of (n — 1) complementary
pairs of variables, and both the variables in the remaining complementary
pair are nonbasic.

(iii) zp is a basic variable in it.

A feasible basic vector for (2.3) in which there is exactly one basic variable from
each complementary pair (wj,z;) is known as a complementary feasible basic
vector. A feasible basic vector for (2.3) satisfying properties (i), (ii), and (iii) above
is known as an almost complementary feasible basic vector. Given an almost
complementary feasible basic vector for (2.3), the complementary pair both of whose
variables are nonbasic, is known as the left-out complementary pair of variables
in it. All the basic vectors obtained in the algorithm with the possible exception of the
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final basic vector are almost complementary feasible basic vectors. If at some stage
of the algorithm, a complementary feasible basic vector is obtained, it is a final basic
vector and the algorithm terminates.

Adjacent Almost Complementary Feasible Basic Vectors

Let (y1,-.-,¥j—1,20,Yj+1,---,Yn) be an almost complementary feasible basic vector
for (2.3), where y; € {w;, 2;} for each i # j. Both the variables in the complementary
pair (wj, z;) are not in this basic vector. Adjacent almost complementary feasible basic
vectors can only be obtained by picking as the entering variable either w; or z;. Thus
from each almost complementary feasible basic vector there are exactly two possible
ways of generating adjcent almost complementary feasible basic vectors.

In the initial almost complementary feasible basic vector, both w; and z; are
nonbasic variables. In the canonical tableau with respect to the initial basis, the
updated column vector of w; can be verified to be —e,,, which is negative. Hence, if
wy is picked as the entering variable into the initial basic vector, an extreme half-line
is generated. Hence, the initial almost complementary BFS is at the end of an almost
complementary ray.

So there is a unique way of obtaining an adjacent almost complementary feasible
basic vector from the initial basic vector, and that is to pick z; as the entering variable.

2.2.5 Complementary Pivot Rule

In the subsequent stages of the algorithm there is a unique way to continue the algo-
rithm, which is to pick as the entering variable, the complement of the variable that
just dropped from the basic vector. This is known as the complementary pivot
rule.

The main property of the path generated by the algorithm is the following. Each
BF'S obtained in the algorithm has two almost complementary edges containing it. We
arrive at this solution along one of these edges. And we leave it by the other edge. So
the algorithm continues in a unique manner. It is also clear that a basic vector that
was obtained in some stage of the algorithm can never reappear.

The path taken by the complementary pivot algorithm is illustrated in Figure 2.1.
The initial BFS is that corresponding to the basic vector (w1, ..., wi—1, 20, W41, - - -,
wy,) for (2.3). In Figure 2.1, each BFS obtained during the algorithm is indicated by
a point, with the basic vector corresponding to it entered by its side; and consecutive
BFSs are joined by an edge. If w; is choosen as the entering variable into the initial
basic vector we get an extreme half-line (discussed above) and the initial BFS is at end
of this extreme half-line. When z; is choosen as the entering variable into the initial
basic vector, suppose w; is the dropping variable. Then its complement z; will be the
entering variable into the next basic vector (this is the complementary pivot rule).



2.2. THE COMPLEMENTARY PIVOT ALGORITHM 73

~ Complementary
feasible
basic
vector

(Vvla'--avvi-llzt ,VVi+1,...
Vvt-1120’VVt+:|_,...,V\41)

Figure 2.1 Path taken by the complementary pivot method. The 1 in-
dicates entering variable, | indicates dropping variable. The basic vector
corresponding to each point (BFS) is entered by its side. Finally if z, drops
from the basic vector, we get a complementary feasible basic vector.

The path continues in this unique manner. It can never return to a basic vector
visited earlier, since each BF'S obtained in the algorithm has exactly two edges of the
path incident at it, through one of which we arrive at that BFS and through the other
we leave (if the path returns to a basic vector visited earlier, the BFS corresponding
to it has three edges in the path incident at it, a contradiction). So the path must
terminate after a finite number of steps either by going off along another extreme half-
line at the end (ray termination, this happens when in some step, the pivot column,
the updated column of the entering variable, has no positive entries in it), or by reaching
a complementary feasible basic vector of the LCP (which happens when zy becomes
the dropping variable). If ray termination occurs the extreme half-line obtained at the
end, cannot be the same as the initial extreme half-line at the beginning of the path
(this follows from the properties of the path discussed above, namely, that it never
returns to a basic vector visited earlier).
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2.2.6 Termination

There are exactly two possible ways in which the algorithm can terminate.

1. At some stage of the algorithm, zp may drop out of the basic vector, or become
equal to zero in the BFS of (2.3). If (w, 2z, Zp = 0) is the BFS of (2.3) at that
stage, then (w, z) is a solution of the LCP (1.6) to (1.8).

2. At some stage of the algorithm, zp may be strictly positive in the BFS of (2.3),
and the pivot column in that stage may turn out to be nonpositive, and in this
case the algorithm terminates with another almost complementary extreme
half-line, referred to in some publications as the secondary ray (distinct
from the initial almost complementary extreme half-line or initial ray at the
beginning of the algorithm). This is called ray termination.

When ray termination occurs, the algorithm is unable to solve the LCP. It is
possible that the LCP (1.6) to (1.8) may not have a solution, but if it does have a
solution, the algorithm is unable to find it. If ray termination occurs the algorithm
is also unable to determine whether a solution to the LCP exists in the general case.
However, when M satisfies some conditions, it can be proved that ray termination in
the algorithm will only occur, when the LCP has no solution. See Section 2.3.

Problems Posed by Degeneracy of (2.3).

Definition: Nondegeneracy, or Degeneracy of ¢ in the LCP (¢, M) As defined
earlier, the LCP (¢, M) is the problem of finding w, z satisfying

w z

I -M q

w,z 2 0, wlz =10

This LCP is said to be nondegenerate (in this case ¢ is said to be nondegenrate in
the LCP (¢, M)) if in every solution (w, z) of the system of linear equations “w—Mz =
q”, at least n variables are non-zero. This condition holds iff ¢ cannot be expressed as

a linear combination of (n — 1) or less column vectors of (I : —M).
The LCP (g, M) is said to be degenerate (in this case ¢ is said to be degenerate
in the LCP (¢, M)) if ¢ can be expressed as a linear combination of a set consisting of

(n — 1) or less column vectors of (I : —M).

Definition: Nondegeneracy, Degeneracy of ¢ in the Complementary Pivot
Algorithm The system of contraints on which pivot operations are performed in the
complementary pivot algorithm is (2.3). This system is said to be degenerate (and ¢
is said to be degenerate in it) if ¢ can be expressed as a linear combination of a set

of (n — 1) or less column vectors of (I * —M : —e); nondegenerate otherwise. If
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(2.3) is nondegenerate, in every BFS of (2.3) obtained during the complementary pivot
algorithm, all basic variables are strictly positive, and the minimum ratio test identifies
the dropping basic variable in each pivot step uniquely and unambiguously.

The argument that each almost complementary feasible basis has at most two
adjacent almost complementary feasible bases is used in developing the algorithm. This
guarantees that the path taken by the algorithm continues unambiguously in a unique
manner till termination occurs in one of the two possibilities. This property that each
almost complementary feasible basis has at most two adjacent almost complementary
feasible bases holds when (2.3) is nondegenerate. If (2.3) is degenerate, the dropping
variable during some pivots may not be uniquely determined. In such a pivot step, by
picking different dropping variables, different adjacent almost complementary feasible
bases may be generated. If this happens, the almost complementary feasible basis
in this step may have more than two adjacent almost complementary feasible bases.
The algorithm can still be continued unambiguously according to the complementary
pivot rule, but the path taken by the algorithm may depend on the dropping variables
selected during the pivots in which these variables are not uniquely identified by the
minimum ratio test. All the arguments mentioned in earlier sections are still valid, but
in this case termination may not occur in a finite number of steps if the algorithm keeps
cycling along a finite sequence of degenerate pivot steps. This can be avoided by using
the concept of lexico feasibility of the solution. In this case the algorithm deals with
almost complementary lexico feasible bases throughout. In each pivot step the
lexico minimum ratio test determines the dropping variable unambiguously and, hence,
each almost complementary lexico feasible basis can have at most two adjacent almost
complementary lexico feasible bases. With this, the path taken by the algorithm is
again unique and unambiguous, no cycling can occur and termination occurs after a
finite number of pivot steps. See Section 2.2.8.

Interpretation of the Path Taken by the Complementary
Pivot Algorithm

B. C. Eaves has given a simple haunted house interpretation of the path taken by the
complementary pivot algorithm. A man who is afraid of ghosts has entered a haunted
house from the outside through a door in one of its rooms. The house has the following
properties :
(i) Tt has a finite number of rooms.
(ii) Each door is on a boundary wall between two rooms or on a boundary wall
of a room on the outside.
(iii) Each room may have a ghost in it or may not. However, every room which
has a ghost has exactly two doors.
All the doors in the house are open initially. The man’s walk proceeds according to
the following property.
(iv) When the man walks through a door, it is instantly sealed permanently and
he can never walk back through it.
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The man finds a ghost in the room he has entered initially, by properties (iii) and
(iv) this room has exactly one open door when the man is inside it. In great fear he
runs out of the room through that door. If the next room that he has entered has a
ghost again, it also satisfies the property that it has exactly one open door when the
man is inside it, and he runs out through that as fast as he can. In his walk, every
room with a ghost satisfies the same property. He enters that room through one of
its doors and leaves through the other. A sanctuary is defined to be either a room
that has no ghost, or the outside of the house. The man keeps running until he finds
a sanctuary. Property (i) guarantees that the man finds a sanctuary after running
through at most a finite number of rooms. The sanctuary that he finds may be either
a room without a ghost or the outside of the house.

We leave it to the reader to construct parallels between the ghost story and the
complementary pivot algorithm and to find the walk of the man through the haunted
house in Figure 2.2. The man walks into the house initially from the outside through
the door marked with an arrow.

e

S

A il
i i

Figure 2.2 Haunted house

Geometric Interpretation of a Pivot Step in the
Complementary Pivot Method

In a pivot step of the complementary pivot method, the current point moves between
two facets of a complementary cone in the direction of —e. This geometric interpreta-
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tion of a pivot step in the complementary pivot method as a walk between two facets
of a complementary cone is given in Section 6.2.

Example 2.8

Consider the following LCP. (This is not an LCP corresponding to an LP.)

Wy w2 w3 Wg 2 22 23 24 q
1 0 0 0o -1 1 1 1 3
0 1 0 0 1 -1 1 1 )
0 0 1 o -1 -1 =2 0 -9
0 0 0 1 -1 -1 0 -2 -5

w; > 0, z =2 0, wiz; = 0 for all ¢

wy W2 W3 Wy 21 22 23 24 20 q
1 0o o0 o0 -1 1 1 1 -1 3
o 1 o o0 1 -1 1 1 -1 5
o 0 1 0 -1 -1 -2 0 -9
0 0 o0 1 -1 -1 0 -2 -1 -5

The most negative g; is gz. Therefore pivot in the column vector of zy with the third
row as the pivot row. The pivot element is inside a box.

Tableau 2.4
Basic wy] We W3 Wa 21 2o 23 24 2o q Ratios
variables
w1 1 0 -1 0 0 2 3 1 0 |12 |2
Wy o 1 -1 0 2 0 3 1 0 |14 |%
20 o 0 -1 0 1 1 01 |9 |3
wy 0 0 -1 1 0 02 2 0 |4 |4un

By the complementary pivot rule we have to pick z3 as the entering variable. The
column vector of z3 is the pivot column, w4 drops from the basic vector.
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Tableau 2.5
Basic wy we w3 w4 21 29 23 Z4 2o | q | Ratios
variables
ws 1 0 1 -2 90 2 0 0 |6 | & win
wo o 1 4 -3 2 0 0 4 0 |82
2o o 0 o0 -1 1 1 0 2 1 |52
%3 o 0 -1 1 0 0 1 -1 0 |2

Since w4 has dropped from the basic vector, its complement, z4 is the entering variable

for the next step. w; drops from the basic vector.

Basic wy W W3 W4 Z1 2o 23 Z4 2o q Ratios
variables
1 1 3 1 6
ws -1 1 0 0 2 0 0 0 |2 |2
1 1 1 2
1 3 1 1 14

Since w; has dropped from the basic vector, its complement, z; is the new entering

variable. Now ws drops from the basic vector.

Basic wy Wy W3 W4 21 29 23 Z4 2o q Ratios
variables
1 1 3 1 6
71 - 3 0 0 1 -1 0 0 0 |1
2 0 —1 -1 _1 g 0 0 1 [ 1 [1wmn
1 3 1 1 14

Since w9 has dropped from the basic vector, its complement, 25 is the entering variable.
Now zp drops from the basic vector.
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Basic wy We W3 Wa 21 Z9 23 24 2o q
variables
1 1 1 1 1
1 1 1
2 0 -3 -+ -3 01 0 0 1|1
1 1 1 1 1
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Since the present basis is a complementary feasible basis, the algorithm terminates.

The correponding solution of the LCP is w = 0, (21, 22, 23, 24) = (2,1, 3, 1).

Example 2.9
wp W2 W3 21 Z2 X3 q
1 0 0 1 0 3 -3
0 1 0 -1 2 5 -2
0 0 1 2 1 2 -1
w; 20, 220, w;z; = for all ¢
The tableau with the artificial variable z is :
wy Wy w3 Z1 Z3 Z3 20 q
1 0 0 1 0 3 -3
0 1 0 -1 2 5 -1 -2
0 0 1 2 1 2 -1 -1
The initial canonical tableau is :
Basic w; Wy W3 21 Za 23 %o q Ratios
variables
20 -1 0 0 -1 0 -3 1
Wo -1 1 0 -2 2 2 0
w3 -1 0 1 [I] 1 -1 o0 2
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The next tableau is :

Basic wy Wo W3 21 X2 23 2o q
variables
20 -2 0 1 0 1 -4 1 5
wa -3 1 2 0 4 0 0 5
z1 -1 0 1 11 -1 0 2

The entering variable here is z3. The pivot column is nonpositive. Hence, the algorithm
stops here with ray termination. The algorithm has been unable to solve this LCP.

2.2.7 IMPLEMENTATION OF THE
COMPLEMENTARY PIVOT METHOD
USING THE INVERSE OF THE BASIS

Let (2.3) be the original tableau for the LCP being solved by the complementary pivot
method. Let ¢ be determined as in Section 2.2.3. After performing the pivot with
row t as the pivot row and the column vector of 2y as the pivot column, we get the
initial tableau for this algorithm. Let P be the pivot matrix of order n obtained by
replacing the ' column in I (the unit matrix of order n) by —e,, (the column vector
in R™ all of whose entires are —1). Let M’ = PoyM, ¢ = Pyq. Then the initial tableau
in this algorithm is

Tableau 2.6 : Initial Tableau

w z 20

P, -M I, | ¢

The initial basic vector is (w1, ..., Wi—1, 20, Wit1, - - ., Wy, ) and the basis corresponding

to it in Tableau 2.6 is I. By choice of t, ¢ > 0. So each row of (¢’ * I) is lexico-
positive, and hence the initial basic vector in this algorithm is lexico-feasible for the
problem in Tableau 2.6.

At some stage of the algorithm, let B be the basis from Tableau 2.6, corresponding
to the present basic vector. Let 8 = (3;;) = B~! and § = B~!¢’. Then the inverse
tableau at this stage is

Basic vector Inverse

p=B"" q
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If the entering variable in this step, determined by the complementary pivot
rule, is ys € {ws,zs }, then the pivot column, the updated column of y,, is SPyl.s
if y, = w,, or BPy(—M.,) if y, = z,. Suppose this pivot column is (@1s,...,ans)L. If
(G1gy .-y dns)T < 0, we have ray termination and the method has been unable to solve
this LCP. If (@15, . .., Gns)T £ 0, the minimum ratio in this step is # = minimum { dq—; :
¢ such that a;s > 0 } If the 7 that attains this minimum is unique, it determines the
pivot row uniquely. The present basic variable in the pivot row is the dropping vari-
able. If the minimum ratio does not identify the dropping variable uniquely, check
whether 2z, is eligible to drop, and if so choose it as the dropping variable. If zj is not
eligible to drop, one of those eligible to drop can be choosen as the dropping variable
arbitrarily, but this can lead to cycling under degeneracy. To avoid cycling, we can
use the lexico-minimum ratio rule, which chooses the dropping basic var(iabﬂle soﬁth)at

qi;Pi1,--Pin)
¢ such that a;s > 0 } This lexico minimum ratio rule determines the {dropp(ilrzfg vari-

the pivot row is the row corresponding to the lexico-minimum among

able uniquely and unambiguously. If the lexico-minimum ratio rule is used in all steps
beginning with the initial step, the dropping variable is identified uniquely in every
step, each of the updated vectors (g;; Bi1,---,Bin), ¢ = 1 to n, remain lexico-positive
throught, and cycling cannot occur by the properties of the almost complementary
path generated by this method, discussed above (see Section 2.2.8). Once the drop-
ping variable is identified, performing the pivot leads to the next basis inverse, and the
entering variable in the next step is the complement of the dropping variable, and the
method is continued in the same way.

Clearly it is not necessary to maintain the basis inverse explicitly. The comple-
mentary pivot algorithm can also be implemented with the basis inverse maintained
in product form (PFI) or in elimination form (EFI) just as the simplex algorithm for
linear programming (see Chapters 5, 7 of [2.26]).

Example 2.10

Consider the LCP (¢, M) where

1 0 0 -8
M=1|2 1 0 g= | —-12
2 2 1 14

To solve this LCP by the complementary pivot algorithm, we introduce the artificial
variable zg and construct the original tableau as in (2.3). When z, replaces w3 in the
basic vector (w1, wy,ws), we get a feasible basic vector for the original tableau. So the
initial tableau for this problem is :
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The various basis inverses obtained when this LCP is solved by the complementary

CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

Initial
Basic wy Ws W3 21 2y 23 2o q

Vector
wy 1 0 -1 1 2 1 0 6
Wa 0 1 -1 0 1 1 0 2
20 0 0 -1 2 2 1 1 14

pivot algorithm are given below.

Basic Inverse q Pivot Ratios
Vector Column
Z3
wi 1 0 6 1 6
W 0 1 2 2 Min.
20 0 0 14 1 14
%)
w1 1 -1 4 1 4
23 0 1 2 2 Min.
20 0 -1 12 1 12
w3
wy 1 -2 2 2 Min.
%9 0 1 2 -1
20 0 -2 10 1 10
21
ws 1 -2 2 9 Min.
29 1 -1 4 1 4
20 -1 0 8 1 8
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Basic Inverse q Pivot Ratios
Vector Column
Z3
21 1 -2 0 2 -1
2 0 1 0 | 2 2 Min.
% 2 2 1 6 1 6
%
21 1 -1 0 4 -1
23 0o 1 0 | 2 2 Min.
20 -2 1 1 4 1 4
w3
21 1 0 O 6 -1
Wa 0 1 0 2 -1
20 —2 0 1 | 2 1] 2 Min.
21 -1 0 1 8
Wa -2 1 1 4
w3 2 0 1 2

So the solution of this LCP is (wq, wa, ws; 21, 22, 23) = (0,4, 2;8,0,0).

2.2.8 Cycling Under Degeneracy in the
Complementary Pivot Method

Whenever there is a tie for the pivot row in any step of the complementary pivot
method, suppose we adopt the rule that the pivot row will be chosen to be the topmost
among those eligible for it in that step. Under this rule it is possible that cycling occurs

under degeneracy. Here we provide an example of cycling under this rule, constructed
by M. M. Kostreva [2.20]. Let

1 2 0 -1
2 01 -1
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and solve the LCP (g, M) by the complementary pivot method using the above pivot
row choice rule in each pivot step. It can be verified that we get the following al-
most complementary feasible basic vectors: initial basic vector (zg, we, w3) followed by
(20, 21, w3), (20, 22, w3), (20, 22, w1), (20, 23, W1), (20, 23, W2), (20, 21, w2), (20, 21, wW3), in
this order. After the initial basic vector (zp, ws,ws) is obtained, all pivots made are
degenerate pivot steps, and at the end the method has returned to the basic vector
(20,21, w3) and so the method has cycled on this problem. The matrix M is a P-
matrix, it will be proved later on the LCP (¢, M) has a unique solution, and that the
complementary pivot method always terminates in a finite number of pivot steps with
that solution, if it is carried out in such a way that cycling does not occur under degen-
eracy. Actually, for the LCP (g, M) considered here, it can be verified that (z1, 22, 23)
is the complementary feasible basic vector.

As discussed above, after obtaining the initial basic vector, if the complementary
pivot method is carried out using the lexico-minimum ratio rule for choosing the pivot
row in each pivot step, cycling cannot occur, and the method must terminate either by
obtaining a complementary feasible vector, or in ray termination, after a finite number
of pivot steps, because of the following arguments. If ¢ is nondegenerate in (2.3),
the dropping basic variable is identified uniquely by the usual minimum ratio test, in
every step of the complementary pivot algorithm applied on it. Using the properties
of the path traced by this algorithm we verify that in this case, the algorithm must
terminate after a finite number of pivot steps either with a complementary feasible
basic vector or in ray termination. Suppose ¢ is degenerate in (2.3). Perturb (2.3) by
replacing ¢ by q(¢) = g+ (e,¢2,...,e™)T, as in (2.2). When ¢ is positive but sufficiently
small, the perturbed problem is nondegenerate. So when the perturbed problem is
solved by the complementary pivot algorithm treating € > 0 to be sufficiently small,
it must terminate in a finite number of pivot steps. If a complementary feasible basic
vector is obtained at the end for the perturbed problem, that basic vector is also a
complementary basic vector for the original LCP (unperturbed original problem, with
e = 0). If ray termination occurs at the end on the perturbed problem, the final almost
complementary feasible basic vector is also feasible to the original LCP and satisfies
the condition for ray termination in it. The sequence of basic vectors obtained when
the complementary pivot algorithm is applied on the original problem (2.3) using the
lexico-minimum ratio rule for chosing the dropping variable in every pivot step, is
exactly the same as the sequence of basic vectors obtained when the complementary
pivot algorithm is applied on the perturbed problem got by replacing ¢ in (2.3) by
q(¢) with ¢ > 0 and sufficiently small. These facts show that the complementary pivot
algorithm must terminate in a finite number of pivot steps (i. e., can not cycle) when
operated with the lexico minimum ratio test for chosing the dropping variable in every
pivot step.
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2.3 CONDITIONS UNDER WHICH THE
COMPLEMENTARY PIVOT ALGORITHM
WORKS

We define several classes of matrices that are useful in the study of the LCP. Let
M = (m;j) be a square matrix of order n. It is said to be a

Copositive matrix if y" My > 0 for all y > 0.

Strict copositive matrix if y? My > 0 for all y > 0.

Copositive plus matrix if it is a copositive matrix and whenever y > 0,
and satisfies y My = 0, we have yT (M + MT) = 0.

P-matrix if all its principal subdeterminantes are positive.

Q-matrix if the LCP (¢, M) has a solution for every ¢ € R".

Negative definite matrix if y” My < 0 for all y # 0.

Negative semidefinite matrix if y" My <0 for all y € R™.

Z-matrix if m;; <0 foralli#j

Principally nondegenerate matrix if all its principal subdeterminants
are non-zero.

Principally degenerate matrix if at least one of its principal subdeter-
minants is zero.

Li-matrix if for every y > 0, y € R", there is an 4 such that y; > 0 and
M;.y > 0. If M is an L;-matrix, an i like it is called a defining index for
M and y. These matrices are also called semimonotone matrices.
Le-matrix if for every y > 0, y € R", such that My > 0 and y" My =
0, there are diagonal matrices, A > 0, > 0 such that Qy # 0 and (AM +
MTQ)y = 0. An equivalent definition is that for each z > 0, satisfying w
Mz > 0 and w?z = 0; there exists a 2 > 0 satisfying v = —(2TM)T, w
W>0,2>2>0.

L-matrix if it is both an Li-matrix and an Ls-matrix.

IAVAN]

L,-matrix if for every y > 0, y € R", there is an ¢ such that y; > 0 and
M;.y > 0. If M is an L,-matrix, an ¢ like it is called a defining index for
M and y.

Py-matrix if all its principal subdeterminants are > 0.

Row adequate matrix if it is a Py-matrix and whenever the principal
subdeterminant corresponding to some subset J C {1,...,n} is zero, then
the set of row vectors of M corresponding to J, { M;. : i € J} is linearly
dependent.

Column adequate matrix if it is a Py-matrix and whenever the principal
subdeterminant corresponding to some subset J C {1,...,n} is zero, then
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the set of column vectors of M corresponding to J, { M.; : j € J } is linearly
dependent.

Adequate matrix if it is both row and column adequate.

In this book the only type of degeneracy, nondegeneracy of square matrices that
we discuss is principal degeneracy or principal nondegeneracy defined above. So, for
notational convenience we omit the term “principally” and refer to these matrices
as being degenerate or nondegenerate matrices. Examples of degenerate matrices

0 4 1 1 . -1 0
are [3 _10] , [ 11 ] . Examples of nondegenerate matrices are [ 0 —1 ] ,

1 . .. . .
[ g 9 ] . The notation Cy-matrix is used to denote copositive matrices, and the
notation C'y-matrix is used to denote copositive plus matrices.

Theorem 1.11 implies that every PSD matrix is also a copositive plus matrix.
Also, the square matrix M is negative definite or negative semi-definite, iff —M is PD

or PSD respectively.

2.3.1 Results on LCPs Associated with

Copositive Plus Matrices

Theorem 2.1 If M is a copositive plus matrix and the system of constraints (1.6)
and (1.7) of Section 1.1.3 has a feasible solution, then the LCP (1.6) — (1.8) has a so-
lution and the complementary pivot algorithm will terminate with the complementary
feasible basis. Conversely, when M is a copositive plus matrix, if the complementary
pivot algorithm applied on (1.6) — (1.8) terminates in ray termination, the system of
constraints (1.6), (1.7) must be infeasible.

Proof. Assume that either (2.3) is nondegenerate, or that the lexico-minimum ratio
rule is used throughout the algorithm to determine the dropping basic variable in
each step of the algorithm. This implies that each almost complementary feasible (or
lexico feasible) basis obtained during the algorithm has exactly two adjacent almost
complementary feasible (or lexico feasible) bases, excepting the initial and terminal
bases, which have exactly one such adjacent basis only. The complementary pivot
algorithm operates on the system (2.3).

The initial basic vector is (wq,...,w—1, 20, Wet1,--.,wy,) (as in Section 2.2.3).
The corresponding BFS is 2 =0, wy = 0, 29 = —q;, and w; = ¢; — q; for all ¢ # ¢. If w,
is taken as the entering variable into this basic vector, it generates the half-line (called
the initial extreme half-line)

w; = q; — qp + A for all i # ¢
wy = A

z=0

Zo=—qr+ A
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where A > 0. (This can be seen by obtaining the canonical tableau corresponding to
the initial basic vector.) This initial extreme half-line contains the initial BFS of (2.3)
as its end point. Among the basic vectors obtained during the algorithm, the only one
that can be adjacent to the initial basic vector is the one obtained by introducing z;
into it. Once the algorithm moves to this adjacent basic vector, the initial basic vector
will never again appear during the algorithm. Hence, if the algorithm terminates with
ray termination, the extreme half-line obtained at termination cannot be the initial
extreme half-line.

At every point on the initial extreme half-line all the variables w, z, are strictly
positive. It is clear that the only edge of (2.3) that contains a point in which all the
variables w, zy are strictly positive is the initial extreme half-line.

Suppose the algorithm terminates in ray termination without producing a solution
of the LCP. Let By, be the terminal basis. When the complementary pivot algorithm is
continued from this basis By, the updated column vector of the entering variable must
be nonpositive resulting in the generation of an extreme half-line. Let the terminal
extreme half-line be

{ (w,2,20) = (W + Mo" 2" + X" 25 +220) 0 A>0} (2.5)

where (w*, zF, 25) is the BFS of (2.3) with respect to the terminal basis By, and

(wh, 2", k) is a homogeneous solution corresponding to (2.3) that is,

wh — Mz — e zh =0

wh >0, Z">0, >0 (2.6)
(wh, 2, 28) # 0. TIf 2" = 0, (2.6) and the fact that (w", 2", 2#) # 0 together imply
that w" # 0 and hence 2 > 0, and consequently w" > 0. Hence, if 2" = 0, points on
this terminal extreme half-line have all the variables w, zy strictly positive, which by
earlier arguments would imply that the terminal extreme half-line is the initial extreme
half-line, a contradiction. So z" # 0.

Since every solution obtained under the algorithm satisfies the complementarity
constraint, wlz = 0, we must have (w® + dw™)T(zF + A2") = 0 for all A > 0. This
implies that (w*)T2F = (wk)T2h = (W")T2F = (W")T2" = 0. From (2.6) (w™)T =
(M2" + e,2!)T. Hence from (w")Tz" = 0, we can conclude that (z*)TMTh =
(M T MM = —eL b < 0. Since zh > 0, and M is copositive plus by the hypothesis,
(z"M)T M 2" cannot be < 0, and hence, by the above, we conclude that (:")TMz" = 0.
This implies that (2")T(M + M7T) = 0, by the copositive plus property of M. So
(zM)TM = —(2")TMT. Also since —elzlzl = (2M)TMz" =0, 2} must be zero (since
2" > 0). Since (w”,2*,28) is the BFS of (2.3) with respect to the feasible basis By,
wh = Mz2F + g+ e,28. Now
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0= (w*)T2" (Mz +q+ enzh) "
= (VT MT I 4 qT 2" 4 kel 0

= (") M2* + (") g + z5en 2"

= M G Al

= — (T M+ (Mg 4 kel 2l

= — (") w" + (z")Tq + 2Geq 2"

= (2")Tq+ 2fel 2"
So (2")Tq = —zkel 2. Since 2" > 0 and 2§ > 0 [otherwise (w”, 2¥) would be a solution
of the LCP], zEel 2" > 0. Hence, (2")Tq < 0. Hence, if 7 = (2")T we have, mq < 0,
>0, 7(—-M)=—-0"TM = (")TMT = (w")T >0, that is,

k, T
0€n
ez

mq <0
(I : —M)=>0
By Farakas lemma (Theorem 3 of Appendix 1), this implies that the system :

w w
(I :-M)|...|=g¢q,

1\
o

has no feasible solution. Hence, if the complementary pivot algorithm terminates in
ray termination, the system (1.6) and (1.7) has no feasible solutions in this case and
thus there cannot be any solution to the LCP.

This also implies that whenever (1.6) and (1.7) have a feasible solution, the LCP
(1.6) to (1.8) has a solution in this case and the complementary pivot algorithm finds
it.

[

The following results can be derived as corollaries.

Result 2.1 In the LCPs corresponding to LPs and convex quadratic programs,
the matrix M is PSD and hence copositive plus. Hence, if the complementary pivot
algorithm applied to the LCP corresponding to an LP or a convex quadratic program
terminates in ray termination, that LP or convex quadratic program must either be
infeasible, or if it is feasible, the objective function must be unbounded below on the
set of feasible solutions of that problem.

Hence the complementary pivot algorithm works when used to solve LPs or convex
quadratic programs.

Result 2.2 If M is strict copositive the complementary pivot algorithm applied on
(1.6) to (1.8) terminates with a solution of the LCP.
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Proof. If the complementary pivot algorithm terminates in ray termination, as seen
in the proof of the above theorem there exists a 2" > 0 such that (2*)TMz" = 0,
contradicting the hypothesis that M is strict copositive.
[]
Thus all strict copositive matrices are Q-matrices. Also, if M = (m;;) > 0 and
mg; > 0 for all 4, M is strict copositive and hence a ()-matrix.

FExercise

2.1 Suppose M > 0 and mq; = 0. Prove that if ¢ = (—1,1,...,1)T, the LCP (1.6) to
(1.8) cannot have a solution. Thus prove that a square nonegative matrix is a ()-matrix
iff all its diagonal entries are strictly positive.

Later on we prove that if M is a P-matrix, the complementary pivot algorithm
terminates with a complementary feasible solution when applied on the LCP (¢, M).
When the complementary pivot algorithm is applied on a LCP in which the matrix
M is not a copositive plus matrix or a P-matrix, it is still possible that the algorithm
terminates with a complementary feasible basis for the problem. However, in this
general case it is also possible that the algorithm stops with ray termination even if a
solution to the LCP exists.

To Process an LCP (q, M)

An algorithm for solving LCPs is said to process a particular LCP (g, M) for given ¢
and M, if the algorithm is guaranteed to either determine that the LCP (¢, M) has no
solution, or find a solution for it, after a finite amount of computational effort.

Suppose M is a copositive plus matrix, and consider the LCP (¢, M), for given
g. When the complementary pivot algorithm is applied on this LCP (¢, M), either it
finds a solution; or ends up in ray termination which implies that this LCP has no
solution by the above theorem. Hence, the complementary pivot algorithm processes
the LCP (g, M) whenever M is a copositive plus matrix.

2.3.2 Results on LCPs Associated with
L- and L,-Matrices

Here we show that the complementary pivot algorithm will process the LCP (q, M)
whenever M is an L- or L,-matrix. The results in this section are from B. C. Eaves
[2.8, 2.9], they extend the results proved in Section 2.3.1 considerably. Later on, in
Section 2.9.2 we derive some results on the general nonconvex programming problem
using those proved in this section.
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Lemma 2.1 If M is an Ly-matrix, the LCP (q, M) has a unique solution for all
q > 0, and conversely.

Proof. When ¢ > 0, one solution of the LCP (¢, M) is (w = ¢,z = 0). So if (w, 2) is
an alternate solution, we must have z > 0. But w — Mz = q. Let M be an Li-matrix
and let 7 be the defining index for M and z. We have

w; = (MZ)Z'—FQZ' >0

So w;z; > 0, contradiction to complementarity.

Now suppose M is not an Li-matrix. So, there must exist a y = (y;) > 0 such
that for all ¢ such that ¢; > 0, M;.g < 0. Let J = {4 : y; > 0}. Select a positive
number « such that o > {|M;.j| : i ¢ J }. Define the vector ¢ = (¢;) € R" by

0 = —M;.y, foralljeld
! a, for all j ¢ J.

Then ¢ > 0 and the LCP (g, M) has two distinct solutions namely (w, z) = (¢,0) and
(w = (w;),z =y), where

_ _J0, forall j€J
I \a+ M.y, forallj¢&lJ.

This establishes the converse.

[]

Lemma 2.2 If M is an L,-matrix, the LCP (q, M) has a unique solution for every
q 2 0, and conversely.

Proof. Similar to Lemma 2.1.

[]

Lemma 2.3 If M is an Lo-matrix and the complementary pivot method applied
on the LCP (q, M) terminates with the secondary ray { (w¥, 2%, 28) + X(w", 2", 21) :
A >0} asin (2.5), where (w”, 2%, 2§) is the terminal BFS of (2.3) and (w", 2", 2}) is a
homogeneous solution corresponding to (2.3) satisfying (2.6); and z§ > 0 and 2} = 0;
then the LCP (q, M) is infeasible, that is, the system “w — Mz = q, w > 0, z > 0” has
no feasible solution.

Proof. As in the proof of Theorem 2.1 we assume that either (2.3) is nondegenerate
or that the lexico minimum ratio rule is used throughout the algorithm to determine
the dropping basic variable in each step of the algorithm. Using the hypothesis that
zl =0 in (2.6), we have
wh — M2" =0
( Zh)T wh -0

Since (w”, 2", z8) # 0, this implies that 2" > 0. Therefore 0 = (2")Twh = (2*)T M 2"

=0, and 2" > 0. So, using the hypothesis that M is an Ly-matrix, we have diagonal
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matrices > 0, A > 0 such that Qz" # 0 and (AM + MTQ)z" = 0. Since AMz" >
0 (since Mz" = wh > 0 and A > 0 is a diagonal matrix) this implies that MTQz" =
(zMTOM < 0. Now 0 = (2*)Tw" = (2*)TAw" (since A is a diagonal matrix with
nonnegative entries and wh > 0, z& > 0) = (*)TAMz" = (2F)T(—MTQz"). So
(zM)TQM ¥ = 0. Now

(zMTQ(w* — M2F — ezf) = ()T Qq

Since 2 is a nonnegative diagonal matrix and (2")Twk = 0 and (z")T > 0, wk
0, we have (2M)TQu* = 0. Also (z")TQMzF = (F)TMTQ = —(ZF)TAM "
—(2*)T Aw" = 0 (since zF > 0, w" > 0, A is a diagonal matrix which is > 0, (2*)Tw"

0 implies (z*)TAw" = 0). Using these in the above equation, we get

v

—(2MTQezt = ()T Qq

since (z")T > 0, @ > 0, Q2" # 0, we have Q2" = (2")TQ > 0, this implies that
(2")TQe > 0. Also, by hypothesis z5 > 0. So from the above equation (2*)TQq < 0.
So if m = (2")TQ2, we have

>0
—mM = —(Z")TOM = —MTQz" = AM2" = Aw" >0
mq <0

which implies that ¢ ¢ Pos(I, —M) by Farakas’ theorem (Theorem 3 of Appendix 1).
So the system

w—Mz=q

w,z 20

is itself infeasible.

[]

Theorem 2.2  The complementary pivot algorithm processes the LCP (q, M) if M
is an L-matrix.

Proof. When we apply the complementary pivot algorithm on the LCP (q, M), sup-
pose the secondary ray { (w® + Mw™, 28 + X2 28 + X20) : A > 0} is generated. So we
have

(W + Aw™) — M(2F 4+ 22") = g +e(zb + \2) .

If 2! > 0, and in the above equation if A is a large positive value such that q + e(z§ +
Azh) > 0, then (w¥+Aw", 2"+ Xz") is a complementary solution for the LCP (g+e(z%+
th),M) which by Lemma 2.1 implies that z¥ 4+ Az = 0, which means that z¥ =
2" = 0, a contradiction to the fact that this is the secondary ray. So z? cannot be
> 0, that is 2% = 0, and in this case (¢, M) has no solution by Lemma 2.3. So the

complementary pivot algorithm processes the LCP (¢, M).
[
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Theorem 2.3 If M is an L,-matrix, when the complementary pivot algorithm is
applied on the LCP (q, M), it terminates with a complementary feasible solution.

Proof. In this case we show that there can be no secondary ray. Suppose { (w*+ Aw",
2R Ah ZE+Azh) 1 A >0} is asecondary ray. Asin the proof of Theorem 2.1, 2" > 0
(otherwise this ray will be the same as the initial ray, a contradiction). Let ¢ be the
defining index of M, 2". So we have 2! > 0 which implies w? = 0 by complementarity
and

0< (Mz"); = —(ezf)i <0

a contradiction. So a secondary ray cannot exist in this case, and the complementary
pivot method must terminate with a complementary feasible solution.
[

Theorem 2.2 and 2.3 make it possible for us to conclude that the complementary
pivot algorithm processes that LCP (g, M) for a much larger class of matrices M than
the copositive plus class proved in Theorem 2.1. We will now prove several results
establishing that a variety of matrices are in fact L- or L,-matrices. By virtue of
Theorem 2.2 and 2.3, this establishes that the complementary pivot method processes
the LCP (¢, M) whenever M is a matrix of one of these types.

All copositive plus matrices are L-matrices. This follows because when M is
copositive plus, y > 0 implies yT My > 0, and if y is such that y > 0, yTMy = 0
then (M + M7T)y = 0, hence M satisfies the definition of being an L-matrix by taking
the diagonal matrices A and €2 to be both I. A strictly copositive matrix is clearly an
L,-matrix. From the definitions, it can be verified that PM PT (obtained by principal
rearrangement of M), AMS) (obtained by positive row and column scaling of M) are L-
matrices if M is, whenever P is a permutation matrix and A, 2 are diagonal matrices
with positive diagonal elements. Copositive plus matrices M satisfy the property
that PM PT is also copositive plus whenever P is a permutation matrix, but if M is

copositive plus, AMS2 may not be copositive when A, 2 are diagonal matrices with
0

0 N
Theorem 3.11 of Section 3.3, it follows that all P-matrices are L, matrices.

positive diagonal entries. Also if M, N are L-matrices, so is [ ] . Again, from

Lemma 2.4 M is row adequate iff for any y, (y" M.;)y; < 0 for i = 1 to n implies
that yT M = 0.

Proof. Suppose M is row adequate, and there exists a y > 0 such that (yT' M.;)y; <0
for i = 1 to n. By a standard reduction technique used in linear programming (see
Section 3.4.2 in [2.26]) we can get a solution z of

eTM =yt M
x>0
such that { M;. : 2; >0} C {M;. : y; > 0} and { M;. : x; > 0} is linearly independent.

So we also have (zTM.;)z; < 0foralli=1ton. LetJ={i:z; >0}. Since M
is a Pp-matrix, so is its principal submatrix My = (m;; : ¢ € J,j € J). By linear
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independence of the set of row vectors { M;. : i € J}, since M is row adequate, we
know that the determinant of Myt # 0 for all T C J, and therefore that Mjy is a
P-matrix. The facts J = {i:2; >0}, 2; = 0if i ¢ J, and (2T M.;)z; < 0 for all
i =1 to n, together imply that Mzyzy < 0 where 23 = (x; : j € J), which implies by
Theorem 3.11 of Section 3.3 that x3 = 0 since Mjj is a P-matrix, a contradiction. So
J must be empty and 2z = 0, and hence y“ M = 0. Now if y € R", y not necessarily
> 0, satisfies (yTM.;)y; < 0 for all i =1 to n, let \; = 1if y; > 0, or —1 if y; < 0;
and let A be the diagonal matrix with diagonal entries A1,..., A,. Then yTA > 0 and
(yTAAM).) X2y, = ((yTA)Y(AMA).;) (Niyi) < 0 for all i. But AMA is row adequate
since M is, and by the above we therefore have yT A(AMA) = 0 or y" M = 0.

Conversely, if M is a square matrix such that for any y, (y"M.;)y; < 0 for all
i = 1 to n implies that y7 M = 0, it follows that M is a Py-matrix by the result in
Exercise 3.5 and that M is row adequate.

[]

Lemma 2.5 Let M be a Py-matrix. If

My =20
y>0

has a solution y, then the system

2TM =0
x>0

has a solution.

Proof. Let y satisfy My = 0, y > 0. By the result in Exercise 3.6 we know that
since M is a Py-matrix, there is a x satisfying =7 M >0,z >0. If M # 0, then
(xTM)y > 0 but 27 (My) = 0, a contradiction. So this z must satisfy 27 M = 0.

[

Theorem 2.4 If M is row adequate, then M is an L-matrix.

Proof. By the result in Exercise 3.5 M is a Py-matrix iff for all y # 0, there exists an
i such that y; # 0 and y;(M;.y) > 0. This implies that all Py-matrices are Li-matrices.

Suppose y satisfies y > 0, My > 0, y" My = 0. Let J = {i : y; > 0}. These
facts imply Myyyy = 0 where Mjjy is the principal submatrix (m;; : ¢ € J,j € J), and
ys = (y; : j € J) > 0. By Lemma 2.5, there exists an 3 = (z; : j € J) satisfying
ry > 0, x;MJJ = 0. From Lemma 2.4, these facts imply that $§MJ. = 0, where Mj.
is the matrix with rows M;. for i € J. Select the diagonal matrix € so that 3 = (Qy)s
(possible because yy > 0) and 0 = (Qy)5 where J = {1,...,n}\ J. Then yTQM =0
and (AM + MTQ)y = 0 with A = 0. So M is an Lp-matrix too. Thus M is an
L-matrix.

[
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Lemma 2.6 If R, S are L-matrices and P > 0, N < 0 are matrices of appropriate

orders, then
R P S N
A_[N 5] and B_[P R]

are also L-matrices.

Proof. Consider the product A¢ where

;)

Case 1 : Let x > 0, y > 0. Select a defining index for R and x, suppose it is ¢. Then
z;(Rx + Py); > 0, since P >0and y >0 .

This verifies that in this case the same 7 will serve as a defining index for A to satisfy
the condition for being an Li-matrix with this vector £. Also verify that in this case,
A satisfies the condition for being an Ly-matrix, with this vector £, trivially.

Case 2 : Let x > 0, y = 0. The select 7 as in case 1 and it will serve as a defining index
for A to satisfy the conditions for being an Li-matrix, with this vector £. Also verify
that in this case A satisfies the condition for being an Ls-matrix, with this vector &,
trivially, since A{ > 0 would imply in this case x = 0, a contradiction.

Case 3 : Let x =0, y > 0. Select a defining index for S and y, suppose it is ¢. Verify
that the same ¢ will serve as a defining index for A to satisfy the condition for being
an Li-matrix. If y is such that A¢ > 0 and ¢TA¢ = 0, then Sy > 0, yTSy = 0. Since
S is an Ly-matrix, there must exist diagonal matrices Ag, {25 > 0 such that Qpy # 0
and (A2S + STQy)y = 0. Now, it can be verified easily that there is an appropriate
choice of diagonal matrices Ay, € such that (since z = 0 in this case)

[A1P+NT92] -

(55 o)) )

So A satisfies the condition for being an Lo-matrix, with this vector £.
These facts establish that A is an L-matrix. The proof that B is an L-matrix is
similar.

[]

Lemma 2.7 If R, S are L,-matrices and P > 0, @ arbitrary, are matrices of
appropriate orders, then

(55 o (3 9)

are also L,-matrices.
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()

Consider the product A¢. If © > 0, select ¢ to be a defining index for R and z. Since

Proof. Let

P > 0, the same 7 serves as a defining index for A and £ in the condition for A to be
an L ,-matrix with this €. If z = 0, then select ¢ to be a defining index for S and y, the
same ¢ serves as a defining index for A and ¢ in the condition for A to be an L,-matrix,
with this £&. So A is an L,-matrix. The proof that B is an L,-matrix is similar.

[
. . 0 P
Lemma 2.8 IfP > 0is of order n xm and N < 0 is of order m X n, then N 0
is an L-matrix.
Proof. Since 0 is an L-matrix, this results follows from Lemma 2.6.
[

In Exercise 2.24 we ask the reader to prove that one formulation of the bimatrix
game problem as an LCP can be solved directly by the complementary pivot algorithm,
to yield a solution, using this lemma.

Lemma 2.9 LetT (nxn), R (nxm), p(nx1),S (mxn), o (1xn) be given
matrices with p > 0, o < 0; where n > 0, m > 0. If for each © = (z1,...,2m,)7, § real
satisfying (x1,...,Zm,0) > 0, Rx 4 pd > 0; there exist diagonal matrices A > 0, T > 0
of orders n x n and (m + 1) x (m + 1) respectively such that

r [f;] £0 and (AR, p)+ (ST, 0TI [f;] — 0

then the following matrix M is an Ly-matrix

T R p
M=1]S 0 0
c 0 0

Proof. Follows from the definition of Ls-matrices.
[
Notice that in Lemma 2.9, m could be zero, this will correspond to R, S being
vacuous.

Theorem 2.5 Let T (nxn), R (nxm), p(nx1), S (mxn), o (1xn) be
given matrices satisfying p > 0, 0 < 0. Let N =n+m+ 1. Let J; = {1,...,n},
Jo={n+1,....,n+m}, I3 ={n+m+1}. For vectors w,z,q € R, let wy, etc.
be defined to be the vectors wy, = (w; : j € J;), etc. Assume that ¢ € RN is a given
column vector satistying q3, = (Gn+m+1) > 0. Let

T R p
S 0 0
c 0 0

M =
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If M is an Lo-matrix, when the complementary pivot method is applied on the LCP
(q, M) with the original column vector of the artificial variable zo taken to be (—1,...,
-1,007 ¢ RY, either we get a complementary feasible solution of the problem, or the

()= ()

x>0

system

must be infeasible.

Proof. Suppose the complementary pivot algorithm is applied on the LCP (¢, M) with
the original column vector of the artificial variable zy taken to be (—1,...,—1,0)T €
RY, and it terminates with the secondary ray {(wh+ A wh, 2P+ X" 2E+ N 0 A >
0 } Then

h h
le T R p ZJl 6’n h
h h —
wy, | =S 0 0 25, | —lem | 20=0
h h
ng o 0 0 ZJs 0

So wffs = azf,‘l and since z.’}l >0, wf}s > 0 and o < 0, we have z.’}l =0, wf}s = 0.

If 2z > 0, then w_’fQ = Sszl +emzl = ezl > 0, which by complementarity implies
that 2§, = 2§, = 0. So wf, = Rz}, + pz}, +enzf = pz}f, +enz > 0 (since p > 0). By

complementarity z"fl =0, and so w’}g = Jz.’fl + g3, = q3, > 0. So by complementarity,

zf,“s = z"}s = 0. Thus 2" = 2¥ = 0, contradiction to the fact that this is a secondary

ray. Therefore z must be zero. Since M is an Lo-matrix, by Lemma 2.3, the existence

of this secondary ray with 2% = 0 implies that

has no feasible solution, which, by Faraka’s theorem (Theorem 3 of Appendix 1) implies
that there exists a row vector & € RY such that

aM <0
aqg <0
a>0

aM < 0 includes the constraints ay, < 0 and since a3, > 0, p > 0, this implies that
ay, = 0. So the above system of constraints becomes

(a5, ;) [S] <0

(OJJ2,O[J3) [(JJ2 ] <0
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By Faraka's theorem (Theorem 3 of Appendix 1) this implies that the system

(0= ()

x>0

is infeasible.
[
In Section 2.9.2, Lemma 2.9 and Theorem 2.5 are applied to show that KKT
points for general quadratic programs can be computed, when they exist, using the
complementary pivot algorithm.

2.3.3 A Variant of the Complementary Pivot Algorithm

In the version of complementary pivot algorithm discussed so far, we have choosen the
original column vector associated with the artificial variable zy to be —e,. Given a
column vector d € R" satisfying d > 0, clearly we can choose the original column vector
associated with zg to be —d instead of —e,, in the complementary pivot algorithm. If
this is done, the original tableau turns out to be :

(2.7)

If ¢ >0, (w=gq,z=0) is a solution of the LCP (¢, M) and we are done. So assume
q 2 0. Determine ¢ to satisfy (Z—i) = minimum { (%) ci=1ton } Ties for ¢ can be
broken arbitrarily. It can be verified that if a pivot step is performed in (2.7), with the
t*" row as the pivot row; the right hand
side constants vector becomes nonnegative after this pivot step. So (wq,...,ws_1, 20,

column vector of zy as the pivot column, and the

Wiyl - .., Wy) is a feasible basic vector for (2.7). It is an almost complementary feasible
basic vector as defined earlier. Choose z; as the entering variable into this initial almost
complementary feasible basic vector (w1, ..., ws_1, 20, Wgt1,-..,Wwy,), and continue by
choosing entering variables using the complementary pivot rule as before.

We will now illustrate this variant of the complementary pivot algorithm using a
numerical example by M. M. Kostreva [4.11].

Example 2.11

Consider the LCP (q, M), where

w1 (3
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Let d = (5,16)T. We will apply the complementary pivot algorithm on this LCP, using
—d as the original column of the artificial variable zj.

Basic wy  Wa 21 29 20 q
variables
1 0 15 -2 —5 t=1
0 1 4 -4 —16 17
%0 -+ 0 -5 2 1 1
ws 2o & 2 0 33

The entering variable is z;. The updated column vector of z; in the canonical tableau
with respect to the basic vector (zp,wsz) is nonpositive. So the algorithm ends up in
ray termination.

Example 2.12

Consider the LCP (q, M) discussed in Example 2.11. Let d = ex = (1,1)T. We will
apply the complementary pivot algorithm on this LCP with —ey as the original column
of the artificial variable zg.

Basic wy]  Wa 21 29 20
variables

1 0 15 -2 5 t=1

0 1 4 —4 -1 17

20 -1 0 -3 2 1 5

W -1 1 [3] -2 0 22

8 3 4 91

2 2 4 44

Z1 —5 i 1 -3 0 5

3 5 91

21 -2 1 1 0 1 27

Now we have terminated with a complementary feasible basic vector, and the corre-
sponding solution of the LCP is w = 0, z = (21, 22) = (27, %)_

These examples taken from M. M. Kostreva [4.11] illustrate the fact that, given
a general LCP (q, M), the complementary pivot algorithm applied on it with a given
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positive vector d may end up in ray termination; and yet when it is run with a different
positive d vector it may terminate with a solution of the LCP. The question of how
to find a good d vector seems to be a hard problem, for which no answer is known.
There are LCPs which are known to have solutions, and yet when the complementary
pivot algorithm is applied on them with any positive d vector, it always ends up in ray
termination. See Exercise 2.11.

If M is a copositive plus matrix, and if the complementary pivot algorithm with
any positive d vector ends up in ray termination when applied on the LCP (¢, M), then
it can be proved that the LCP (g, M) has no solution (in fact it can be proved that
“w— Mz = ¢” does not even have a nonnegative solution), using arguments exactly
similar to those in the proof of Theorem 2.1. Thus any LCP (¢, M) where M is a
copositive plus matrix, will be processed by the complementary pivot algorithm with
any positive d vector.

FExercise

2.2 Prove that when M is an L-matrix or an L,-matrix, the variant of the complemen-
tary pivot algorithm discussed in this section, with any vector d > 0 of appropriate
dimension, will process the LCP (¢, M). (Proofs are similar to those in Section 2.3.2.)

2.3.4 Lexicographic Lemke Algorithm

This variant of the complementary pivot algorithm is known as the Lexicographic
Lemke Algorithm if the original column vector of the artificial variable z, is taken to
be —d = —(6®,6%71,...,6)T where § is a sufficiently small positive number. Tt is not
necessary to give 0 a specific numerical value, but the algorithm can be executed leaving
§ as a small positive parameter and remembering that 6*+1 < 6% for any nonnegative
r, and that ¢ is smaller than any positive constant not involving 6. In this case, if D
is any square matrix of order n, Dd = D(6®,0"1,...,6)T = 6Dy +6* 1Dy +... +
0D.,. Using this, it is possible to execute this algorithm without giving the small
positive parameter § any specific value, but using the equivalent lexicographic rules,
hence the name.

2.3.5 Another Sufficient Condition for the
Complementary Pivot Method to Process the LCP (q, M)

We will now discuss some results due to J. M. Evers [2.11] on another set of sufficient
conditions under which the complementary pivot algorithm can be guaranteed to pro-
cess the LCP (¢, M). First, we discuss some lemmas. These lemmas are used later
on in Theorem 2.6 to derive some conditions under which the complementary pivot
algorithm can be guaranteed to solve the LCP (¢, M) when M is a matrix of the form
E + N where FE is a symmetric PSD matrix, and N is copositive.
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Lemma 2.10 Let M = E + N where E is a symmetric PSD matrix and N is
copositive. If the system

(E+N)z=>0
cz >0 (2.8)
Z(E4+N)z=0 '
=
has a solution z, then the system
FEx— NTy> T
- (2.9)

y=>0

has no solution (z,y).

Proof. Let z be a feasible solution for (2.8). Since E is PSD and N is copositive,
ZzT(E + N)z = 0 implies that 2T Ez = 2T Nz = 0. Since E is symmetric, by Theorem
1.11, 2T Ez = 0 implies that Ez = 0. So by (2.8), Nz > 0. Let (z,%) be feasible to
(2.9). So 0 < y'Nz = —-zTEz+ §T' Nz (since Ez = 0) = 2/ (-Ez+ NTj) < —cz < 0,
a contradiction.

[

Lemma 2.11 If the variant of the complementary pivot algorithm starting with an
arbitrary positive vector d for the column of the artificial variable zy in the original
tableau ends up in ray termination when applied on the LCP (q, M) in which M is
copositive, there exists a z satisfying

M

qT

T M

N
v

W
N
o o o o

(2.10)

I
I

N
v

Proof. Let the terminal extreme half-line obtained in the algorithm be { (w, z, z9) =

(wh + Mwh, 2% + XM 2k + A2h) 0 A >0} where (wF, 2%, 2f) is the BFS of (2.7) and

(wh, 2", 2B is a homogeneous solution corresponding to (2.7), that is

wh — Mz —dzl =0
wh, 2" 2l >0 (2.11)
(wh’zhvzg) #0

and every point on the terminal extreme half-line satisfies the complementarity con-

straint, that is
(wF + AT (ZF+A2") =0 forallA>0. (2.12)

Clearly 2" # 0 (otherwise the terminal extreme half-line is the intial one, a contradic-
tion), so 2" > 0. By complementarity, we have (w)T2z" = 0, from (2.11) this implies
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that (z2")TMz" = —dT2"zl <0, (since d > 0, z" > 0 implies that d”2" > 0) which
implies by the copositivity of M, that (2")TMz" = 0 and 2 = 0. Using this in (2.11)
we conclude that

M2"=w">0. (2.13)

Since (w¥, 2%, 2¥) is a BFS of (2.7) we have w® = M2*+dz§+q. Using this and (2.13) in
(2.12) we get, for all A > 0, (2P 4+ ") Tdzb+ (2P +X2")Tqg = =R+ X" T M (2P +A2") <
0 (since M is copositive and 2% + A\z" > 0). Make A > 0, divide this inequality by A
and take the limit as A tends to +o00. This leads to

(z"M7Tdzy + (") Tg<0. (2.14)

But z& > 0 (otherwise (w*,z*) will be a solution to the LCP (q, M), contradicting
the hypothesis that the algorithm terminated with ray termination without leading to
a solution of the LCP), d > 0, 2" > 0. Using these facts in (2.14) we conclude that
qT 2" < 0. All these facts imply that 2" = Z satisfies (2.10).

[
Theorem 2.6 Let M = E + N where F is a symmetric PSD matrix and N is
copositive. If the system (2.9) with ¢I = —q has a solution (x,y) there exists no

secondary ray, and the complementary pivot algorithm terminates with a solution of
the LCP (q, M).

Proof. Follows from Lemma 2.10 and 2.11.
[]

Corollary 2.1 Putting E = 0 in Theorem 2.6, we conclude that if N is copositive,
for every v > 0, v > 0 in R"™, there exists w,z € R" satisfying

Nz—w=-NTu—vw

z,w 2 0, ZTw=0.

2.3.6 Unboundedness of the Objective Function

Consider a mathematical program in which an objective function f(z) is required to
be minimized subject to constraints on the decision variables x = (x1,...,2,)T. This
problem is said to be unbounded below if the set of feasible solutions of the problem
is nonempty and f(x) is not bounded below on it, that is, iff there exists an infinite
sequence of feasible solutions {z!,...,z",...} such that f(2") diverges to —oco as r
goes to +o00.

It is well known that if a linear program is unbounded below, there exists a
feasible half-line (in fact an extreme half-line of the set of feasible solutions, see [2.26])
along which the objective function diverges to —oo. This half-line is of the form
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{2+ Azt : X > 0} satisfying the property that 20 + Az is a feasible solution for all
A > 0, and the objective value at z° + Az! diverges to —oo as A goes to +oco. This
property may not hold in general convex programming problems, that is, problems in
which a convex function is required to be minimized over a closed convex set. Consider
the following example due to R. Smith and K. G. Murty.

Minimize — 21
Subject to  m2 — 27 > 0. (2.15)

T1,T9 i 0

The set of feasible solutions of this problem is drawn in Figure 2.3.

X2

(a,a%)

X1

Figure 2.3 The feasible region for (2.15) is the area between the xy axis
and the parabola. For every a > 0, the straight line xo — az; = 0 intersects
the parabola at exactly two points.

The equation x5 — 12 = 0 represents a parabola in the x;, zo-Cartesian plane. For
every a > 0, the straight line o — ax; = 0 intersects this parabola at the two points
(0,0) and (a, @®). These facts clearly imply that even though —z; is unbounded below
in (2.15), there exists no half-line in the feasible region along which —z; diverges to

—00.
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However, for convex quadratic programs (i.e., problems of the form (1.11) in which
the matrix D is PSD) we have the following theorem.

Theorem 2.7  Consider the quadratic program (1.11) in which D is PSD and sym-
metric. Suppose (1.11) is feasible and that Q(zx) is unbounded below in it. Then
there exists a feasible half-line for (1.11) along which Q(z) diverges to —oo. Such a
half-line can be constructed from the data in the terminal tableau obtained when the
complementary pivot algorithm is applied to solve the corresponding LCP (1.19).

Proof. For any positive integer r, let e, denote the column vector in R", all of whose
entries are 1. By Theorem 2.1, when the complementary pivot algorithm is applied to
solve (1.19) it must end in ray termination. When this happens, by the results estab-
lished in the proof of Theorem 2.1, we get vectors (u®,v*, z% y*¥) and (u®,v", 2", y")

satisfying
[ it ] [ ] [ k ] [ € ] 0 [ —c ] (2.16)
vk A 0 yk m 0 b '

uF ok 2k gk >0, (W) = () TyF =0, >0,

()-8 )G 210
0

Uh,’Uh,.Th,yh g 0, (U,h)T.TJh _ (’Uh)Tyh =0, (a:h,yh) >0
()T = (o) Ty" = (W) Tk = (") Ty* =0 (2.18)
(™7, ™M7) [ i ] <0. (2.19)

So we have v? = Az" and 0 = (y")Tv" = (y")T Azh. We also have u" — Dz + ATy
=0, and hence 0 = (z")Tu" = (2")T Dzh — (2™)T ATy = (2")T D2". Since D is PSD
and symmetric by Theorem 1.11, this implies that Dz" = 0. So ATy" = —u <0,
that is (y")TA < 0. From (2.16), —b = vF — Azk — e, 28, 2k > 0. So (—0Tyh) =
(WF) Tyt = (aF)TATY" —2feqy™ = —(aF)T ATy — e,y = —(aF)T (—ul) =25 ey =
—z8 (el y") < 0 since z§ > 0 and y" > 0. So bTy" = 2§ (el yh) > 0.

If bTy" > 0, (1.11) must be infeasible. To see this, suppose # is a feasible solution
of (1.11). Then A% > b, 2 > 0. So (y")TAZ > (y")Tb. But it has been established
earlier that (y")7A = —(u")T < 0. Using this in the above, we have, (y")Tb <
(y")T Az = —(u")T2 < 0 (since both u” and & are > 0), and this contradicts the fact
that (y™)Tb > 0.

So, under the hypothesis that (1.11) is feasible, we must have bTy" = 0. In
this case, from (2.19) we have cz® < 0. From earlier facts we also have Az" =
v >0, 2" > 0 and Dz" = 0. Let Z be any feasible solution to (1.11). These facts
together imply that & + Az" is also feasible to (1.11) for any A > 0 and Q(Z + Az") =
Q(%) + A(cz™) (this equation follows from the fact that Dz" = 0) diverges to —oo as
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A tends to +0o. Thus in this case, {Z + Az" : X > 0} is a feasible half-line along
which Q(z) diverges to —oco.
[

Since D is assumed to be PSD, we have T Dx > 0 for all z € R". So, in this
case, if Q(x) is unbounded below in (1.11), the linear function cz must be unbounded
below on the set of feasible solutions of (1.11), and this is exactly what happens on
the half-line constructed above.

If ray termination occurs in the complementary pivot algorithm applied on (1.19)
when D is PSD, we get the vectors satisfying (2.16), (2.17), (2.18) and (2.19) from the
terminal tableau. If bTy" > 0, we have shown above that (1.11) must be infeasible.
On the other hand, if bTy" = 0, Q(z) is unbounded below in (1.11) if (1.11) is feasible.
At this stage, whether (1.11) is feasible or not can be determined by using Phase I of
the Simplex Method or some other algorithm to find a feasible solution of the system
Az > b, 2 > 0.

With a slight modification in the formulation of a convex quadratic program as
an LCP, we can make sure that at termination of the complementary pivot algorithm
applied to this LCP, if ray termination has occurred, then either a proof of infeasibility
or a feasible extreme half-line along which the objective function is unbounded, are
readily available, without having to do any additional work. See Section 2.9.2 for this
version.

2.3.7 Some Results on Complementary BFSs

Theorem 2.8 Ifthe LCP (q, M) has a complementary feasible solution, then it has
a complementary feasible solution which is a BFS of

w—Mz=q

(2.20)
w=>0, z2>0.

Proof. Let (w,Zz) be a complementary feasible solution for the LCP (¢, M). So for
each j =1 ton, we have w;z; = 0. If (w, 2) is a BFS of (2.20), we are done. Otherwise,
using the algorithm discussed in Section 3.5.4 of [2.26], starting with (w, z), we can
obtain a BFS (w, 2) of (2.20) satisfying the property that the set of variables which
have positive values in (), 2), is a subset of the set of variables which have positive
values in (w, 2). So w;2; =0, for j =1 to n. Hence (w, 2) is a complementary feasible
solution of the LCP (¢, M) and it is also a BFS of (2.20).

[

Note 2.1  The above theorem does not guarantee that whenever the LCP (q, M)
has a complementary feasible solution, there exists a complementary feasible basis for
(2.20). See Exercise 1.10.
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Theorem 2.9 Suppose M is nondegenerate. If (w,z) is a complementary feasible
solution for the LCP (q, M), the set of column vectors {I.; : j such that w; > 0} U
{—M._; : j such that Z; > 0} is linearly independent. Also, in this case, define a vector
of variables y = (y1,...,Yn) by

wj , if wj > 0
Yyji =94 %, if zZj >0
either w; or z; choosen arbitrarily , if both w; and z; are 0 .

Then y is a complementary feasible basic vector for (2.20).

Proof. From Corollary 3.1 of Chapter 3, when M is nondegenerate, every comple-
mentary vector is basic. Since (w, z) is a complementary feasible solution, this implies
that the set {I.; : j such that w; > 0} U {—M.; : j such that z; > 0} is linearly
independent. Also from this result, y is a complementary basic vector, and the BFS
of (2.20) with y, as the basic vector is (w, z), and hence y is a complementary feasible
basic vector.

[]

Theorem 2.10 If M is PSD or copositive plus, and (2.20) is feasible, then there
exists a complementary feasible basic vector for (2.20).

Proof. When the complementary pivot algorithm is applied to solve the LCP (¢, M),
it terminates with a complementary feasible basic vector when M is copositive plus
and (2.20) is feasible, by Theorem 2.1.

[]

2.4 A METHOD OF CARRYING OUT THE
COMPLEMENTARY PIVOT ALGORITHM
WITHOUT INTRODUCING ANY
ARTIFICIAL VARIABLES,

UNDER CERTAIN CONDITIONS

Consider the LCP (g, M) of order n, suppose the matrix M satisfies the condition :

there exists a column vector of M in which all the entries are (2.21)
strictly positive. '

Then a variant of the complementary pivot algorithm which uses no artificial variable
at all, can be applied on the LCP (¢, M). We discuss it here. The original tableau for
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this version of the algorithm is :

w z

(2.22)

w=>0, 220

As before, we assume that ¢ 2 0. Let s be such that M., > 0. So the column vector
associated with z, is strictly negative in (2.22). Hence the variable zs can be made to
play the same role as that of the artificial variable zy in versions of the complementary
pivot algorithm discussed earlier, and thus there is no need to introduce the artificial
variable. Determine ¢ to satisfy (-£-) = minimum { (-:£-) : i = 1 to n }. Ties for ¢
Myis Mmis
can be broken arbitrarily. When a pivot step is carried out in (2.22) with the column
of zs as the pivot column and row ¢ as the pivot row, the right hand side constants

vector becomes nonnegative after this pivot step (this follows because —m;s < 0 for
all 7 and by the choice of t). Hence, (w1,...,ws_1, 25, Ws11,...,Wwy) is a feasible basic
vector for (2.22), and if s = ¢, it is a complementary feasible basic vector and the
solution corresponding to it is a solution of the LCP (¢, M), terminate. If s # ¢, the
feasible basic vector (wq, ..., wi_1, Zs, Wey1, ..., wy,) for (2.22) satisfies the following
properties :
i) It contains exactly one basic variable from the complementary pair (w;, z;)
for n — 2 values of i (namely i # s, ¢ here).
ii) It contains both the variables from a fixed complementary pair (namely
(ws, zs) here), as basic variables.
iii) There exists exactly one complementary pair both the variables in which are
not contained in this basic vector (namely (wy, ;) here).

The complementary pair of variables identified by property (iii), both of which are
not contained in the basic vector, is known as the left out complementary pair of
variables in the present basic vector.

For carrying out this version of the complementary pivot algorithm, any feasible
basic vector for (2.22) satisfying (i), (ii), (iii) is known as an almost complemen-
tary feasible basic vector. All the basic vectors obtained during this version of the
algorithm, with the possible exception of the terminal one (which may be a comple-
mentary basic vector), will be such almost complementary feasible basic vectors, and
the complementary pair in property (ii) both of whose variables are basic, will be the
same for all of them.

In the canonical tableau of (2.22) with respect to the initial almost complementary
feasible basic vector, the updated column vector of w; can be verified to be strictly
negative (because the pivot column in the original tableau, —M.,, is strictly negative).
Hence if w; is selected as the entering variable into the initial basic vector, an almost
complementary extreme half-line is generated. Hence the initial almost complementary
BFS of (2.22) is at the end of an almost complementary ray.

The algorithm chooses z; as the entering variable into the initial almost comple-
mentary feasible basic vector (wq, ..., wi_1, 25, Wiy1,. .., W, ). In all subsequent steps,
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the entering variable is uniquely determined by the complementary pivot rule, that
is, the entering variable in a step is the complement of the dropping variable in the
previous step. The algorithm can terminate in two possible ways :

1. At some stage one of the variables form the complementary pair (ws, z5) (this
is the pair specified in property (ii) of the almost complementary feasible
basic vectors obtained during the algorithm) drops out of the basic vector, or
becomes equal to zero in the BFS of (2.22). The BFS of (2.22) at that stage
is a solution of the LCP (¢, M).

2. At some stage of the algorithm both the variables in the complementary pair
(ws, zs) may be strictly positive in the BFS, and the pivot column in that stage
may turn out to be nonpositive, and in this case the algorithm terminates with
another almost complementary ray. This is ray termination.

When ray termination occurs, the algorithm bas been unable to solve the LCP

(¢, M).

Example 2.13

Consider the LCP (g, M), where

2 1 1 —4
M=|1 2 1 g=| -5
11 2 1

All the column vectors of M are strictly positive here. We will illustrate the algorithm
on this problem using s = 3.

Original Tableau

wy Wy W3 21 22 z3 q
1 0 0o -2 -1 -1 -4
0 1 0 -1 -2 -5
0 0 1 -1 -1 =2 —1
—M.3 < 0. The minimum { =%, =2, =t} = —5, and hence ¢ = 2 here. So the pivot

row is row 2, and the pivot element for the pivot operation to get the initial almost
complementary feasible basic vector is inside a box in the original tableau. Applying
the algorithm we get the following canonical tableaus:
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Basic wy  we Wz 21 2o z3 | q | Ratios
variables
wi 1 -1 0 -1 0 [1 |1 win
23 0 -1 0 1 2 1|5 |2
w3 o -2 1 1 3 0192
Z 1 -1 0 -1 1 0|1
2 2 1 0 0 1 |3 | 3w
w3 -3 1 1 4 0 0|6 |53
72 : -2 0 0 1 3 |2
71 -2 £ 0 1 o i1
w3 -2 -+ 1 0 0 -3 |2

So the solution of this LCP is w = (w1, we, w3) = (0,0,2); z = (21, 22, 23) = (1,2,0).

FExercise

2.3 Show that the version of the complementary pivot algorithm discussed in this
section can be used to process all LCPs (¢, M) in which M is copositive plus and at
least one of its columns is strictly positive. In this case, prove that ray termination
cannot occur, and that the algorithm will terminate with a complementary feasible
basic vector for the problem.

2.5 TO FIND AN EQUILIBRIUM PAIR OF
STRATEGIES FOR A BIMATRIX GAME
USING THE COMPLEMENTARY PIVOT
ALGORITHM

The LCP corresponding to the problem of finding an equilibrium pair of strategies in
a bimatrix game is (1.42), where A, BT are positive matrices. The original tableau for
this problem is :
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U v ¢ n
0 IN —BT 0 —€EN

w>0 v>0 €>0 72>0

where for any r, I,. denotes the identity matrix of order r. The complementary pairs
of variables in this problem are (u;,&;), ¢ = 1 to m, and (v;,7n;), j =1 to N.

We leave it to the reader to verify that when the complementary pivot algorithm
discussed in Section 2.2 is applied on this problem, it ends up in ray termination right
after obtaining the initial almost complementary feasible basic vector. However, it
turns out that the variant of the complementary pivot algorithm discussed in Section
2.4 can be applied to this problem, and when it is applied it works. We discuss the
application of this version of the algorithm here.

So, here, an almost complementary feasible basic vector for (2.23), is de-
fined to be a feasible basic vector that contains exactly one basic variable from each
complementary pair excepting two pairs. Both variables of one of these pairs are basic
variables, and both variables in the other pair are nonbasic variables. These are the
conditions for almost complementarity (i), (ii), (iii), discussed in Section 2.4.

The column vectors of the variables &;, 1;, in (2.23) are all nonpositive, but none
of them is strictly negative. But, because of their special structure, an almost com-
plementary feasible basic vector for (2.23) can be constructed by the following special
procedure.

Initially make the variable &; a basic variable and the variables &o, . . ., &,, nonbasic
variables. Make ¢; equal to £, the smallest positive number such that v° = —ey +
(BT).1£9 > 0. At least one of the components in v°, say, v0 is zero. Make v, a nonbasic
variable too. The complement of v, is n,.. Make the value of 7, to be the smallest
positive value, n°, such that u® = A.,.n? —e,, > 0. At least one of the components in
u®, say u? is 0. If s = 1, the basic vector (Us, ..., U, U1y« -y Vp_1,Vpi1s---, UN,EL, 0r)
is a complementary feasible basic vector, and the feasible solution corresponding to it
is a solution of the LCP (1.42), terminate.

If s # 1, the basic vector, (U1, ..., Us 1, Usi1y- - UmyVlyeneyUp_1,Vpily.--s UN,
&1,mr) is a feasible basic vector. Both the variables in the complementary pair (uy,&7)
are basic variables in it. Both variables in the complementary pair (us, &s) are nonbasic
variables. And this basic vector contains exactly one basic variable from every comple-
mentary pair in (2.23), excepting (u1,&1), (us,&s). Hence this initial basic vector is an
almost complementary feasible basic vector. All the basic vectors obtained during the
algorithm (excepting the terminal complementary feasible basic vector) will be almost
complementary feasible basic vectors containing both the variables in the pair (uy,&1)
as basic variables.

When ug, is made as the entering variable into the initial basic vector, an almost
complementary extreme half-line is generated. Hence the BFS of (2.23) with respect
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to the initial basic vector is an almost complementary BFS at the end of an almost
complementary extreme half-line.

The algorithm begins by taking & as the entering variable into the initial basic
vector. In all subsequent steps, the entering variable is picked by the complementary
pivot rule. The algorithm terminates when one of the variables in the pair (u,&;)
drops from the basic vector. It can be proved that temination occurs after at most
a finite number of pivots. The terminal basis is a complementary feasible basis. In
this algorithm if degeneracy is encountered, its should be resolved using the lexico
minimum ratio rule (see Section 2.2.8).

Example 2.14

We will solve the LCP (1.43) corresponding to the 2 person game in Example 1.9. In
tableau form it is

up  up vy vy v3 & & om m2 3 q
1 0 0 0 0 0 0 -2 -2 -1 | -1
0o 1 0 0 0 0 0 -2 -2 | -1
0 0 1 0 0 2 0 0 0 | -1
o 0 o0 1 0 -3 -1 0 0 0 | -1
0 0 0 o0 1 -2 -3 0 0 0 | -1

u,v,§,m = 0  and w1y = u28a = viN = van2 = v3znz = 0

Making & = 0, the smallest value of &; that will yield nonnegative values to the v’s is
1. When &; = 0, &1 = 1 the value of v; is 0. Hence, v; will be made a nonbasic variable.
The complement, of vy is ;. So make 72 and n3 nonbasic variables. The smallest value
of n; that will make the w’s nonnegative is 1 = 1. When 71 = 1 with 12 = n3 = 0,
us becomes equal to 0. So make us a nonbasic variable. The canonical tableau with
respect to the initial basic vector is therefore obtained as below by performing pivots
in the columns of £&; and 7;, with the elements inside a box as pivot elements.

Basic wy uz vy ve vy & 2 Mmoo m2 m3 | g | Ratios
variables
Uy 1 -2 0 0 0 0 0 0 2 3|1
m 0O -1 0 0 0 0 0 1 2 2|1
3] o 0 -1 0 0 1 2 0 0 011|431
v 0 0 -3 1 0 0 0 0 0|2 |2un
V3 o 0-2 0 1 0 1 0 0 0]1]1
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The algorithm continues by selecting &5, the complement of us, as the entering variable.
ve drops from the basic vector.

Basic up wy v vy vz & & om M M3 | g
variables
s 1 -2 0 0 0 0 0 0 3 |1
m o -1 0 0 0 0 0 1 2 2|1
3 0 0 £ -2 01 0 0 0 0|+
& o 0 -2 % 0 0 1 0 0 0|32
vs o o -I -1 1 0 0 0 0 02

Since vy has dropped from the basic vector, its complement 7y is the next entering
variable. There is a tie in the minimum ratio when 7y is the entering variable, since it
can replace either uy or n; from the basic vector. Such ties should be resolved by the
lexico minimum ratio test, but in this case we will let u; drop from the basic vector,
since that leads to a complementary feasible basis to the problem.

Basic up uz  vi vz w3 & & om oMz M3 |9
variables
N i -1 0 o000 o0 0 1 3|1
m -1 1 0 0 0 0 0 1 0 -1 |0
& o o ¥ -2 010 0 0 0|1
&2 o 0 -2 % 0 0 1 0 0 0|2
v3 0o 0 - -1 1 0 0 0 0 02

The present basic vector is a complementary feasible basic vector. The solution (u1, us;
vy, 02, v3; &1, €25 M1, 12, m3) = (0,0;0,0, %; %, %;0, %,0) is a solution of the LCP. In this
solution &1 + &2 = % and 71 + 12 + 13 = % Hence the probability vector z = (255‘) =

3°3
game.

(1 2)T and y = (Znnj) = (0,1,0)T constitute an equilibrium pair of strategies for this

Theorem 2.11  If the lexicographic minimum ratio rule is used to determine the
dropping variable in each pivot step (this is to prevent cycling under degeneracy) of
the complementary pivot algorithm discussed above for solving (1.42), it terminates in
a finite number of pivot steps with a complementary feasible solution.

Proof. The original tableau for this problem is (2.23), in which A > 0, BT > 0, by
the manner in which the problem is formulated. In the algorithm discussed above
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for this problem, both variables from exactly one complementary pair are nonbasic in
every almost complementary feasible basic vector obtained, and this pair is known as
the left out complementary pair of variables. The left out complementary pair
may be different in the various almost complementary feasible basic vectors obtained
during the algorithm, but the complementary pair both of whose variables are basic,
remains the same in all of them.

Let (U1, veyUs 1, Usily-neyUpmyUlyeeesUp_1,Up11,.-.,UN,E1, 1) be the initial al-
most complementary feasible basic vector obtained in the algorithm, by the special
procedure discussed above. Let the initial tableau be the canonical tableau of (2.23)
with respect to the initial almost complementary feasible basic vector. In this, the left
out complementary pair is (us, £s) both of which are nonbasic at present. Let

ulz(u}% u,~1:—1+(zi7ﬂ), for ¢ # s, U;ZO-
by; .
1
1_ (.
¢ _(b1r,07 .70)
1 1 1

=), my =0, forjFr m=—.

sT

at = (al), ﬂh:(%), fori#s, al=1.

it =@, ay=0, forj#r, = (i) :
Agy
The present BFS can be verified to be (u',v!, &1, nt). It can also be verified that (u”,
o™, €7, ") is a homogeneous solution corresponding to the initial tableau, and that the
initial almost complementary extreme half-line generated when ug is brought into the
basic vector in the initial tableau is { (ul, v, € nt) + Aah, ol qh) o A >0 }

The algorithm begins by bringing the nonbasic variable &, into the basic vector in
the initial tableau, and continues by using the complementary pivot rule to choose the
entering variable and the lexico-minimum ratio rule to choose the dropping variable in
each step.

Let B be the basis consisting of the columns of the basic variables in the initial
tableau (not the original tableau), in a step of this procedure and let 8 = (8;;) = B™*
Let ¢ be the updated right hand side constants vector in this step. If u; or &, is
eligible to be a dropping variable in this step by the usual minimum ratio test, it
is choosen as the dropping variable, and the pivot step is carried out, leading to a
complementary feasible basic vector for the problem. If both u; and &; are ineligible to
be dropping variables in this step, the lexico minimum ratio rule chooses the dropping
variable so that the pivot row corresponds to the row which is the lexico minimum
{ (q“ﬁl : 1 such that p;; > 0} where p = (p1gy- ., Pmant)T is the pivot column
(updated column of the entering variable) in this step. This lexico minimum ratio rule
determines the dropping variable uniquely and unambiguously in each pivot step.
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In each almost complementary feasible basic vector, obtained during the algo-
rithm, there is exactly one left out complementary pair of variables; and hence it can
have at most two adjacent almost complementary feasible basic vectors, that can be
obtained by bringing one variable from the left out complementary pair into it.

The left out complementary pair in the initial almost complementary feasible
basic vector is (us,&s), and when ug is brought into the initial almost complementary
feasible basic vector, we obtain the initial almost complementary extreme half-line. So
the only manner in which the almost complementary path can be continued from the
initial almost complementary BFS is by bringing £, into the basic vector. The updated
column of &, in the initial tableau can be verified to contain at least one positive entry.
Hence when &, is brought into the initial basic vector, we get an adjacent almost
complementary feasible basic vector, and the almost complementary path continues
uniquely and unambiguously from there. Each almost complementary feasible basic
vector has at most two adjacent ones, from one of them we arrive at this basic vector;
we move to the other when we leave this basic vector. These facts, and the perturbation
interpretation of the lexico minimum ratio rule imply that an almost complementary
feasible basic vector obtained in the algorithm can never reappear later on. Since
there are at most a finite number of almost complementary feasible basic vectors, the
algorithm must terminate in a finite number of pivot steps. If it terminates by obtaining
a complementary feasible basic vector, the BFS corresponding to it is a solution of the
LCP (1.42) and we are done. The only other possibility in which the algorithm can
terminate is if the updated column vector of the entering variable in some step has no
positive entries in it, in which case we get a terminal almost complementary extreme
half-line (this is the ray termination discussed earlier). We will now show that this
second possibility (ray termination) cannot occur in this algorithm.

Suppose ray termination occurs in pivot step k. Let the almost complementary
BFS in this step be (u®,v*, £ n¥) and let the terminal extreme half-line be: { (u*, v*,
R onF) + Al o gh p™) X > 0}, From this and from the almost compelementary
property being maintained in the algorithm, we have :

[uk+)\uh]_[0 A] [§k+Agh]_[—em] (2.24)
v* 4+ Aol BT 0 "+t ) T —en '
(uf + Aul)(EF+ APy =0 foralli #1 (2.25)
k h k hy __ ;
(vf + M) (nf + Any) =0 for all j (2.26)
uk,vkvé-k,nk,uhvvhvgh)nh i 0 (227)

for all A > 0. (ul, v, &" n) is a homogeneous solution satisfying the nonnegativity

(5) - (g o) (5) =0
ul = Aph

ot = BT¢h

restrictions and

That is :
(2.28)
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We also have (u, v", " n") # 0, which implies by (2.27) and (2.28) that (¢",7") > 0.
Now suppose £ # 0. So ¢ > 0. Since B > 0, this implies by (2.28) that v = BT¢h >
0. From (2.26) this implies that n¥ 4+ An} = 0 for all j and for all A > 0. From (2.24)
this implies that (u* + Au") = —e,,, < 0, a contradiction.

Suppose we have £" = 0 but " # 0. So n" > 0 and since A > 0, u” = Ap" > 0.So0
from (2.25), we must have £¥ = 0 for all i # 1. Since ¢" = 0, by (2.28) v* = 0. So
from (2.24)

vF = —eny + BT¢F (2.29)

and since £F = 0 for all i # 1, v¥ is obtained by the same procedure as v, the value of
v in the initial BFS (since £¥ must be the smallest value that makes v* nonnegative in
(2.29) in order to get an extreme point solution). So v* is the same as v! in the initial
BFS in (2.23). By our discussion earlier, this implies that v;-“ > 0 for all j # r, and
v*® = 0. By (2.26) this implies that 77;-C + )\77;? =0 for all A > 0 and j # r. These facts
clearly imply that (u”, v &% n*) is the same as the initial BFS obtained for (2.23).
This is a contradiction, since a BF'S obtained in a step of the algorithm cannot reappear
later on, along the almost complementary path.

These facts imply that ray termination cannot occur. So the algorithm must
terminate in a finite number of steps by obtaining a complementary feasible basic
vector, and the terminal BFS is therefore a solution of the LCP (1.42).

[]

Comments 2.1 The complementary pivot algorithm for computing equilibrium stra-
tegies in bimatrix games is due to C. E. Lemke and J. T. Howson [1.18]. C. E. Lemke
[2.21] extended this into the complementary pivot algorithm for LCPs discussed in Sec-
tion 2.2. The proof of Theorem 2.1 is from the paper of R. W. Cottle and G. B. Dantzig
[1.3] which also discusses various applications of the LCP and some principal pivoting
methods for solving it. C. E. Lemke was awarded the ORSA /TIMS John Von Neumann
Theory Prize in 1978 for his contributions to this area. The citation of the award says
“Nash’s equilibrium proofs were nonconstrutive, and for many years it seemed that
the nonlinearity of the problem would prevent the actual numerical solution of any
but the simplest noncooperative games. The breakthrough came in 1964 with an inge-
nious algorithm for the bimatrix case devised by Carlton Lemke and L. T. Howson Jr.
It provided both a constructive existence proof and a practical means of calculation.
The underlying logic, involving motions on the edges of an appropriate polyhedron,
was simple and elegant yet conceptually daring in an epoch when such motions were
typically contemplated in the context of linear programming. Lemke took the lead
in exploiting the many ramifications and applications of this procedure, which range
from the very basic linear complementary problem of mathematical programming to
the problem of calculating fixed points of continuous, nonlinear mappings arising in
various contexts. A new chapter in the theory and practice of mathematical program-
ming was thereby opened which quickly became a very active and well-populated area
of research...”.
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The geometric interpretation of the LCP using complementary cones was initiated
in K. G. Murty [3.47, 1.26].

2.6 A VARIABLE DIMENSION ALGORITHM

We consider the LCP (g, M) which is to find w, z € R" satisfying

w—Mz=q (2.30)
w,z >0 (2.31)
and  wlz=0 (2.32)

Definition : Principal Subproblem

Let J C {1,...,n}. Denote wy = (wj :j€J),2zy=(25:5€J),q =105 :]€
J), and the principal submatrix of M corresponding to J, Myy = (m;; : 1,5 € J).
The principal subproblem of the LCP (2.30)—(2.32) in the variables wy, zy (or the
principal subproblem of the LCP (2.30)—(2.32) associated with the subset J) is the
LCP (g3, Mj3) of order |J|, the complementary pairs of variables in it are {w;, z;} for
J € J and it is: find wy, zy satisfying

wy — M33zz3 = q3
w3y, 23 g 0

w?ZJ =0.

This principal subproblem is therefore obtained from (2.30)—(2.32) by striking off the
columns of all the variables wj, z; for j ¢ J and the equation in (2.30) corresponding
tojg & J.

Let J = {1,,71,} \ {Z}, w = (wl,...,wi_l,wi+1,...,wn)T, f = (21,...,Zi_1,
Zidly e zn)T. The following results follow by direct verification.
Results 2.2 If (0 = (Wy,...,%,)T;2 = (21,...,2,)7) is a solution of the LCP (¢, M)
and 21 = 0, then ((I) = (12)1, ey ’uAJi_l, wi—i—l, ey ’uAJn)T;é. = (21, ey 2?,'_1, 21'—}—17 RN 2n)T)
is a solution of its principal subproblem in the variables w, &.

Results 2.3 Suppose that (@ = (Wy,..., Wi_1, Wit1,---,Wn)T; £ = (Z1, ..y Ziz1,
Zit1y..+y2n)T) is a solution of the principal subproblem of the LCP (g, M) in the
variables w, f Define 5, =0 and let z = (21, ey gi—l, 213 21'—}—17 ey 2n)T If q; +M12 i
0, define w; = q; + M;.Z, and let @ = (Wy, ..., Wi_1, Ws, Wis1,---,Wn)L, then (w0, 2) is
a solution of the original LCP (¢, M).



116 CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

Example 2.15

Consider the following LCP (¢, M)

wy  We W3 21 Z9 Z3 q
1 0 0 2 0 -3 4
0 1 0 -1 -4 -3 —14
0 0 1 1 2 =2 13

w; >0, 2z; >0, wjz; =0 forall j =1to3

Let w = (wy,w2)T, € = (21, 22)T. Then the principal subproblem of this LCP in the
variable w, £ is

w1 W2 21 22 Y
1 0 2 0 4
0 1 —1 —4 —14

w; >0, 2; 20, wjz; =0for j =1,2

(w = (0,0,5)T;2 = (2,3,0)T) is a solution of the original LCP and 23 is equal to
zero in this solution. This implies that (@ = (0,0);& = (2,3)) is a solution of this
principal subproblem which can easily be verified. Also, (@ = (4,0)T;¢ = (0, %)T)

is another solution of the principal subproblem. Defining z3 = 0, Z = (0, 1?4, 0)7, we

verify that ¢3 + M3.Z2 = 13 + (—1,-2,2)(0, 1Z‘l,())T = 6 > 0. Hence, define w3 = 6,
and w = (4,0,6)T. It can be verified that (v = (4,0,6)T;z = (0,4},0)7) is another

solution of the original LCP.

We now discuss a variable dimension algorithm for the LCP (¢, M) due to L. Van
der Heyden [2.38]. If ¢ > 0, (w = ¢,z = 0) is a readily available solution. So we assume
that ¢ 2 0. The method proceeds by solving a sequence of principal subproblems of
(2.30), (2.31), (2.32) always associated with subsets of the form J = {1,...,k} (this
problem is called the k-problem), for some k satisfying 1 < k < n. When the method is
working on the k-problem, the bottom n—k constraints in (2.30) as well as the columns
of variables wj, z; for j > k can be ignored, hence the reason for the name. All the
intermediate solutions for (2.30) obtained during the method (with the exception of the
terminal solution which is a complementary feasible solution satisfying (2.30), (2.31),
(2.32)) are of two types called position 1 and position 2 solutions defined below.

Position 1 Solution :  This is a solution (w, 2) for (2.30) satisfying the following
properties :
i) there exists an index k such that Z; = 0 and w; < 0.
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ii) zZ; =0 for j > k.

i) if £ > 1, @*1 = (wy,...,d0_1), 2F D = (%,...,%_1) is a solution for
the principal subproblem of (2.30), (2.31), (2.32) determined by the subset
{1,...,k =1}, that is, ®*=Y >0, 2=1) > 0 and (w*~)Tz*-1 = 0.

From the definition, a position 1 solution (w, z) always satisfies w”

z =0, it is
complementary (but infeasible) and it will be a complementary basic solution associ-
ated with a complementary (but infeasible in the same sense that the solution violates

(2.31)) basic vector for (2.30).

Position 2 Solution :  This is a solution (w, 2) for (2.30) satisfying the following
properties :
a) there exists an index k such that Z; > 0, W < 0.
b) z; =0 for j > k.
c) there is a u < k such that both 2, and w,, are zero.
d) W=D = (i, ... d0-1)T >0, 267D = (31,...,2,1)T >0 and
(=T 20=1) —

From the definition, a position 2 solution discussed above is an almost complemen-
tary solution (not feasible, since some of the variables are < 0) of the type discussed
in Section 2.4, it satisfies @™
solution associated with an almost complementary basic vector for (2.30) which has

both wyg, zx as basic variables, and contains exactly one basic variable from the com-

Z = wiZ. It will be an almost complementary basic

plementary pair (wj, z;) for each j # k or u (both variables w,, z, are out of this
almost complementary basic vector, so the complementary pair (w,, z,,) is the left out
complementary pair in this basic vector). This almost complementary basic vector
has w; as a basic variable for all j > k. All intermediate (i. e., except the initial and
terminal) solutions obtained by the method when it is working on the k-problem wiil
be position 2 solutions of (2.30) as defined above.

Note 2.1 As mentioned above, all the solutions obtained during the algorithm will
be basic solutions of (2.30).The definitions given above for positions 1, 2 solutions are
under the assumption that ¢ is nondegenerate in the LCP (¢, M) (i. e., that every
solution to (2.30) has at least n nonzero variables). In the general case when ¢ may be
degenerate, the algorithm perturbs ¢ by adding the vector (g,¢2,...,e™)7T to it, where
¢ is treated as a sufficiently small positive number without giving any specific value to
it (see Section 2.1, 2.2.2, 2.2.8), and all the inequalities for the signs of the variables
should be understood in the usual lexico sense.

The Algorithm

The algorithm takes a path among basic vectors for (2.30) using pivot steps. All basic
vectors obtained will be almost complementary basic vectors as defined in Section 2.4,
or complementary basic vectors.
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Initial Step: STEP O : The initial basic vector is w = (wi,...,w,). The
initial solution is the Position 1 basic solution of (2.30) corresponding to it, define k =
minimum {3 : ¢; < 0}. Begin with the k-problem, by making a type 1 pivot step to
increase the value of the nonbasic variable z; from 0, as described below.

STEP 1 : Type 1 Pivot Step, to increase the Value of a Nonbasic Vari-
able from Zero. Let (y1,..., Yk, Wkt1,-..,wy,) be the basic vector in some stage of
working for the k-problem. If this is the initial basic vector, (y1, ..., yx) will be a com-
plementary basic vector for the principal subproblem of (2.30), (2.31), (2.32) defined
by the subset {1,...,k}. Except possibly at termination of work on the k-problem, yy
will always be wy; y1,...,yx—1 will all be w; or z; for j < k — 1. This type of pivot
step occurs when the value of a nonbasic variable, say v, selected by the rules specified
in the algorithm, is to be increased from its present value of zero. The variable v will
be either w; or z; for some j < k. Let the canonical tableau for (2.30) with respect to
the present basic vector be
Tableau 2.7 Canonical Tableau

Y1 Y Wg41-.-Wp [P VRPN
ay q1
1
an dn

While working on the k-problem, in all the canonical tableaus, we will have ¢, ...,
Qr—1 > 0 and @ < 0 (and y = wy). Let = B~! be the inverse of the present basis.
The algorithm always maintains (g, 3;.) = 0 for i = 1 to kK — 1. Let A denote the
nonnegative value given to the nonbasic variable v. The new solution as a function of
Als all nonbasic variables other than v are 0

v=A

Yi=q —Aa;, 1=1tok

wj=¢q —Aaj, j=k+1ton

(2.33)

We will increase the value of A from 0 until one of the variables y; for + = 1 to k,
changes its value from its present to zero in (2.33), and will change sign if A increases
any further. This will not happen if the updated column of the entering variable v
satisfies

a; <0, i=1,...,k—1 and a;>0 (2.34)

If condition (2.34) is satisfied, the method is unable to proceed further and termination
occurs with the conclusion that the method is unable to process this LCP. If condition
(2.34) is not satisfied, define

0= Max{L : Over 1 <i<k—1suchthata; >0; and 2=, if a, < 0} (2.35)
a; - Qg
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Let A be the set of all ¢ between 1 to k& which tie for the maximum in (2.35). If A is
a singleton set, let r be the element in it. Otherwise let r be the element which at-
tains the lexicomaximum in lexicomaximum { (%) cie A } If r =k, v replaces
yr (= wyg) from the basic vector. After this pivot step we are lead to the basic vector
(Y1, -« s Yk—1, U, Wg41,...,Wwy) which will be a complementary basic vector for (2.30)
(except that the variables y1,...,yx—_1,v may have to be rearranged so that the j**
variable here is from the j* complementary pair), and (yi,...,yr_1,v) is a comple-
mentary lexico feasible basic vector for the k-problem (except for the rearrangement
of the basic variables as mentioned above). If (y1, ..., yk+1, v, Wgt1, ..., wy) is feasible
to (2.30) (this happens if the updated right hand side constants vector is > 0 after
the pivot step of replacing y, by v), it is a complementary feasible basic vector for
(2.30), the method terminates with the basic solution corresponding to it as being a
solution for (2.30), (2.31), (2.32). On the other hand, if (y1,..., Yk—1,V, Wgt1,-- -, Wy)
is not a feasible basic vector for (2.30), the k-problem has just been solved and the
method moves to another principal subproblem with index greater than k (this is called
a forward move), go to Step 3.

If r < k, v replaces y, from the basic vector, leading to the new basic vector
(Y1 s Ur— 15Uy Yrt1y e -y Yky Wk 1y -+ - Wy). Two things can happen now. If y, =
2k, then this new basic vector is a complementary basic vector for (2.30) (except for
rearrangement of the variables as mentioned above), but (Y1, ..., Yr—1,0, Yrt1,-- -, Yk)
is not lexico feasible for the k-problem. In this case the method moves to make a type
2 pivot step (discussed next) leading to a principal subproblem with index less than &
(this is called a regressive move, moving to a smaller principal subproblem already
solved earlier). The next steps of the algorithm will be concerned with finding yet
another solution for this smaller principal subproblem. Go to Step 2.

The second possibility is that y, # zx. In this case the basic vector (y1,...,yr_1,
VyYpaly - s Yk, Wht1s- -+, Wy) s another almost complementary basic vector, the basic
solution of (2.30) associated with which is another position 2 solution. In this case,
the method continues the work on the k-problem by making a type 1 pivot step next,
to increase the value of the complement of ¥, from zero.

STEP 2 : Type 2 Pivot Step to Decrease the Value of a Nonbasic Variable
wy from Zero. This pivot step will be made whenever we obtain a complementary
basic vector (yi,..., Yk, Wkt1,--.,Wy) after doing some work on the k-problem, with
yr = wg. Let Tableau 2.7 be the canonical tableau with respect to this complementary
basic vector. We will have ¢; > 0, i =1 to k — 1 and (g, B.) < 0 at this stage (. is
the k' row of the present basis inverse). Let g be the maximum 5 such that Yj = Zj.
Now the algorithm decreases the value of the nonbasic variable w, from zero. Letting
v = wyg, and giving this variable a value A (we want to make A < 0), the new solution
obtained is of the same form as in (2.33). We will decrease the value of A from 0 until
one of the variables y; for i = 1 to g, changes its value from its present to zero in (2.33),
and will change sign if A decreases any further. This will not happen if the updated
column of the entering variable v satisfies
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a; >0, i=1tog (2.36)

in which case termination occurs with the conclusion that the method is unable to
process this LCP. If (2.36) is not satisfied, define

6 = Minimum {—(£):1<i<g, isuchthata;<0}. (2.37)

a; -

Let A be the set of all i between 1 to g which tie for the minimum in (2.37). If A is a
singleton set let r be the element in it. Otherwise let r be the element which attains
(qlai) 11 € A}. Replace y,- in the present
basic vector by v (= w, here) and move over to the g-problem after this pivot step, by
going to Step 1 to increase the value of the complement of y,. from 0.

the lexicominimum in lexico minimum {—

STEP 3: We move to this step when we have solved a k-problem after performing a
type 1 pivot step on it in Step 1. Let (y1,..., Yk, Wgt1,-..,wy) be the complementary
basic vector at this stage with y; € {w;, z;} for j =1 to k. Let ¢ = (q1,...,3n)T be the
current updated right hand side constants vector. Since (y1, ..., yx) is a complementary
feasible basic vector for the k-problem, we have q; > 0 for ¢ = 1 to k. If ¢; > 0 for
t = k + 1 to n also, this basic vector is complementary feasible to the original problem
(2.30), (2.31), (2.32), and we would have terminated. So ¢; < 0 for at least one i
between k£ + 1 to n. Let u be the smallest ¢ for which ¢; < 0, replace k£ by u and go

back to Step 1 to increase the value of z; from zero.

Numerical Example 2.16

We provide here a numerical example for this algorithm from the paper [2.38] of L. Van
der Heyden. Consider the LCP (g, M) where

~1 111
g=| 21, M=][311
~10 2 2 1

Since ¢; < 0, the algorithm begins with £ = 1, on the 1-problem. Pivot elements are
inside a box.

Basic wy ws w3 21 2y 23

Vector
w1y 1 0 0 -1 -1 —1 | k=1. Increase z;. In this
Wo o 1 0 -3 -1 -1 —2 | type 1 pivot step, w;
ws 0 01 -2 —2 —1 |—10 [drops from basic vector.
21 -1 0 0 1 1 1 1 | k=3
W -3 1 0 0 2 1 | Increase z3.

w3 -2 0 1 0 0 1 —8 | wy drops.
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Basic wy  ws w3 Z1 2y 23
Vector
21 % —% 0 1 0 0 % k = 3. Increase zo
23 -3 1 0 0 1 3 | (complement of ws).
w3 —% —% 1 0 -1 0 —177 z3 drops.
21 % 0 1 0 0 % Need a type 2 pivot step.
29 —g % 0 0 1 1 % Decrease ws.
ws —2 0 1 0 0 1 —8 | z1 drops.
Wo 1 0 -2 0 0 —1 | k= 1. Increase wy (compl.
2 -1 0 0 1 1 1 1 | of z; that just dropped)
w3 -2 0 1 0 0 1 —8 | wy drops.
wi 1 -1 0 2 0 0 1 | k=3.
29 0O -1 0 3 1 2 | Increase z3.
ws 0o -2 1 4 1 —6 | zo drops.
w1 1 -1 0 2 0 0 1 | Increase ws (complement,
23 0 -1 0 3 1 1 2 | of z5 that just dropped).
w3 0 |-1] 1 1 -1 0 —8 | w3 drops.
w1 1 0 -1 1 1 1 9 | Complementary
23 0 o -1 2 2 1 10 | feasible
Wa 0 1 -1 -1 1 0 8 | basic vector

Thus (w1, we, ws; 21, 22, 23) = (9,8,0;0,0,10) is a complementary feasible solution of
this problem.

Conditions Under Which the Algorithm is Guaranteed to Work

Theorem 2.12  For every J C {1,...,n}, if the principal submatrix Myz of M
associated with J satisfies the property that there exists no positive vector zy such that
the last component of Myyzy is nonpositive and the other components are zero, the
termination criteria (2.34) or (2.36) will never be satisfied and the algorithm terminates
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with a complementary feasible basic vector for the LCP (q, M) after a finite number
of steps.

Proof. When (2.34) or (2.36) is satisfied, we have a solution of the type given in
equation (2.33), which we denote by (w(A), z2(A)) = (w + Aw", z + A\z") satisfying the
property that for A > 0, there exists a k such that wg(A) < 0, zi(X) > 0, z;(A) =0
for j > k, and if k& > 1 the vectors w*"D(X) = (wi(A),...,wr_1(N)), 2F7D(N) =
(z1(A), ..., 2k—1())) are nonnegative and complementary. Let J = {1,...,k}, wh =
(wh, ..., wt)T 2h = (0, 00 2T, Then

2520 (2.38)

and if &k > 1, (wh,...,wl ;) >0, and w;bz;l =0forj=1tok—1. Let P ={j:

1 <j <k and 2z > 0}. Clearly P # (), otherwise (w},z}) = 0. Letting z =

(zf : j € P), all the components of Mppzp are zero except possibly the last one
because of (2.38) and the fact that w;‘z? =0 for j =1 to k— 1. Also, the last
component of Mppz is < 0 because of (2.38). And since 2J5 > 0, this contradicts the
hypothesis in the theorem.

The finiteness of the algorithm follows from the path argument used in Sections
2.2, 2.3, the argument says that the algorithm never returns to a previous position
as this situation implies the existence of a position with three adjacent positions, a
contradiction. Since there are only a finite number of positions we must terminate

with a solution for the original LCP.
[

Corollary 2.2 If M has the property that for every J C {1,...,n}, the corresponding
submatrix Myy of M satisfies the property that the system

MJJZJ é 0
ZJEO

has the unique solution zy = 0, then the variable dimension algorithm discussed above
will terminate with a solution of the LCP (q, M) for any ¢ € R".

Proof. Follows from Theorem 2.12.
[

R. W. Cottle [3.9] has shown that the class of matrices M satisfying the hypothesis
in Theorem 2.12 or Corollary 2.2, is the strictly semi-monotone matrices defined later
on in Section 3.4, which is the same as @ (completely Q-matrices, that is, matrices all
of whose principal submatrices are Q-matrices). This class includes all P-matrices and
positive or strictly copositive matrices.

By the results discussed in Chapter 3, the LCP (¢, M) has a unique solution when
M is a P-matrix. So if M is s P-matrix and the LCP (g, M) is solved by the variable
dimension algorithm, type 2 pivot steps will never have to be performed.
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M. J. Todd [2.35, 2.36] has shown that when ¢ is nondegenerate in (2.30) and M
is a P-matrix, the variable dimension algorithm discussed above corresponds to the
lexicographic Lemke algorithm discussed in Section 2.3.4.

Now consider the LCP (¢, M) of order n. Let e, denote the column vector of all
1’s in R"™. Introduce the artificial variable zy associated with the column vector —e,,,
as in the complementary pivot algorithm (see equation (2.3)). Introduce an additional

artificial variable wq, which is the complement of zy, and the artificial constraint “wg —

T
n

value. This leads to an LCP of order n+ 1, in which the variables are (wg, w1, . .., wy,),
(20, 21, - - -, 2n) and the data is

. (O —eg] *_[(Io]
M_[en M )T T g

Since qq is considered as a large positive parameter, wg > 0 and zy = 0 in any com-

e. 2z =qo”, where qq is treated as a large positive number, without giving it any specific

plementary solution of this larger dimensional LCP (¢*, M*), and hence if ((wg,w),
(Zo, 2)) is a solution of this LCP, then (w, 2z) is a solution of the original LCP (¢, M).

Essentially by combining the arguments in Theorems 2.1 and 2.12, .. Van der Hey-
den [2.39] has shown that if M is a copositive plus matrix and the system “w — Mz =
g, w > 0, z > 0”7 has a feasible solution, when the variable dimension algorithm is
applied on the LCP (¢*, M*), it will terminate with a complementary feasible solution
((wg,w), (%o, Z)) in a finite number of steps. This shows that the variable dimension
algorithm will process LCP’s associated with copositive plus matrices, by introduc-
ing an artificial dimension and by applying the variable dimension algorithm to the
enlarged LCP.

2.7 EXTENSIONS TO FIXED POINT
COMPUTING, PIECEWISE LINEAR
AND SIMPLICIAL METHODS

It has also been established that the arguments used in the complementary pivot al-
gorithm can be generalized, and these generalizations have led to algorithms that can
compute approximate Brouwer and Kakutani fixed points! Until now, the greatest
single contribuition of the complementarity problem is probably the insight that it has
provided for the development of fixed point computing algorithms. In mathematics,
fixed point theory is very higly developed, but the absence of efficient algorithms for
computing these fixed points has so far frustrated all attempts to apply this rich theory
to real life problems. With the development of these new algorithms, fixed point the-
ory is finding numerous applications in mathematical programming, in mathematical
economics, and in various other areas. We present one of these fixed point computing
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algorithms, and some of its applications, in this section. We show that the problem of
computing a KKT point for an NLP can be posed as a fixed point problem and solved
by these methods.

The algorithms that are discussed later in this section trace a path through the
simplices of a triangulation in R", that is why they are called simplicial methods.
Since they use piecewise linear approximations of maps, these methods are also called
piecewise linear methods. Since the path traced by these methods has exactly the
same features as that of the complementary pivot algorithm (see Sections 2.2.5, 2.2.6)
these methods are also called complementary pivot methods.

2.7.1 Some Definitions

Let g(x) be a real valued function defined over a convex subset I' C R". We assume
that the reader is familiar with the definition of continuity of g(z) at a point z° €
T, and the definition of the vector of partial derivatives of g(x) at 2% Vg(z°) =
(a%(mmlo), . 8?,(&0)), when it exists. The function g(z) is said to be differentiable at z°
if Vg(2°) exists, and for any y € R", L (g(2° + ay) — g(z°) — «(Vg(2°))y) tends in
the limit to zero as « tends to zero. If g(x) is differentiable at 20, for any y € R",
we can approximate g(z° + ay) by g(z°) + a(Vg(z®))y for values of a for which |«

is small. This is the first order Taylor series expansion for g(z + ay) at z = 2°.

If g(z) is differentiable at z°, the partial derivative vector Vg(z°) is known as the
gradient vector of g(r) at z°.
When the second order partial derivatives of g(z) exist at 2°, we denote the n x n

matrix of second order partial derivatives (%(g;;) by the symbol H(g(z")). It is
called the Hessian matrix of g(z) at z°.

Let g1(z),- .., gm(z) be m real valued convex functions defined on the convex sub-
set I' C R". For each z € I, define s(x) = Maximum { g1(x), ..., gm(z) }. The function
s(z) is known as the pointwise supremum or maximum of {g;(z),...,gn(z)}. It
is also convex on I'. See Figure 2.4 where we illustrate the pointwise supremum of

several affine functions defined on the real line.
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Function Vaues

N

l5(x)

VAR

Figure 2.4 [;(z) to I5(x) are five affine functions defined on R'. Function
values are plotted on the vertical axis. Their pointwise maximum is the
function marked with thick lines here.

Subgradients and Subdifferentials of Convex Functions

Let g(x) be a real valued convex function defined on R". Let 2° € R" be a point
where g(z°) is finite. The vector d = (dy,...,d,)T is said to be a subgradient of g(r)
at 20 if

g(z) > g(a°) +d¥(z — 2°), forallz € R". (2.39)

Notice that the right hand side of (2.39) is I(z) = (g(2°) — d*2°) + dTz, is an
affine function in z; and we have g(z°) = [(z°). One can verify that I(x) is the first
order Taylor expansion for g(x) around z°, constructed using the vector d in place of
the gradient vector of g(x) at 2°. So d is a subgradient of g(x) at 2°, iff this modified
Taylor approximation is always an underestimate for g(x) at every x.
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Example 2.17

Let z € RY, g(z) = 22. g(z) is convex. Consider the point z° = 1, d = 2. It can be
verified that the inequality (2.39) holds in this case. So d = (2) is a subgradient for
g(z) at ° = 1 in this case. The affine function (x) on the right hand side of (2.39) in
this case is 1 + 2(z — 1) = 2z — 1. See Figures 2.5, 2.6 where the inequality (2.39) is
illustrated.

Function Vaues

Figure 2.5 A Convex Function, and the Affine Function Below it Con-
structed Using a Subgradient for it at the Point z°.
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0 (X)

x|+

Figure 2.6 The subdifferential to 6(z) at z is the set of slope vectors of all
lines in the cone marked by the angle sign.

The set of all subgradients of g(z) at 2% is denoted by the symbol dg(x°), and called
the subdifferential set of g(x) at z°. It can be proved that if g(x) is differentiable
at z°, then its gradient Vg(x°) is the unique subgradient of g(x) at 2°. Conversely if
0g(x") contains a single vector, then g(x) is differentiable at z° and dg(z?) = {Vg(x?)}.
See references [2.92-2.94] for these and other related results.

Subgradients of Concave Functions

Let h(xz) be a concave function defined on a convex subset I' C R". In defining a
subgradient vector for h(z) at a point z° € T, the inequality in (2.39) is just reversed;
in other words, d is a subgradient for the concave function h(z) at z° if h(z) < h(z°)+
dT (z — 2°) for all z. With this definition, all the results stated above also hold for
concave functions.
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Computing a Subgradient

Let f(x) be a convex function defined on R". Let z € R", if 0(z) is differentiable at
Z, then the gradient vector VO(z) is the only subgradient of §(z) at z. If f(x) is not
differentiable at z, in general, the computation of a subgradient for #(z) at £ may be
hard. However, if #(z) is the pointwise supremum of a finite set of differentiable convex
functions, say

O(x) = Maximum { g1(z),...,gm(z) }

where each g;(z) is differentiable and convex, then the subdifferential of 0(z) is easily
obtained. Let

the the subdifferential of §(z) at z,
00(z) = convex hull of { Vg;(Z) :i € J(Z) } .

See references [2.92-2.94].

2.7.2 A Review of Some Fixed Point Theorems

Let I' € R" be a compact convex subset with a nonempty interior. Let f(z) :T' — I be
a single valued map, that is, for each z = (z1,...,2,)T €T, f(z) = (fi(z),..., fu(z))T
€ I', which is continuous. We have the following celebrated theorem.

Theorem 2.13 : Brouwer’s Fixed Point Theorem If f(z):T' — T is continuous,
it has a fixed point, that is, the system

flz)—2=0 (2.40)

which is a system of n equations in n unknowns, has a solution = € I".

See references [2.48, 2.50, 2.68, 2.69, 2.72] for proofs of this theorem. We now
provide an illustration of this theorem.

Example 2.18

Consider n = 1. Let T'={z: # € R", 0 <2 < 1} denoted by [0,1]. Consider the
continuous function f(z) : [0,1] — [0,1]. We can draw a diagram for f(z) on the two
dimensional Cartesian plane by plotting x on the horizontal axis, and the values of
f(z) along the vertical axis, as in Figure 2.7. Since f(x) is defined on [0, 1] the curve
of f(z) begins somewhere on the thick vertical line z = 0, and goes all the way to the

thick vertical line # = 1, in a continuous manner. Since f(z) € [0, 1], the curve for
f(z) lies between the two thin horizontal lines f(z) = 0 and f(z) = 1. The dashed
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diagonal line is f(x) — 2z = 0. It is intuitively clear that the curve of f(x) must cross
the diagonal of the unit square, giving a fixed point for f(z).

£(x)

Figure 2.7 The curve of f(x) : [0,1] — [0, 1]. Points of intersection of the
curve with the dashed diagonal line are the Brouwer fixed points of f(z).

Example 2.19

This example illustrates the need for convexity in Theorem 2.13. Let n = 2. Let K
denote the dotted ring in Figure 2.8 between two concentric circles. Let f(z) denote
the continuous mapping K — K obtained by rotating the ring through a specified
angle 6 in the anti-clockwise direction. Clearly this f(x) has no fixed points in K.
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Figure 2.8 The need of convexity for the validity of Brouwer’s fixed point
theorem.

The need for the boundedness of the set I' for the validity of Theorem 2.13 follows
from the fact that the mapping f(z) = = + a for each z € R", where a # 0 is a
specified point in R", has no fixed points. The need for the closedness of the set I' for
the validity of Theorem 2.13 follows from the fact that the mapping f(z) = 3(z + 1)
from the set {z : 0 < x < 1} into itself has no fixed point in the set.

The system (2.40) is a system of n equality constraints in n unknowns. An effort
can be made to solve (2.40) using methods for solving nonlinear equations.

A Monk’s Story

The following story of a monk provides a nice intuitive justification for the concept and
the existence of a fixed point. A monk is going on a pilgrimage to worship in a temple
at the top of a mountain. He begins his journey on Saturday morning at 6:00 AM
promptly. The path to the temple is steep and arduous and so narrow that trekkers on
it have to go in a single file. Our monk makes slow progress, he takes several breaks
on the way to rest, and at last reaches the temple by evening. He spends the night
worshipping at the temple. Next morning, he begins his return trip from the temple
exactly at 6:00 AM, by the same path. On the return trip, since the path is downhill,
he makes fast progress and reaches the point from where he started his hjourney on
Saturday morning, well before the evening.
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Suppose we call a point (or spot or location) on the path, a fixed point, if the monk
was exactly at that spot at precisely the same time of the day on both the forward
and return trips.

The existence of a fixed point on the path can be proved using Brouwer’s fixed
point theorem, but there is a much simpler and intuitive proof for its existence (see
A. Koestler, The Act of Creation, Hutchinson, 1976, London). Imagine that on Satur-
day morning exactly at 6:00 AM, a duplicate monk starts from the temple, down the
mountain, proceeding at every point of time at exactly the same rate that the original
monk would on Sunday. So, at any point of time of the day on Saturday, the duplicate
monk will be at the same location on the path as the original monk will be at the time
on Sunday. Since the path is so narrow that both cannot pass without being in each
other’s way, the two monks must meet at some time during the day, and the spot on
the path where they meet is a fixed point.

Successive Substitution Method for Computing a
Brouwer’s Fixed Point

One commonly used method to compute a Brouwer’s fixed point of the single valued
map f(z) : T' — T is an iterative method that begins with an arbitrary point z° € T,
and obtains a sequence of points {z" : r =0, 1,...} in T using the iteration

The sequence so generated, converges to a Brouwer’s fixed point of f(z) if f(x) satisfies
the contraction property, that is, if there exists a constant v satisfying 0 < v <1
such that for every x,y € I', we have

1) = FWll = vz =yl - (2.41)

If the map f(x) satisfies the contraction proprety, this successsive substituitions method
is a very convenient method for computing a Brouwer’s fixed point of f(x). Unfor-
tunately, the contraction property is a strong property and does not usually hold in
many practical applications.

Newton-Raphson Method for Solving a System
of n Equations in n Unknowns

The system (2.40) is a system of n equations in n unknowns, and we can try to solve it
using approaches for solving nonlinear equations of this type, like Newton-Raphson
method, which we now present. The method is also called Newton’s method often in
the literature, or Newton’s method for solving equations. Consider the system

gi(x) =0 i=1ton (2.42)
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where each g;(z) is a real valued function defined on R"™. Assume that each function
gi(x) is differentiable. Let Vg;(x) be the row vector of partial derivatives and let the
Jacobian be

Vg (z)

Vy(z) = :

Von (@)

in which the i*" row vector is the partial derivative vector of g;(z) written as a row.
To solve (2.42) the Newton-Raphson method begins with an arbitrary point z°
and generates a sequence of points {z°, z!, 22, ...}. Given 2" in the sequence, the
method approximates (2.42) by its first order Taylor approximation around z" leading
to
9(z") + Vg(2")(z —2") =0

whose solution is 2" —(Vg(z")) tg(z"), which is taken as the next point in the sequence.
This leads to the iteration

o™ =a" — (Vg(a") T g(a") .

If the Jacobian is nonsingular, the quantity y = (Vg(z")) tg(z") can be computed
efficiently by solving the system of linear equations

(Vg(z")y = g(a")

If the Jacobian Vg(z") is singular, the inverse (Vg(z"))™! does not exist and the
method is unable to proceed further. Several modifications have been proposed to
remedy this situation, see references [10.9, 10.13, 10.33]. Many of these modifications
are based on the applications of Newton’s method for unconstrained minimization or
a modified version of it (see Sections 10.8.4, 10.8.5) to the least squares formulation of
(2.42) leading to problem of finding the unconstrained minimum of

n

> (gi(x))? .

=1

As an example, consider the system

gl(a:):x%—kcvg—lzo
gg(x):x%—xgz()

The Jacobian matrix is
[ 233'1 21’2 ]
233'1 —1
Let 2° = (1,0)T be the initial point. So g(z°) = (0,1)T. The Jacobian matrix at

20 is [; _01 ] . This leads to the next point z! = (1,1)T. Tt can be verified that
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T . . .
z? = (%, %) , and so on. The actual solution in this example can be seen from Figure

%

Figure 2.9 The circle here is the set of all points (z1,x) satisfying z2 +
22 — 1 = 0. The parabola is the set of all points satisfying 22 — 2, = 0.
The two intersect in two points (solutions of the system) one of which is Z.

Beginning with z°, the Newton-Raphson method obtains the sequence z?!,

22, ... converging to .

In order to solve (2.40) by Newton-Raphson method or some modified versions
of it, the map f(x) must satisfy strong properties like being differentiable etc., which
do not hold in may many practical applications. Thus, to use Brouwer’s fixed point
theorem in practical applications we should devise methods for solving (2.40) without
requiring the map f(z) to satisfy any conditions besides continuity. In 1967 H. Scarf
in a pioneering paper [2.68] developed a method for finding an approximate solu-
tion of (2.40) using a triangulation of the space, that walks through the simplices of
the triangulation along a path satisfying properties similar to the one traced by the
complementary pivot algorithm for the LCP. This method has the advantage that it
works without requiring any conditions on the map f(z) other than those required by
Brouwer’s theorem for the existence of the fixed point (i. e., continuity). Subsequently
vastly improved versions of these methods have been developed by many researches.
We will discuss one of these methods in detail.
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Approximate Brouwer Fixed Points

Let f(x) : I' — I be continuous as defined in Theorem 2.13. A true Brouwer fixed point
of f(x) is a solution of (2.40). However, in general, we may not be able to compute
an exact solution of (2.40) using finite precision arithmetic. In practice, we attempt
to compute an approximate Brouwer fixed point. There are two types of approximate
Brouwer fixed points, we define them below.

Type 1: A point £ € T' is said to be an approximate Brouwer fixed point of f(z) of
Type 1 if

1Z2—f(@)]] <e

for some user selected tolerance ¢ (a small positive quantity).
Type 2: A point z* € T is said to be an approximate Brouwer fixed point of Type
2 if there exists an exact solution y of (2.40) such that

|z —yll <e.

In general, a Type 1 approximate Brouwer fixed point £ may not be a Type 2
approximate Brouwer fixed point, that is, & may be far away from any exact solution
of (2.40). If some strong conditions hold (such as: f(z) is continuously differentiable
in the interior of I' and all the derivatives are Lipschitz continuous, or f(x) is twice
continuously differentiable in the interior of I') a Type 1 approximate Brouwer fixed
point can be shown to be also a Type 2 approximate Brouwer fixed point with a
modified tolerance. At any rate, the algorithms discussed in the following sections are
only able to compute approximate Brouwer fixed points of Type 1.

Kakutani Fixed Points

In many applications, the requirement that f(z) be a point-to-point map is itself too
restrictive. In 1941 S. Kakutani generalized Theorem 2.13 to point-to-set maps. As
before, let I' be a compact convex subset of R". Let F(z) be a point-to-set map on T,
that is, for each 2z € T, F(x) is itself a specified subset of I'.

Example 2.20

Let n =1. Let T = {r € R": 0 <z < 1}. For each # € T, suppose F(z) = {y :
z<y<1}=][z,1]. See Figure 2.10.
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F(x)

Figure 2.10 For each z € ', F(z) is the closed interval [z, 1].

We consider only maps in which F(x) is a compact convex subset of I' for each
x € I'. The point-to-set map F(z) is said to be an USC (Upper Semi-Continuous) map
if it satisfies the following properties. Let { 2% : k= 1,2,...} be any sequence of points
in T’ converging to a point z* € I". For each k, suppose y* is an arbitrary point selected
from F(z¥), k = 1,2,.... Suppose that the sequence {y*: k=1,2,...} converges to
the point y*. The requirement for the upper semi-continuity of the point-to-set map
F(z) is that these conditions imply that y* € F(z*).

It can be verified that the point-to-set map F(z) given in Figure 2.8 satisfies this
USC property.

Theorem 2.14 Kakutani’s Fixed Point Theorem
IfF(z) is a USC point-to-set map defined on the compact convex subset ' C R",
there exists a point x € I' satisfying

v € F(z). (2.43)
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Any point satisfying (2.43) is known as a Kakutani’s fixed point of the point-
to-set map F(z). To prove his theorem, Kakutani used the fundamental notion of
a piecewise linear approximation to the map F(z). The same picewise linear
approximation scheme is used in the method discussed later on for computing fixed
points. See reference [2.50] for the proof of Kakutani’s theorem.

For each x € T, if F(z) is a singleton set (i. e., a set containing only a single ele-
ment) {f(xz)} C T, it can be verified that this F(z) is USC iff f(x) is continuous. Thus
the USC property of point-to-set maps is a generalization of the continuity property of
point-to-point maps. Also, every Brouwer fixed point of the point-to-point map f(x)
can be viewed as a Kakutani fixed point of F(z) = {f(x)}.

Approximate Kakutani Fixed Points

Given the USC point-to-set map F(z) as defined in Theorem 2.14, a Kakutani fixed
point is a point 2 € I satisfying (2.43). As under the Brouwer fixed point case, using
finite precision arithmetic, we may not be able to find = € I' satisfying (2.43) exactly.
We therefore attempt to compute an approximate Kakutani fixed point. Again, there
are two types of approximate Kakutani fixed points, we define them below

Type 1: A point Z € T is said to be an approximate Kakutani fixed point of F(z) of
Type 1 if there exists a z € F(Z) satisfying

|z —z|| < e

for some user selected tolerance e (a small positive quantity).
Type 2: A point z* € T is said to be an approximative Kakutani fixed point of F(x)
of Type 2 if there exists a y satisfying (2.43) and

|z —yll <e.

The algorithms discussed in the following sections are only able to compute Type
1 approximate Kakutani fixed points.

Use in Practical Applications

In pratical applications we have to deal with either point-to-point or point-to-set maps
defined over the whole space R", not necessarily on only a compact convex subset
of R™. Also, it is very hard, if not computationally impossible, to check whether
properties like USC etc. hold for our maps. For such maps, the existence of a fixed
point is not guaranteed. Because of this, the algorithms that we discuss for computing
fixed points may not always work on these problems. Also, it is impossible for us to
continue the computation indefinitely, we have to terminate after a finite number of
steps. In practice, from the path traced by the algorithm, it will be clear whether it
seems to be converging, or running away. If it seems to be converging, from the point
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obtained at termination, an approximate solution of the problem can be obtained. If
the algorithm seems to be running away, either we can conclude that the algorithm
has failed to solve the problem, or an effort can be made to run the algorithm again
with different initial conditions. Before discussing the algorithm, we will now discuss
some standard applications of fixed point computing.

2.7.3 Applications in Unconstrained Optimization

Let 6(x) be a real valued function defined on R™ and suppose it is required to solve
the problem
minimize  6(x)

n (2.44)
over r€R

If 6(x) is differentiable, a necessary condition for a point € R" to be a local minimum
for (2.44) is
Vo(x) =0 (2.45)

which is a system of n equations in n unknowns. Define f(z) = x — (V6(z))T. Then
every Brouwer fixed point of f(z) is a solution of (2.45) and vice versa. Hence every
fixed point of f(x) satisfies the first order necessary optimality conditions for (2.44). If
0(z) is convex, every solution of (2.45) is a global minimum for (2.44) and vice versa,
and hence in this case (2.44) can be solved by computing a fixed point for f(x) defined
above. However, if 6(z) is not convex, there is no guarantee that a solution of (2.45),
(i.e., a fixed point of f(x) = = — (VO(z))T) is even a local minimum for (2.44) (it
could in fact be a local maximum). So, after obtaining an approximate fixed point,
Z, of f(x), one has to verify whether it is a local minimum or not. If f(z) is twice
continuously differentiable, a sufficient condition for a solution of (2.45) to be a local
minimum for (2.44) is that the Hessian matrix H(6(z)) be positive definite.

If 8(x) is not differentiable at some points, but is convex, then the subdifferential
set 06(z) exists for all z. In this case define F(z) = {x —y : y € 90(z) }. Then every
Kakutani fixed point of F(x) is a global minimum for (2.44) and vice versa.

One strange feature of the fixed point formulation for solving (2.45) is worth
mentioning. Define G(z) = {z + y : y € 90(z) }. Clearly, every Kakutani fixed point
of G(z) also satisfies the necessary optimality conditions for (2.44). Mathematically,
the problems of finding a Kakutani fixed point of F(z) or G(z) are equivalent, but
the behavior of the fixed point computing algorithm discussed in Section 2.7.8 on the
two problems could be very different. This is discussed later on under the subsection
entitled, “Sufficient Conditions for Finite Termination” in Section 2.7.8. In practical
applications, one might try computing the Kakutani fixed point of F(z) using the
algorithm discussed in Section 2.7.8, and if its performance is not satisfactory switch
over and use the same algorithm on G(z) instead.
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2.7.4 Application to Solve a System of

Nonlinear Inequalities

Consider the system
gi(x) <0, fori=1tom (2.46)

where each g;(x) is a real valued convex function defined on R". Define the pointwise
supremum function s(z) = Maximum { g1(z), ..., gm(z) }. As discussed earlier, s(x)
is itself convex, and 9s(z) O U, ey, 09i(z), where J(z) = {i: gi(z) = s(z) }. If each
gi(x) is differentiable, then 0s(z) = convex hull of { Vg;(x) : i € J(x) }. If (2.46) has a
feasible solution Z, then s(Z) < 0, and conversely every point z satisfying s(z) < 0 is
feasible to (2.46). So the problem of finding a feasible solution of (2.46) can be tackled
by finding the unconstrained minimum of s(x), which is the same as the problem of
finding a Kakutani fixed point of F(z) = {x —y : y € ds(x) } as discussed in Section
2.7.3. If T is a Kakutani fixed point of this map and 5(z) > 0, (2.46) is infeasible. On
the other hand if s(Z) < 0, Z is a feasible solution of (2.46).

2.7.5 Application to Solve a System of

Nonlinear Equations
Consider the system of equations
hi(z) =0, i=1tor (2.47)

where each h;(z) is a real valued function defined on R". Let h(z) = (hi(x),...,
hy(x))T. If r > n, (2.47) is said to be an overdetermined system. In this case there
may be no solution to (2.47), but we may be interested in finding a point x € R"™ that
satisfies (2.47) as closely as possible. The least squares approach for finding this
is to look for the unconstrained minimum of >, (h;(z))?, which can be posed as a
fixed point problem as in Section 2.7.3.

If r < n, (2.47) is known as an underdetermined system, and it may have
many solutions. It may be possible to develop additional n — r equality constraints
which when combined with (2.47) becomes a system of n equations in n unknowns. Or
the least squares method discussed above can be used here also.

Assume that » = n. In this case define f(z) = x — h(z). Then every Brouwer
fixed point of f(x) solves (2.47) and vice versa. As mentioned in Section 2.7.3, it may
be worthwhile to also consider the equivalent problem of computing the fixed point of
d(x) = x + h(x) in this case.
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2.7.6 Application to Solve the

Nonlinear Programming Problem

Consider the nonlinear program

Minimize 0(x)

. . (2.48)
subject to  gi(z) <0, i=1tom

where 0(x), g;(z) are real valued functions defined over R". We will assume that each
of these functions is convex, and continuously differentiable. We make an additional
assumption that if (2.48) is feasible (i. e., the set {z : g;(x) < 0,i =1 to m } # (), then
there exists an x € R" satisfying g;(z) < 0, for each i = 1 to m. This assumption is
known as a constraint qualification. As before, let s(z) be the pointwise supremum
function, maximum { g1(z), ..., gm(x) }. Then (2.48) is equivalent to

Minimize  6(z) (2.49)

By our assumption, and the results discussed earlier, s(x) is also convex and ds(z) =
convex hull of { Vg;(z) : i € J(x) }, where J(z) = {i: s(x) = gi(x) }. Consider the
following point-to-set mapping defined on R".

{x— (VO (x ))T} if s(a:) 0,
F(z) =4 {z—y: y € convex hull of {VO(z z)} ), ifs(z) = (2.50)
{x—y: yeos(x)}, 1f3($)>0

Under our assumptions of convexity and differentiability, it can be verified that F(z)
defined in (2.50) is USC. Let & be a Kakutani fixed point of F(x). If s(Z) < 0, then 0 =
VO(z), and thus z is a global minimum for #(z) over R™ and is also feasible to (2.48),
and therefore solves (2.48). If s(z) > 0, then 0 € ds(x), thus 0 is a global minimum of
s(z), and since s(z) > 0, (2.48) has no feasible solution. If s(Z) = 0, then 0 € convex
hull of {Vl(z),0s(z) } = convex hull of {VO(Z), Vg;(Z) for i € J(Z)}, so there exists
nonnegative numbers Ao, A; for i € J(Z) satisfying

AVO(E) + > AiVgi() =
1€J(Z)

ot Y Ai=1 (2.51)

1€J(Z)
Ao, Ai =20 forallie J(z)
If Ag = 0, (2.51) implies that 0 € ds(z) and so s(z) is a global minimizer of s(z),
is feasible to (2.48) since s(Z) = 0, and these facts lead to the conclusion that {z :

gi(r) <0, for i =1tom} # () and yet there exists no z satisfying g;(z) < 0 for all
i = 1 to m, violating our constraint qualification assumption. So Ao > 0 in (2.51).
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So if we define 7; = i‘—o if i € J(z), = 0 otherwise, then from (2.51) we conclude that
z, ™ together satisfy the Karush-Kuhn-Tucker necessary conditions for optimality for
(2.48), and our convexity assumption imply that Z is the global minimum for (2.48).

Thus solving (2.48) is reduced to the problem of finding a Kakutani fixed point of
the mapping F(z) defined in (2.50).

Example 2.21

Consider the problem :

minimize  0(z) = 2?2 + 23 — 221 — 31
1

subject to  gi(z) =x1 + 22 <1 (2.52)

Clearly VO(z) = (221—2,222—3), Vg1(z) = (1, 1). The mapping F(z) for this problem
is

{—z14+2,—z2+3)T }, ife;+29<1,
F(z) = ¢ Convex hull of {(—z1 + 2, 22+ 3)T, (1 — L,zo — )T}, ifoy+20=1,
{(1'1—1,$2—1)T}, faxy +x9>1.

It can be verified that z = (%, %)T is a Kakutani fixed point of this mapping F(z), and

that z is the global optimum solution of the nonlinear program (2.52).

If 0(x), gi(x) are all continuously differentiable, but not necessarily convex, we can
still define the point-to-set mapping F(x) as in (2.50) treating ds(x) = convex hull of
{Vygi(z):ieJ(x)}. In this general case, any Kakutani fixed point Z of F(x) satisfies
the first order necessary optimality conditions for (2.48), but these conditions are not
sufficient to guarantee that z is a global or even a local minimum for (2.48), see Section
10.2 for definitions of a global minimum, local minimum. One can then try to check
whether Z satisfies some sufficient condition for being a local minimum for (2.48) (for
example, if all the functions are twice continuously differentiable, a sufficient condition
for  to be a local minimum for (2.48) is that the Hessian matrix of the Lagrangian
with respect to x is positive definite at Z. See references [10.2, 10.3, 10.13, 10.17, A8,
A12]). If these sufficient optimality conditions are not satisfied, it may be very hard
to verify whether Z is even a local minimum for (2.48). As an example, consider the
problem: minimize 27 Dz, subject to z > 0. The point 0 € R" is a global minimum
for this problem if D is PSD. If D is not PSD, 0 is a local minimum for this problem iff
D is a copositive matrix. Unfortunately, there are as yet no efficient methods known
for checking whether a matrix which is not PSD, is copositive. See Section 2.9.3.

Thus, in the general nonconvex case, the fixed point approach for (2.48) finds a
point satisfying the first order necessary optimality conditions for (2.48), by computing
a Kakutani fixed point of F(z) defined in (2.50). In this general case, many of the other
solution techniques of nonlinear programming for solving (2.48) (see Chapter 10) are
usually based on descent methods. These techniques generate a sequence of points
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{z":r=0,1,...}. Given z", they generate a y" # 0 such that the direction =" + Ay",
A > 0, is a descent direction, that is, it is either guaranteed to decrease the objective
value or a measure of the infeasibility of the current solution to the problem or some
criterion function which is a combination of both. The next point in the sequence z"t!
is usually taken to be the point which minimizes the criterion function on the half line
{z" + Ay" : X > 0} obtained by using some one dimensional (A is the only variable to
be determined in this problem) line minimization algorithm. And the whole process
is then repeated with the new point. On general problems, these methods suffer from
the same difficulties, they cannot theoretically guarantee that the point obtained at
termination is even a local minimum. However, these descent methods do seem to
have an edge over the fixed point method presented above in the general case. In
the absence of convexity, one has more confidence that a solution obtained through
a descent process is likely to be a local minimum, than a solution obtained through
fixed point computation which is based purely on first order necessary conditions for
optimality.

The approach for solving the nonlinear program (2.48) using the fixed point trans-
formation has been used quite extensively, and seems to perform satisfactorily. See
references [2.40, 2.58, 2.59].

Many practical nonlinear programming models tend to be nonconvex. The fixed
point approach outlined above, provides additional arsenal in the armory for tackling
such general problems.

Now consider the general nonlinear programming problem in which there are both
equality and inequality constraints.

minimize 0(x)
subject to  gi(z) <0, i=1tom (2.53)
hi(x) =0, t=1top

The usual approach for handling (2.53) is the penality function method which
includes a term with a large positive coefficient corresponding to a measure of violation
of the equality constraints in the objective function. One such formulation leads to the
problem

minimize O(x) + « té(ht (z))? (2.54)

subject to  gi(z) <0, i=1tom
In (2.54), «, a large positive number, is the penalty parameter. If (2.53) has a
feasible solution, every optimum solution of (2.54) would tend to satisfy h(xz) = 0,
t =1 to p as a becomes very large, and thus would also be optimal to (2.53). When
« is fixed to be a large positive number, (2.54) is in the same form as (2.48), and can
be tackled through a fixed point formulation as discussed above.

Advantages and Disadvantages of this Approach

In the NLP (2.48) there may be several constraints (i, e., m may be large) and the
problem difficulty can be expected to increase with the number of constraints. The
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fixed point approach for solving (2.48), first transforms (2.48) into the equivalent (2.49),
which is an NLP in which there is only a single constraint. The fact that (2.49) is a
single constraint problem is definitely advantageous.

The original problem (2.48) is a smooth problem since the objective and constraint
functions are all assumed to be continuously differentiable. Eventhough g;(x) are con-
tinuously differentiable for all i, there may be points = where s(x) is not differentiable.
However, s(z) is differentiable almost everywhere and so (2.49) is a nonsmooth NLP.
That this approach transforms a nice smooth NLP into a nonsmooth NLP is a disad-
vantage. But, because of the special nature of the function s(x), for any x, we are able
to compute a point in the subdifferential set ds(z) efficiently, as discussed above. For
computing a fixed point of the map F(z) defined in (2.50), the algorithms discussed in
the following sections need as inputs only subroutines to compute V6(z), or a point
from 0s(x) for any given z, which are easy to provide. Thus, eventhough (2.49) is
a nonsmooth NLP, the fixed point approach is able to handle it efficiently. Practical
computational experience with this approach is quite encouraging.

The fixed point approach solves NLPs using only the first order necessary con-
ditions for optimality. The objective value is never computed at any point. This is
a disadvantage in this approach. In nonconvex NLPs, a solution to the first order
necessary conditions for optimality, may not even be a local minimum. Since the ob-
jective value is not used or even computed in this approach, we lack the circumstantial
evidence, or the neighborhood information about the behaviour of objective values, to
conclude that the final solution obtained is at least likely to be a local minimum.

2.7.7 Application to Solve the

Nonlinear Complementarity Problem

As discussed in Section 1.6, the nonlinear complementary problem (NLCP) is the

following. Given g(z) = (g1(%),...,gn(z))T : R} — R", where R} is the nonnegative
orthant of R", find z > 0 satisfying g(z) > 0, z7g(z) = 0.
Define 9(x) = Maximum {—z1,...,—z,}. So 0y (x) = convex hull of {—1.; : j

such that —z; > —x; for all i = 1 to n in x }. Define the point-to-set map on R",

(o—y:ycob@) it () > 0,
F(z) =< {# —y:y € convex hull of {g(z),0¢(x)}}, if¢(z)=0, (2.55)
{z—g()}, if (z) <0 .

It can be verified that every Kakutani fixed point of F(z) defined here is a solution of
the NLCP and vice versa. Thus the NLCP can be solved by computing a Kakutani
fixed point of F(z).
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2.7.8 Merrill’s Algorithm for Computing
a Kakutani Fixed Point

Let F(x) be a point-to-set map defined on R™. We describe in this section, Merrill’s
method for computing a Kakutani fixed point of F(x).

Data Requirements of the Algorithm

If the algorithm requires the storage of the complete set F(x) for any z, it will not be
practically useful. Fortunately, this algorithm does not require the whole set F(z) for
even one point z € R". It only needs a computational procedure (or a subroutine),
which, for any given z € R"™, outputs one point from the set F(x). The algorithm will
call this subroutine a finite number of times. Thus the data requirements of the algo-
rithm are quite modest, considering the complexity of the problem being attempted,
and it can be implemented for the computer very efficiently. Also, the primary com-
putational step in the algorithm is the pivot step, which is the same as that in the
simplex method for linear programs.

n-Dimensional Simplex

The points vy,...,v, in R™ are the vertices of an (r — 1) dimensional simplex if the
1 1 . . .

set of column vectors { [ y ] e [ y ] } in R™*! form a linearly independent set.
1 r

The simplex itself is the convex hull of its vertices and will be denoted by the symbol
(v1,...,v.). Given the simplex with vertices vy,...,v,, the convex hull of any subset
of its vertices is a face of the simplex. An n-dimensional simplex has (n + 1) vertices.
See Figure 2.11. Clearly a 1-dimensional simplex is a line segment of positive length
joining two distinct points, a 2-dimensional simplex is the triangle enclosed by three
points which are not collinear, etc.
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Figure 2.11 The tetrahedron which is the convex hull of vertices {vy,vs,vs,

vs} is a 3-dimensional simplex. Its vertices vy, va, vg, v4 are its 0-dimensional

faces. Its 6 edges, of which the thick line segment joining vy and vy is one, are

its 1-dimensional faces. The dashed 2-dimensional simplex which is the convex

hull of {vy,vs,v3} is one of the four 2-dimensional faces of the tetrahedron.

Triangulations

Let K be either R"™ or a convex polyhedral subset of R" of dimension n. A triangu-

lation of K is a partition of K into simplexes satisfying the following properties

i)
ii)

iii)

iv)

the simplexes cover K,

if two simplexes meet, their intersection is a common face,

each point z € K has a neighborhood meeting only a finite number of the
simplexes,

each (n — 1) dimensional simplex in the triangulation is the face of either two
n-dimensional simplexes (in which case, the (n — 1) dimensional simplex is
said to be an interior face in the triangulation) or exactly one n-dimensional
simplex (in this case the (n —1) dimensional simplex is said to be a boundary
face in the triangulation),

for every point x € K there exists a unique least dimension simplex, say o, in
the triangulation, containing x. If dimension of ¢ is < n, ¢ may be a face of
several simplexes in the triangulation of dimension > dimension of ¢, and x
is of course contained on the boundary of each of them. There exists a unique
expression for x as a convex combination of vertices of o, and this is the same
expression for x as the convex combination of the vertices of any simplex in
the triangulation containing x.
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Example 2.22

In Figure 2.12 we give a triangulation of the unit cube in R%. The two 2-dimensional
simplexes in this triangulation are the convex hulls of {vg,v1,v2, }, {vo,v3,v2}. The
thick line segments in Figure 2.12 are the 1-dimensional simplexes in this triangulation
which are the faces of exactly one two dimensional simplex. These 1-dimensional
simplexes are the boundary faces in this triangulation. The thin diagonal line segment
joining vertices vy and vs is the face of exactly two 2-dimensional simplexes, and hence
is an interior face in this triangulation.

v, = (01) v, =(1,1)

Vo = (0,0) v, = (1,0)
Figure 2.12 Triangulation K; of the unit square in R?.

Example 2.23

Consider the partition of the unit square in R? into simplexes in Figure 2.13. It is not
a triangulation since the two simplexes (v1,v2,v3) and (vs, vy, vs5) intersect in (v, vs)
which is a face of (v3,v4,v5) but not a face of (vq,vs,v3) (it is a proper subset of the
face (vg,v3) of (v1,vs,v3)). So the partition of the unit square in R* in Figure 2.13
into simplexes violates property (ii) given above, and is therefore not a triangulation.
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Figure 2.13 A partition of the unit cube in R? into simplexes which is not
a triangulation.

The triangulation for the unit cube in R? given in Example 2.22 can be generalized
to a triangulation of the unit cube in R"™ which we call triangulation K, discussed
by Freudenthal in 1942. The vertices of the simplexes in this triangulation are the
same as the vertices of the unit cube. There are n! n-dimensional simplexes in this
triangulation. Let vg = 0 € R". Let p = (p1,...,pn) be any permutation of {1,...,n}.
Each of the n! permutations p leads to an n-dimensional simplex in this triangulation.
The n-dimensional simplex associated with the permutation p, denoted by (vg,p), is
(v, v1,...,Un) where

V; = Vi_1+ I'pi7 1=1ton. (256)

In (2.56), I is the unit matrix of order n. For example, for n = 2, p = (1,2), we get
the simplex (v = (0,0)T,v; = (1,0)T, vy = (1,1)T). See Figure 2.12. See reference
[2.72] for a proof that this does provide a triangulation of the unit cube of R".

In this representation (vg,p) for the simplex discussed above, v is known as the
initial or the 0*” vertex of this simplex. The other vertices of this simplex are obtained
recursively as in (2.56). The vertex v; is called the i*" vertex of this simplex for i = 1
to n.

This triangulation can be extended to provide a triangulation for the whole space
R" itself, which we call triangulation K; (it has been called by other symbols like K,
I, etc., in other references) by first partitioning R™ into unit cubes using the integer
points in R", and then triangulating each unit cube as above. The vertices in this
triangulation are all the points with integer coordinates in R"™. Let ¥ be any such
vertex, and let p = (p1,...,p,) be any permutation of {1,...,n}. Define vy = v,

and obtain v; for i = 1 to n as in (2.56). Let (v,p) denote the simplex (v, vy, ...,
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vn). The set of all such simplexes as v ranges over all points with integer coordinates
in R", and p ranges over all the permutations of {1,...,n} is the collection of all the
n-dimensional simplexes in this triangulation K. Again see reference [2.72] for a proof
that this is indeed a triangulation of R". See Figure 2.14.

(1.1)

(0,0) (0,1)

Figure 2.14 A partition of the unit cube in R? into simplexes which is not
a triangulation.

The mesh of a triangulation is defined to be the maximum Euclidean distance
between any two points in a simplex in the triangulation. Clearly the mesh of trian-
gulation K; of R" is y/n.

We can get versions of triangulation K; with smaller mesh by scaling the variables
appropriately. Also the origin can be translated to any specified point. Let 2° € R"
be any specified point and § a positive number. Let J = {z : z = (z;) € R",z; — :c?
is an integer multiple of 0 for all j =1 to n}. For any vy € J, and p = (p1,...,pn), a

permutation of {1,...,n}, define
V; = Vi_1+ (5I-pi7 t=1ton. (257)

Let (vg,p) denote the simplex (vg,v1,...,v,). The set J are the vertices, and the set
of all simplexes (vg,p) as vg ranges over J and p ranges over all the permutations of
{1,2,...,n} are the n-dimensional simplexes, in the triangulation of R"™. We denote
this triangulation by the symbol 6K (z°). Tts mesh is §y/n.
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How is the Triangulation used by the Algorithm 7

The algorithm traces a path. Each step in the path walks from one (n —1)-dimensional
face of an n-dimensional simplex in the triangulation, to another (n — 1)-dimensional
face of the same simplex, and continues this way. See Figure 2.15. The path traced
is unambiguous once it is started, and is similar to the one in the ghost story men-
tioned earlier, or the path traced by the complementary pivot method for the LCP.
Computationally, the algorithm associates a column vector in R"™ to each vertex in the
triangulation. At each stage, the columns associated with the vertices of the current
(n—1)-dimensional simplex form a basis, and the inverse of this basis is maintained. A
step in the algorithm corresponds to the pivot step of entering the column associated
with a new entering vertex into the basis. The path never returns to a simplex it has
visited earlier.

To execute the path, one may consider it convenient to store all the simplexes in
the triangulation explicitly. If this is necessary, the algorithm will not be practically
useful. For practical efficiency the algorithm stores the simplexes using the mathe-
matical formulae given above, which are easily programmed for the computer. The

0*" vertex and the permutation

current simplex is always maintained by storing its
corresponding to it. To proceed along the path efficiently, the algorithm provides very
simple rules for termination once a desirable (n — 1)-dimensional simplex in the trian-
gulation is reached (this is clearly spelled out later on). If the termination condition is
not satisfied, a mathematical formula provides the entering vertex. A minimum ratio
procedure is then carried out to determine the dropping vertex, and another mathe-

0! vertex and the permutation corresponding to the

matical formula then provides the
new simplex. All these procedures make it very convenient to implement this algorithm

for the computer.



2.7. EXTENSIONS TO FIXED PoINT COMPUTING 149
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Figure 2.15 A path traced by the algorithm through the simplexes in the
triangulation.

Special Triangulations of R™ x [0,1]

For computing a Kakutani fixed point of F(z) defined on R"™, Merrill’s algorithm uses
a triangulation of R™ x [0, 1], which is a restriction of triangulation K; for R**! to
this region, known as the special triangulation K.

We will use the symbol X = [ . ] with z € R", to denote points in R" x [0, 1].
n+1
The set of vertices J in the special triangulation K of R" x [0, 1] are all the points X =

[ - a: ] € R""! with z an integer vector in R™ and ZTpi1 = 0 or 1. The set of these
n+1

vertices of the form [ 11} ] is denoted by Ji, and the set of vertices of the form [ 8 ]

is denoted by Jg. J = JoUJ;. The boundary of R" x [0, 1] corresponding to z,+1 = 1
is known as the top layer, and the boundary corresponding to z,+1 = 0 is called the
bottom layer. So J;, Jj are respectively the points with integer coordinates in the top
and bottom layers. The (n + 1)-dimensional simplexes in the special triangulation K;
of R" x [0,1] are those of the form (Vp, P) where P = (p1,...,Pp+1) is a permutation
of {1,...,n+ 1} and Vj € Jg, and (Vp, P) = (Vo, Vi, ..., V,41) where

Vi=Vi_1+1,, i=lton+1. (2.58)

In (2.58), I is the unit matrix of order n + 1. It can be verified that the set of all
simplexes of the form (1}, P) as V ranges over Jy, and P ranges over all permutations
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of {1,2,...,n + 1} forms a triangulation of R™ x [0,1]. V; is the 0" vertex and
for i = 1 to n + 1, the vertex V; determined as in (2.58) in the i vertex of the
(n + 1)-dimensional simplex denoted by (Vj, P). The following properties should be
noted.

Property 1 : In the representation (V, P) for an (n + 1)-dimensional simplex in the
special triangulation K; of R™ x [0, 1], the 0** vertex V is always an integer point in
the bottom layer, that is, belongs to Jj.

Property 2 : In the representation (V, P) for an (n + 1)-dimensional simplex in the
special triangulation K; of R" x [0, 1], there exists a positive integer r such that for
all i < r —1, the ith vertex of (V, P) belongs to the bottom layer; and for all 4 >,
the it" vertex of (V, P) belongs to the top layer. The i here is the index satisfying the
property that if the permutation P = (p1,...,pnt1), then p; = n+ 1. This property
follows from the fact that the vertices of the simplex (V, P) are obtained by letting
Vo =V, and using (2.58) recursively.

Two (n + 1)-dimensional simplexes in the special triangulation K, are said to
be adjacent, if they have a common n-dimensional simplex as a face (i. e., if (n + 1)
of their vertices are the same). Merrill’s algorithm generates a sequence of (n + 1)-
dimensional simplexes o1, 02, 03, ... of K, in which every pair of consecutive simplexes
are adjacent. So, given o;, 011 is obtained by dropping a selected vertex V™~ of o;
and adding a new vertex VT in its place. The rules for obtaining 041 given o, and
V'~ are called the entering vertex choice rules of the algorithm. These rules are
very simple, they permit the generation of vertices as they are needed. We provide
these rules here.

Let 0; = (V,P), where P = (p1,...,pn+1) is a permutation of {1,...,n + 1}.
The vertices of o; are Vj = V,Vi,..., V41, as determined by (2.58). Let V'~ be the
dropping vertex. So V™ is V; for some 7z = 0 to n + 1. There are several cases possible
which we consider separately.

Case 1 : {Vp,Vq,...,Vor1} \{V~} C J;. By property 2, this can only happen if
V™ =Vp and V; € Jq, that is, p1 = n + 1. The face of o; obtained by dropping the
vertex V ~, is the n-dimensional simplex (Vi,...,V,11) in the top layer, and hence is
a boundary face. (V1,...,V,41) is the face of exactly one (n + 1) dimensional simplex
in the triangulation K 1, 05, and the algorithm terminates when this happens.

Case2: {Vp,Vi,..., Vo1 }\{V~} C Jo. By property 2, this implies that V'~ =V, 44
and V,, € Jy, that is p,41 = n + 1. We will show that this case cannot occur in the
algorithm. So whenever V— = V11, we will have p,+1 # n + 1 in the algorithm.

Case 3 : {Vp,Vi,...,Vius1} \ {V} contains vertices on both the top and bottom
layers. So the convex hull of {Vi, V1,...,V,41} \ {V ™} is an n-dimensional simplex
in the triangulation K, which is an interior face, and hence is a face of exactly two
(n + 1) dimensional simplexes in the triangulation, one is the present o;. The other
Oj41 18 (V, P) as given below (V+ given below is the new vertex in 0j4+1 not in o, it
is the entering vertex that replaces the dropping vertex V7).
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% V* (entering vertex) v P
V- =W
pr#n+1 Vi1 + Ly, Vo + Ly, (P2 -+ s Pnt1,P1)
(see Case 1)T
Vo=V Vicir + 1y, Vo (P1s-+ s Pic1s Dit1,
0<i<n+1 Pi> Pit2s - -+ Pntl)
Vo=V,
Pnt1 0+ 1 Vo—1p,., Vo—ILp,ei | (Png1,P15---50n)
(see Case 2)*

It can be verified that if (V, P) is defined as above, then V € Jg (since V € Jg
where V is the 0" vertex of o) and so (V,P) is an (n + 1)-dimensional simplex in
the special triangulation, and that (V, P) and (V, P) share (n + 1) common vertices,
so they are adjacent (n + 1) dimensional simplexes in this triangulation. See Figure
2.16 for an illlustration of the special triangulation K; of R x 0, 1].

The restriction of the special triangulation K; of R™ x [0,1] to either the top
layer (given by z,41 = 1) or the bottom layer (given by z,411 = 0) in the same as
the triangulation K of R™. The mesh of the special triangulation K; of R™ x [0,1] is
defined to be the mesh of the triangulation of R"™ on either the top and bottom layer,
and hence it is \/n.

We can get special triangulation of R™ x [0,1] of smaller mesh by scaling the
variables in R" appropriately. Also, the origin in the R" part can be translated to

any specified point in R"™. Let z° € R™ be a specified point and § a positive number.

Let J(2°,6) = { [xa: ] ¢ = (x;) € R",z; — x) is an integer multiple of ¢ for
n+1

each j =1ton, zp,y1 =0orl } Then the points is J(z°,§) are the vertices of the

special triangulation of R™ x [0, 1] denoted by 6K (2°). Jo(2°, 8) = { X = [ - v ] :
n+1

X e J(2°0),mpy1 = 0}, J1(29,8) = { [a: ] cx € J(2°,9), zpa1 =1 } For any
n+1
V € Jo(2°,8), and P = (p1,...,pns1) a permutation of {1,...,n + 1} define
Vo=V
, (2.59)
Vi=Vioi+6l,, i=1ton+1

and let (V,P) = (Vo,Vi,...,Vut1). The set of all (n + 1) dimensional simplexes
(V, P) given by (2.59) with V € Jo(2°,6) and P ranging over all the permutation of

1 In this case, if p; = n+1, as discussed in Case 1 above, the algorithm terminates.
So the algorithm continues only if p; # n + 1 when this case occurs.

* In this case, we cannot have p,11 = n + 1, as discussed in Case 2 above. So,
whenever this case occurs in the algorithm, we will have p,+1 #n + 1.
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{1,...,n+1} are the (n+1)-dimensional simplexes in the special triangulation § K1 (2°)
0

of R" x [0,1]. Its mesh in d\/n. In this triangulation, the vertex [% ] plays the

same role as the origin [ 8 ] in the triangulation K.

The Piecewise Linear Approximation and
a Linear Approximate fixed Point of F(x)

Consider the special triangulation K, of R x [0, 1] defined above, and let Jo, J; be the
vertices in this triangulation on the bottom and top layers respectively. On the top
layer, we define a a piecewise linear map f(X) known as a piecewise linear approxi-

11)] € Jq define

f(V) = [f(v) ] , where f(v) € F(v). The point f(v) can be selected from the set

mation of F(x) relative to the present triangulation. For each V = [

1
F(v) arbitrarily, in fact it can be determined using the subroutine for finding a point

from the set F(v), which was pointed out as a required input for this algorithm. Any

nonvertex point X = [ T ] on the top layer must lie in an n-dimensional simplex in

the triangulation on this layer. Suppose the vertices of this simplex are V; = [ 111 ] )

¢t =1ton+ 1. Then x can be expressed as a convex combinations of vy,...,v,41 in
a unique manner. Suppose this expression is ajv; + ...+ Qpy1Up+1 Where oy + ... +
Unt1 =1, a1,...,0n41 > 0. Then define f(z) = oy f(v1) + ... + ant1.f(vny1). f(2)
is the piecewise linear approximation of F(z) defined on the top layer relative to the

present triangulation. For X = [ “f ] define f(X) = [ f(lx) ] . In each n-dimensional

simplex in the top layer in this triangulation f(x) is linear. So f(z) is a well defined

piecewise linear continuous function defined on the top layer. Remember that the

definition of f(z) depends on the choice of f(v) from F(v) for V = [ ?1) ] €Ji.

The point z € R" is said to be a linear approximate fixed point of F(z) relative
to the present piecewise linear approximation if

x = f(x). (2.60)

U5
1
fixed point of the piecewise linear map f(x) iff the system

The n-dimensional simplex < = [ ] 1 =1ton+ 1> on the top layer contains a

N At
1 1 1 (2.61)
fi)—v1 ... flong1) —Vng1 |0

X>0, i=lton+1
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has a feasible solution. Thus the problem of finding a fixed point of the piecewise linear
approximation f(z) boils down to the problem of finding an n-dimensional simplex on
the top layer whose vertices are such that (2.61) is feasible.

For each vertex V = [11)] in the top layer associate the column vector

[f(v)l_ v] € R™', which we denote by A.y and call the label of the vertex V.

The coefficient matrix in (2.61) whose columns are the labels of the vertices of the sim-
plex is called the label matrix corresponding to the simplex. Because of the nature
of the labels used on the vertices, this is called a vector labelling method.

An n-dimensional simplex on the top layer is said to be a completely labelled
simplex if the system (2.61) corresponding to it has a nonnegative solution, that is,
if it contains a fixed point of the current piecewise linear approximation.

Let Vp = [”00] = [8],P:(1,...,n+1) and let (Vo, P) = (Vo, Vi, ..., Viy1),

vi ] ,i=1ton. Then (Vy, V1,...,V,) is the n-dimensional face of (Vj,

0
P) in the bottom layer. Let W = [ 1;) ] be an arbitrary point in the interior of this

where V; = [

n-dimensional simplex (Vp,...,V,), for example, w = W For every vertex
V = [8] € Jo in the bottom layer, define f(V) = [f%v)] = [16}] . For any

nonvertex X in R™ x [0,1], X must lie in some (n + 1)-dimensional simplex in the
present triangulation, say (Vi', Vi',..., V1, ;). So there exist unique numbers ay, ...,
pt1 > 0such that ag +a1+ ... +ap1 =1, X = a0V01 +aVEi+ ..+ an+1an+1-

Then define f(X) = aof(Vy)+. .. +ant1f(Vyy1). The map f(X) is thus a continuous
piecewise linear map defined on R" x [0, 1]. In each (n+ 1) dimensional simplex in the

present triangulation, f(X) is linear. Also, under this map, every point in the bottom

”] € Jy to be the

layer maps into the point W. Define the label of any vertex V = [ 0

column vector A.yy = [ 1 ] e R
w— v

Let (Vp,Vi,...,V,) be the n-dimensional simplex in the bottom layer, from the
interior of which we selected the point W. Since W is in the interior of this simplex,
By, the (n+1) x (n+1) label matrix corresponding to this simplex is nonsingular. Let
b=(1,0,0,...,0)7 € R". Then the system corresponding to (2.61) for this simplex
is

B | b (2.62)

This system has the unique positive solution A = b = Bl_lb > 0, since W is in the
interior of this simplex. Incidentally, this (Vp, Vi,...,V,) is the only n-dimensional
simplex in the bottom layer whose label matrix leads to a nonnegative solution to the
system like (2.61). The reason for it is that since W is in the interior of (Vg, V1,. ..,
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Vi), W is not contained in any other simplex in the triangulation in the bottom layer.

Also, since b > 0, the n x (n + 1) matrix (B : Bl_l) has all rows lexicopositive. The
inverse tableau corresponding to the initial system (2.62) is

basic vector basis inverse

(2.63)

A B! b

The initial simplex (Vp, Vi,...,V,) in the bottom layer is an n-dimensional face of the
unique (n + 1)-dimensional simplex (Vp, Vi,...,V,, V41) in the present triangulation
K 1. Introduce a new variable, say A,y1, in (2.62) with its column vector equal to the
label of this new vertex V,,41, and bring this variable into the present basic vector. The
pivot column for this pivot operation is B 1A.Vn .+ 1f this pivot column is nonpositive,
it would imply that the set of feasible solutions of this augmented system (2.62) with
this new variable is unbounded, which is impossible since the first constraint in the
system says that the sum of all the variables is 1, and all the variables are nonnegative.
So, the pivot column contains at least one positive entry, and it is possible to bring
the new variable into the present basic vector. The dropping variable is determined
by the usual lexico minimum ratio test of the primal simplex algorithm, this always
determines the dropping variable uniquely and unambiguously and maintains the sys-
tem lexico feasible. If the label of V; is the dropping column, the next basis is the
label matrix of the n-dimensional simplex (Vp,...,Vi_1,Vis1, ..., Vpi1). The inverse
tableau corresponding to this new basis is obtained by entering the pivot column by
the side of the present inverse tableau in (2.63) and performing a pivot step in it, with
the row in which the dropping variable \; is basic, as the pivot row.

By the properties of the triangulation, the new n-dimensional simplex (Vp,...,
Vie1, Vi1, .., Vig1) is the face of exactly one or two (n + 1) dimensional simplexes
in the triangulation. One is the simplex (Vp,...V,41). If there is another, it must be
a simplex of the form (Y, Vy,...,Vi_1,Viqt1,...,Vihy1). Then bring the column A.y
into the basis next. Continuing in this manner, we generate a unique path of the form

H Sf“, Sy, SQ“, .... Here S7, SZ“ represent the k** n-dimensional simplex and
(n + 1)-dimensional simplex respectively in this path. Termination can only occur
if at some stage the basis corresponds to an n-dimensional simplex S;* all of whose
vertices are on the top layer. Each n-dimensional simplex in this path is the face
of at most two (n + 1)-dimensional simplexes, we arrive at this face through one of
these (n + 1)-dimensional simplexes, and leave it through the other. The initial n-
dimensional simplex in the bottom layer is a boundary face, and hence is the face of
a unique (n + 1)-dimensional simplex in the triangulation. So the path continues in a
unique manner and it cannot return to the initial n-dimensional simplex again. Also,
since the initial n-dimensional simplex is the only n-dimensional simplex in the bottom
layer for which the system corresponding to (2.61) is feasible, the path will never pass
through any other n-dimensional simplex in the bottom layer after the first step. Any
n-dimensional simplex obtained on the path whose vertices belong to both the bottom
and top layers is an interior face, so it is incident to two (n + 1)-dimensional simplexes,
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we arrive at this n-face through one of these (n + 1)-dimensional simplexes and leave
it through the other, and the algorithm continues. The reader can verify that the
properties of the path generated are very similar to the almost complementary basic
vector path traced by the complementary pivot algorithm for the LCP. Thus we see
that the path continues uniquely and unambiguously and it can only terminate when
the columns of the current basis are the labels of vertices all of whom belong to the
top layer. When it terminates, from the final BFS we get a fixed point of the current
piecewise linear approximation.

Example 2.24

Consider n = 1. We consider a single-valued map from R' to R!, F(z) = {22 —5249},
x € R, The special triangulation of R' x [0, 1] is given in Figure 2.16.

Figure 2.16 The column vector by the side of a vertex is its vector label.
The vertices for the triangulation are all the points with integer coordinates in
R'! x [0,1]. For each V = [11) ] on the top layer with v integer, we define f(v) =

v2 — 5v + 9. We take the initial 1-dimensional simplex on the bottom layer to be

(Vo, V1) and the point W to be the interior point (w,0)T = (%, O)T in it. For each V =

[ 8 ] in the bottom layer, define f(V) =W = (3, O)T. The label of the vetex V =

v . 1 . 1 .
[$n+1 ] is [ F(v) — v ] if xpp1 =1, 0r [w o ] if xp,41 = 0. The labels of some

of the vertices are entered in Figure 2.16. The initial system corresponding to (2.62)
here is
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Ao A1

1 1 1
b -4 |o
Ao A1 > 0

The feasible solution of this system and the basis inverse are given below.

Basic Basis b Pivot Column | Ratios
variable Inverse Ay,
1 1 9 1/9
1 1 7
A1 2 —1l |3 —3

The initial simplex (Vp, V1) is the face of the unique 2-dimensional simplex (Vp, V1, V)
in the triangulation. So we associate the label of V5 with a variable Ay and bring it
into the basic vector. The pivot column is

()0 - () -

and this is entered on the inverse tableau. The dropping variable is Ay and the pivot
element is inside a box. Pivoting leads to the next inverse tableau. For ease in un-
derstanding, the vertices are numbered as V;, ¢ = 0,1,... in Figure 2.16 and we will
denote the variable in the system associated with the label of the vertex V; by A;.

N N~

Basic Basis b Pivot Column | Ratios
variable | Inverse Ay,
1 2 1 3 1.
)\2 9 9 9 3 Min.
8 2 8 6 8
A1 9 ~5 |g 9 g

The current 1-simplex (V5, V1) is the face of (Vi, Vi, Vs) and (V3, Vi, V32). We came
to the present basic vector through (Vg, Vy, Va), so we have to leave (V3, V) through
the 2-simplex (V3, V1, Va). Hence the updated column of the label of V3, A.y;, is the
entering column. It is already entered on the inverse tableau. The dropping variable
is A2. Continuing, we get the following
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Basic Basis b | pivot Column | Ratios
variable | Inverse Ay,
1 2 1 2
A3 3 3 |3 —3
2 2 2 5 2
>\1 3 T3 3 _ 3 5 Min.
Ay,
3 2 3 3
A3 5 5 |5 5 1
2 2 2 2
M 5 5 |3 2] 1
A3 0 1 10
As 1 -1 1

In the basic vector A3, A4, there is a tie for the dropping variable by the usual primal
simplex minimum ratio test, and hence the lexico minimum ratio test was used in
determining the dropping variable. The algorithm terminates with the basic vector
(A3, A5) since the corresponding vertices V3, Vj are both in the top layer. The fixed
point of the piecewise linear approximationis 0 x v3+1xv5 =0x 2+ 1 x 3 = 3, from
the terminal BFS. It can be verified that z = 3 is indeed a fixed point of F(x), since

F(3) = {3).

Sufficient Conditions for Finite Termination with a
Linear Approximate Fixed Point

Once the triangulation of R™ x [0, 1] and the piecewise linear approximation are given,
the path generated by this algorithm either terminates with an n-dimensional simplex
on the top layer (leading to a fixed point of the present piecewise linear approximation)
after a finite number of pivot steps, or continues indefinitely. Sufficient conditions to
guarantee that the path terminates after a finite number of steps are discussed in [2.58],
where the following theorem is proved.

Theorem 2.15 Given £ € R" and a > 0 let B(#,a) = {z : ® € R" satisfying
|z — Z|| < a}. Suppose there are fixed positive numbers v and v and a point € R"
satisfying: for each x € B(Z,v),y € B(z,7)\B(z,v) and u € F(z), (u—2)T (y—z) < 0.
Let z° by an arbitrary point in R". If the above algorithm is executed using the starting
point € {2°} UB(Z,v + v) and a special triangulation K, with its mesh < v, then,
the algorithm terminates in a finite number of steps with a linear approximate fixed
point of F(z). Also, every linear approximate fixed point lies in B(Z,v + ).

We refer the reader to O. H. Merril’s Ph. D. thesis [2.58] for a proof of this theorem.
But it is very hard to verify whether these conditions hold in practical applications.
In practical applications we apply the algorithm and let the path continue until some
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prescribed upper bound on computer time is used up. If termination does not occur
by then, one usually stops with the conclusion that the method has failed on that
problem.

One strange feature of the sufficient conditions to guarantee finite termination of
the above algorithm is the following. Let f(x) = (fi(2),..., fn(2))T be a continuously
differentiable function from R"™ into R", and suppose we are applying the algorithm
discussed above, on the fixed point formulation for the problem of solving the system
of equations “f(x) = 0”. Solving the system “f(z) = 0” is equivalent to finding
the Kakutani fixed point of either Fi(z) = {f(z) + z} or Fa(z) = {—f(x) + z}.
Mathematically, the problem of finding a fixed point of F(z) or Fa(x) are equivalent.
However, if Fq(z) satisfies the sufficiency condition for finite termination, Fo(x) will
not. Thus, if the algorithm is applied to find the fixed points of F1(z), and Fy(z); the
behavior of the algorithm on the two problems could be very different. On one of them
the algorithm may have finite termination, and on the other it may never terminate.
This point should be carefully noted in using this algorithm in practical applications.

Algorithm to generate an Approximate Fixed Point of F(x)

Select a sequence of positive numbers dy = 1, 61, o, . . . converging to zero. Let z° = 0.
Set ¢ = 0 and go to Step 1.

Step 1 : Define the piecewise linear approximation for F(z) relative to the special
triangulation 0, K1 (z%) choosing the point W from the interior of the translate of the
n-dimensonal face of the initial simplex (0, I.1, ..., I.,) on the bottom layer in this tri-
angulation. Find a fixed point of this piecewise linear approximation using this special
triangulation by the algorithm discussed above. Suppose the fixed point obtained is
ot 2t is a linear approximate fixed point of F(z) relative to this special triangu-
lation 6, K1 (2%). If z'+1 € F(z'*1), terminate, #'+! is a fixed point of F(z). Otherwise
go to Step 2.

Step 2 : Replace t by t + 1 and do Step 1.

So this method generates the sequence {x!, 2% 23, ...} of linear approximate fixed

points for F(x). If at any stage x* € F(z!), it is a fixed point of F(z) and we terminate.
Otherwise, any limit point of the sequence {z! : ¢t = 1,2,...} can be shown to be a
fixed point of F(z). In practice, if finite termination does not occur, we continue until

d; becomes sufficiently small and take the final z* as an approximate fixed point of

To find Fixed Points of USC Maps Defined on a
Compact Convex Subset ' c R"

Without any loss of generality we can assume that I' has a nonempty interior (if the
interior of I' in R"™ is (), the problem is not altered by replacing R" by the affine hull
of T', in which T' has a nonempty interior). Let F(x) be the given USC map. So F(x)
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is defined for all x € T', and for all such z, F(z) is a compact convex subset of I'. Since
this map is only defined on I', and not on the whole of R", the algorithm discussed
above does not apply to this problem directly. However, as pointed out by B. C. Eaves
[2.44], we can extend the definition of F(z) to the whole of R™ as below. Let ¢ be any
point from the interior of I'.

{c}, ifx gl
F'(z) = { convex hull of {¢, F(z)}, if 2 € boundary of T
F(x), if z € interior of T".

It can be verified that F'(z) is now a USC map defined on R™, and that every fixed
point of F'(z) is in T and is also a fixed point of F(z) and vice versa. Since F'(z) is
defined over all of R", the method discussed above can be applied to find a fixed point
of it.

Homotopy Interpretation

In the algorithm discussed above for computing a fixed point of the piecewise linear
approximation, there are two layers, the bottom layer and the top layer. We have
the same triangulation of R™ in both the bottom and top layers. The labels for the
vertices on the bottom layer are artificial labels corresponding to a very simple map
for which we know the fixed point. The labels for the vertices on the top layer are
natural labels corresponding to the piecewise linear map whose fixed point we want to
find. The algorithm starts at the known fixed point of the artificial map of the bottom
layer and walks its way through the triangulation until it reaches a fixed point of the
piecewise linear map on the top layer. This makes it possible to interpret the above
algorithm as a homotopy algorithm. Other homotopy algorithms for computing fixed
points with continuous refinement of the grid size have been developed by B. C. Eaves
[2.44] and B. C. Eaves and R. Saigal [2.47] and several others [2.40 to 2.80].
Comments 2.2 H. Scarf [2.68] first pointed out that the basic properties of the
path followed by the complementary pivot algorithm in the LCP can be used to com-
pute approximate Brouwer’s fixed points using partitions of the space into sets called
primitive sets, and T. Hansen and H. Scarf [2.69] extended this into a method for
approximating Kakutani fixed points. The earliest algorithms for computing approx-
imate fixed points using triangulations are those by B. C. Eaves [2.44], H. W. Kuhn
[2.54]. These early algorithms suffered from computational inefficiency because they
start from outside the region of interest. The first method to circumvent this difficulty
is due to O. H. Merrill [2.57, 2.58] discussed above. The applications of fixed point
methods in nonlinear programming discussed in Sections 2.7.3, 2.7.4, 2.7.5, 2.7.6 and
2.7.7 are due to O. H. Merrill [2.58]. Besides the triangulation K; discussed above,
Merrill’s algorithm can be implemented using other triangulations, see M. J. Todds
book [2.72] and the papers [2.40 to 2.80].
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2.8 COMPUTATIONAL COMPLEXITY OF THE
COMPLEMENTARY PIVOT ALGORITHM

The computational complexity of an algorithm measures the growth of the com-
putational effort involved in executing the algorithm as a function of the size of the
problem. In the complementary pivot algorithm, we will assess the computational ef-
fort by the number of pivot steps carried out before the algorithm terminates. There
are three commonly used measures for studying the computational complexity of an
algorithm. These are discussed below.

Worst Case Computational Complexity

This measure is a tight mathematical upper bound on the number of pivot steps re-
quired before termination, as a function of the size of the problem. In studying the
worst case computational complexity we will assume that the data is integer, or more
generally, rational, that is, each m;;, ¢; in the matrices ¢, M is a ratio of two inte-
gers. In this case by multiplying all the data by a suitable positive integer, we can
transform the problem into an LCP in which all the data is integer. Hence without
any loss of generality we assume that all the data is integer, and define the size of
the problem to be the total number of bits of storage needed to store all the data in
the problem in binary form. See Chapter 6 where a mathematical definition of this
size is given. The worst case computational complexity of an algorithm provides a
guaranteed upper limit on the computational effort needed to solve any instance of
the problem by the algorithm, as a function of the size of the instance. The algorithm
is said to be polynomially bounded if this worst case computational complexity is
bounded above by a polynomial of fixed degree in the size of the problem, that is, if
there exist constants «, r independent of the size, such that the computational effort
needed is always < as" when the algorithm is applied on problems of size s. Even
though the worst case computational complexity is measured in terms of the number
of pivot steps, each pivot step needs O(n?) basic arithmetical operations (addition,
multiplication, division, comparison) on data each of which has at most s digits, where
s is the size and n the order of the instance; so if the algorithm is polynomially bounded
in terms of the number of pivot steps, it is polynomially bounded in terms of the basic
arithmetical operations. In Chapter 6 we conclusively establish that the complemen-
tary pivot algorithm is not a polynomially bounded algorithm in this worst case sense.
Using our examples discussed in Chapter 6, in [2.74] M. J. Todd constructed examples
of square nonsingular systems of linear equations “Az — b = 0”, with integer data, for
solving which the computational effort required by Merrill’s algorithm of Section 2.7.8,
grows exponentially with the size of the problem.

An algorithm may have a worst case computational complexity which is an ex-
ponentially growing function of the size of the problem, just because it performs very
poorly on problem instances with a very rare pathological structure. Such an algorithm
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might be extremely efficient on instances of the problem not having the rare patholog-
ical structure, which may never show up in practical applications. For this reason, the
worst case measure is usually very poor in judging the computational efficiency of an
algorithm, or its practical utility.

The Probabilistic Average Computational Complexity

Here we assume that the data in the problem is randomly generated according to
some assumed probability distribution. The average computational complexity of the
algorithm under this model is then defined to be the statistical expectation of the
number of steps needed by the algorithm before termination, on problem instances
with this data. Since the expectation is a multiple integral, this average analysis
requires techniques for bounding the values of multiple integrals. If the probability
distributions are continuous distributions, the data generated will in general be real
numbers (not rational), and so in this case we define the size of the LCP to be its
order n. We assume that each pivot step in the algorithm is carried out on the real
data using exact arithmetic, but assess the computational complexity by the average
number of pivot steps carried out by the algorithm before termination.

M. J. Todd performed the average analysis in [2.36] under the folowing assump-
tions on the distribution of the data (g, M).

i) With probability one, every square submatrix of M whose sets of row indices
and column indices differ in at most one element, is nonsingular.
ii) ¢ is nondegenerate in the LCP (¢, M).
iii) The distributions of (¢, M) are sign-invariant; that is, (¢, M) and (Sq, SM S)
have identical distributions for all sign matrices S (i. e., diagonal matrices
with diagonal entries of +1 or —1).

Under these assumptions he showed that the expected number of pivot steps taken
by the lexicographic Lemke algorithm (see Section 2.3.4) before termination when
applied on the LCP (¢, M) is at most %.

M. J. Todd [2.36] also analysed the average computational complexity of the lex-
icographic Lemke algorithm applied on the LCP corresponding to the LP

minimize cx

subject to Az > b
20

under the following assumptions. A is a matrix of order m x N. The probability
distribution generating the data (A, b, ¢) and hence the data (¢, M) in the corresponding
LCP satisfies the following assumptions :
i) with probability one, the LP and its dual are nondegenerate (every solution of
Az — u = b has at least m nonzero variables, and every solution of yA 4+ v =
¢ has at least NN nonzero variables), and every square submatrix of A is
nonsingular.
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ii) the distributions of (A, b, c) and of (S1AS2, S1b, Sac) are identical for all sign
matrices S1, S of appropriate dimension). This is the sign invariance re-
quirement.

Under these assumptions he showed that the expected number of pivot steps taken
by the lexicographic Lemke algorithm when applied on the LCP corresponding to this

LP is at most, minimum {m2+52m+11, 2N2+25N+5}. See also [2.31] for similar results
under slightly different probabilistic models.

In a recent paper, [8.20] R. Saigal showed that the expected number of pivot steps
taken by the lexicographic Lemke algorithm when applied on the LCP corresponding

to the above LP is actually bounded above by m and asymptotically approaches %5 —1,

where m is the number of rows in A.

Unfortunately, these nice quadratic or linear bound expected complexity results
seem very dependent on the exact manner in which the algorithm is implemented, and
on the problabilistic model of the data. For example, it has not been possible so far to
obtain comparable results for the complementary pivot algorithm of Section 2.2 which
uses the column vector e of all 1’s as the original column vector of the artificial variable
20

Empirical Average Computation Complexity

This measure of computational complexity is used more in the spirit of simulation.
Here, a computational experiment is usually performed by applying the algorithm on
a large number of problem instances of various sizes, and summary statistics are then
prepared on how the algorithm performed on them. The data is usually generated
according to some distribution (typically we may assume that each data element is a
uniformly distributed random variable from an interval such as —100 to +100, etc.). In
the LCP, we may also want to test how the complementary pivot algorithm performs
under varying degrees of sparsity of ¢ and M. For this, a certain percentage of randomly
chosen entries in ¢ and M can be fixed as zero, and the remaining obtained randomly as
described above. It may also be possible to generate M so that it has special properties.
As an example, if we want to experiment on LCPs associated with PSD symmetric
matrices, we can generate a random square matrix A as above and take M to be AT A.
Such computational experiments can be very useful in practice. The experiments
conducted on the complementary pivot algorithm, suggest that the empirical average
number of pivot steps before termination grows linearly with n, the order of the LCP.

We know that Merrill’s simplicial method for computing the fixed point of a piece-
wise linear map discussed in Section 2.7.8 may not terminate on some problems. Com-
putational experiments indicate that on problems on which it did terminate, the av-
erage number of simplices that the algorithm walked through before termination, is
O(n?), as a function of the dimension of the problem. See [2.62 to 2.67].
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2.9 THE GENERAL QUADRATIC
PROGRAMMING PROBLEM

From the results in Section 2.3 we know that the complementary pivot method pro-
cesses convex quadratic programs with a finite computational effort. Here we discuss
the general, possibly nonconvex, quadratic programming problem. This is a problem
in which a general quadratic objective function is to be minimized subject to linear
constraints.

The Reduction Process

If there is an equality constraint on the variables, using it, obtain an expression for
one of the variables as an affine function of the others, and eliminate this variable and
this constraint from the optimization portion of the problem. A step like this is called
a reduction step, it reduces the number of variables in the optimization problem
by one, and the number of constraints by one. In the resulting problem, if there is
another equality constraint, do a reduction step using it, and continue in the same
manner. When this work is completed, only inequality constraints remain, and the
system of constraints assumes the form F'X > f, which includes any sign restrictions
and lower or upper bound constraints on the variables. We assume that this system is
feasible. An inequality constraint in this system is said to be a binding inequality
constraint if it holds as an equation at all feasible solutions. A binding inequality
constraint can therefore be treated as an equality constraint without affecting the set
of feasible solutions. Binding inequality constraints can be identified using a linear
programming formulation. Introduce the vector of slack variables v and transform the
system of constraints into FX —v = f, v > 0. The i*" constraint in the system,
F;. X > f;, is a binding constraint iff the maximum value of v; subject to F.X —v = f,
v > 0, is zero. Using this procedure identify all the binding constraints, change each
of them into an equality constraint in the system. Carry out further reduction steps
using these equality constraints. At the end, the optimization portion of the problem
reduces to one of the following form

Minimize  6(z) = cz + 327 Dz 5 64
Subject to Az >b (2.64)

satisfying the property that Az > b is feasible. Let A be of order m x n. Without any

loss of generality we assume that D is symmetric (because x7 Dz = a:TD“LTDTx and

D+—2DT is a symmetric matrix). Let K = {z : Az > b}. By our assumptions here K # ()
and in fact K has a nonempty interior. Every interior point of K satisfies Az > b and
vice versa. We also assume that K is bounded. The solution of the problem when K
is unbounded can be accomplished by imposing additional constraints —a < z; < «

for each j, where « is a large positive valued parameter. The parameter « is not given
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any specific value, but treated as being larger than any number with which it may be
compared. The set of feasible solution of the augmented problem is bounded, and so
the augmented problem can be solved by the method discussed below. If the optimum
solution of the augmented problem is independent of o when « is positive and large,
it is the optimum solution of the original problem (2.64). On the other hand if the
optimum solution of the augmented problem depends on « however large o may be,
and the optimum objective value diverges to —oo as « tends to +oo, the objective
function is unbounded below in the original problem. In the sequel we assume that K
is bounded. Under these assumptions, (2.64) will have an optimum solution. If D is
not PSD, we have the following theorem.

Theorem 2.16 If D is not PSD, the optimum solution of (2.64) cannot be an interior
point of K.

Proof. Proof is by contradiction. Suppose z, an interior point of K, is an optimum
solution of (2.64). Since z is an interior point of K, we have Az > b, and a necessary
condition for it to be optimum for (2.64) (or even for it to be a local minimum for
(2.64)) is that the gradient vector of §(z) at %, which is VO(Z) = ¢ + 27D = 0. Since
D is not PSD, there exists a vector y # 0 satisfying y” Dy < 0. Using c+ 27D = 0, it
can be verified that 0(Z + \y) = 6(z) + gyTDy. Since T satisfies AT > b, we can find
A > 0 and sufficiently small so that z + Ay is feasible to (2.64), and 0(Z + \y) = 0(%) +
’\72yTDy < 6(z), contradiction to the hypothesis that Z is optimal to (2.64). So if D
is not PSD, every optimum solution must be a boundary point of K, that is, it must
satisfy at least one of the constraints in (2.64) as an equation.

[]

The Method

Express the problem in the form (2.64), using the reduction steps discussed above as
needed, so that the system Az > b is feasible. Suppose A is of order m x n. Then
we will refer to the problem (2.64) as being of order (m,n), where n is the number of
decision variables in the problem, and m the number of inequality constraints on these
variables.

Check whether D is PSD. This can be carried out by the efficient algorithm dis-
cussed in Section 1.3.1 with a computational effort of O(n3). If D is PSD, (2.64) is
a convex quadratic program, the optimum solution for it can be computed using the
complementary pivot algorithm discussed in earlier sections, with a finite amount of
computational effort. If D is not PSD, generate m candidate problems as discussed
below. This operation is called the branching operation.

For i = 1 to m, the i** candidate problem is the following :

Minimize  cz + 337 Dz
Subject to  Ap.x>0b,, p=1tom, p#i (2.65)
Ai.x = bz .
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If D is not PSD, by Theorem 2.16, every optimum solution for (2.64) must be an
optimum solution of at least one of the m candidate problems.

Each of the candidate problems is now processed independently. The set of fea-
sible solutions of each candidate problem is a subset (a face) of K, the set of feasible
solutions of the original problem (2.64). Using the equality constraint, a reduction step
can be carried out in the candidate problem (2.65). In the resulting reduced problem
identify any binding inequality constraints by a linear programming formulation dis-
cussed earlier. Treat binding constraints as equality constraints and carry out further
reduction steps. The final reduced problem is one of the same form (2.64), but of order
< (m —1,n —1). Test whether it is a convex quadratic programming problem (this
could happen even if the original problem (2.64) is not a convex quadratic program)
and if it is so, find the optimum solution for it using the complementary pivot algo-
rithm and store its solution in a solution list. If it is not a convex quadratic program
carry out the branching operation on it and generate additional candidate problems
from it, and process each of them independently in the same way.

The total number of candidate problems to be processed is < 2™. When there are
no more candidate problems left to be procesed, find out the best solution (i. e., the
one with the smallest objective value) among those in the solution list at that stage.
That solution is an optimum solution of the original problem.

This provides a finite method for solving the general quadratic programming prob-
lem. It may be of practical use only if m and n are small numbers, or if the candidate
problems turn out to be convex quadratic programs fairly early in the branching pro-
cess. On some problems the method may require a lot of computation. For example,
if D in the original problem (2.64) is negative definite, every candidate problem with
one or more inequality constraints will be nonconvex, and so the method will only
terminate when all the extreme points of K are enumerated in the solution list. In
such cases, this method, eventhough finite, is impractical, and one has to resort to
heuristics or some approximate solution methods.

2.9.1 Testing Copositiveness

Let M be a given square matrix of order n. Suppose it is required to check whether
M is copositive. From the definition, it is clear that M is copositive iff the optimum
objective value in the following quadratic program is zero.

Minimize 2T Mz
Subject to x>0 (2.66)
el é 1.

where e is the column vector of all 1’s in R"™. We can check whether M is PSD
with a computational effort of O(n3) by the efficient pivotal methods discussed in
Section 1.3.1. If M is PSD, it is also copositive. If M is not PSD, to check whether
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it is copositive, we can solve the quadratic program (2.66) by the method discussed
above. If the optimum objective value in it is zero, M is copositive, not otherwise.
This provides a finite method for testing copositiveness. However, this method is not
practilly useful when n is large. Other methods for testing copositiveness are discussed
in [3.29, 3.59]. See also Section 2.9.3.

FExercise

2.4 Using the results from Section 8.7, prove that the general quadratic programming
problem (2.64) with integer data is an A/P-hard problem.

Comments 2.2. Theorem 2.16 is from R. K. Mueller [2.23]. The method for the
general quadratic programming problem discussed here is from [2.24] of K. G. Murty.

2.9.2 Computing a KKT point for a

General Quadratic Programming Problem

Consider the QP (quadratic program)

minimize Q(z) = cx + 327 Dx
subject to  Ax > b (2.67)
z> 0

where D is a symmetric matrix of order n, and A, b, ¢ are given matrices of orders
m xn, m x 1, and 1 x n respectively. We let K denote the set of feasible solutions
of this problem. If D is PSD, this is a convex quadratic program, and if K # (), the
application of the complementary pivot algorithm discussed in Sections 2.2, 2.3 on the
LCP corresponding to this QP will either terminate with the global minimum for this
problem, or provide a feasible half-line along which Q(z) diverges to —oc.

Here, we do not assume that D is PSD, so (2.67) is the general QP. In this case
there can be local minima which are not global minima (see Section 10.2 for definitions
of a global minimum, local minimum), the problem may have KKT points which are
not even local minima (for example, for (2.66) verify that x = 0 is a KKT point,
and that this is not even a local minimum for that problem if D is not copositive).
The method discussed at the beginning of Section 2.9 is a total enumeration method
(enumerating over all the faces of K) applicable when K is bounded. In this section we
do not make any boundedness assumption on K. We prove that if Q(z) is unbounded
below on K, there exists a half-line in K along which Q(z) diverges to —oo. We also
prove that if Q(z) is bounded below on K, then (2.67) has a finite global minimum
point. This result was first proved by M. Frank and P. Wolfe [10.14] but our proofs
are based on the results of B. C. Eaves [2.9]. We also show that the complementary
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pivot method applied on an LCP associated with (2.67) will terminate with one of
three possible ways

(i) establish that K =0, or
(ii) find a feasible half-line in K along which Q(z) diverges to —oo, or
(iii) find a KKT point for (2.67).

From the results in Chapter 1, we know that Z € K is a KKT point for (2.67) iff
there exist vectors ¢, € R™ and 4 € R" which together satisfy

(- () G- ()
(=0 ()= (2 ()

which is an LCP. We will call (z,y,u,v) a KKT solution corresponding to the KKT
point z. For the sake of simplicity, we denote

u x
[U] by w, and [y] by z

T
] by M, and [fb] by ¢

n+mby N .

(2.68)

[D —AT
A 0

So, if (w, z) is complementary solution of the LCP (2.68), then (z1,...,2,) = Z is a
KKT point for (2.67).
A KKT point Z for (2.67) is said to be a reduced KKT point for (2.67) if the set

of column vectors {M.j = [ D.; ] : j such that z; > 0} is linearly independent.

A
Lemma 2.12 Let z be a KKT point for (2.67). From Z, we can derive either a
reduced KKT point & such that Q(Z) < Q(Z), or a feasible half-line in K along which

Q(x) diverges to —oo.

Proof. Let (w = (u,v),%z = (z,7)) be a KKT solution associated with z. Let J; =
{j : w; =0}, Jo ={j : z; = 0}. By complementarity J; UJy = {1,...,N}. From
the fact that (w,z) is a KKT solution (i.e., it satisfies (2.68)) it can be verified that
Q(z) = 3(cz + yT'b) = 3(c,bT)z. Consider the following LP
minimize (¢, b7)z
subject to w — Mz =g¢q
Wi = 0 for ] cJi
zZj = 0 for j € Js
w; > 0 for j € Jy
zj > 0for j & Jy

(2.69)
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If (w,z) is any feasible solution to this LP, from the constraints in (2.69) it is clear
that the corresponding x = (21,..., z,) is in K, and that w’z = 0 (complementarity),
by this complementarity we have Q(x) = %(c, b1z
There are only two possibilities for the LP (2.69). Either the objective function is
unbounded below in it, in which case there exists a feasible half-line, say {(w!, z!) +
A(wh, z") 1 X > 0} along which the objective value diverges to —oo (this implies that
the corresponding half-line {z! + Az" : X > 0} is in K and Q(z) diverges to —oo on
it), or that it has an optimum solution, in which case it has an optimum BFS. If (w, 2)
is an optimum BFS of (2.69), the corresponding z is a reduced KKT point for (2.67)
and Q(z) = 3(¢,b7)z < 1(c,07)z = Q(2).
[]

Lemma 2.13 Ifthe QP has a global optimum solution, it has a global optimum solu-

tion ¥ satisfying the property that the set of vectors { [ 37 ] : J such that z; > 0}
j

is linearly independent.

Proof. Follows from Lemma 2.12.

[]

Lemma 2.14 For given D, A; there exists a finite set of matrices L1,...,L;, each
of order n x N, such that for any ¢, b if x is a reduced KKT point of (2.67), then

T
CL’:Lt[C

b ] for some t.

Proof. Let z be a reduced KKT point for (2.67). Let (w = (u,v),z = (z,y)) be the
corresponding KKT solution. Then (w, z) is a BFS of an LP of the form (2.69). Since
it is a BFS, there exists a basic vector and associated basis B for (2.69) such that this
(w, z) is defined by

nonbasic variables = 0
basic vector = B~ g

The matrix L; can have its j** row to be 0 if z; is a nonbasic variable, or the r*" row
of B~lif x; is the r*" basic variable in this basic vector. By complementarity, there
are only 2N systems of the form (2.69), and each system has a finite number of basic
vectors, so the collection of matrices of the form L; constructed as above is finite and
depends only on D, A. So, for any g, any reduced KKT point must be of the form L.q
for some L; in this finite collection.

[

Theorem 2.17  Assume that K # (). Either the QP (2.67) has a global minimum,
or there exists a feasible half-line in K along which Q(z) diverges to —oo.

Proof. Let {a, : p=1,2,...} be an increasing sequence of positive numbers diverging
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to +o00, such that KN {z : ex < a1} # 0. Consider the QP

minimize cxr + %xTDx
subject to  Ax > b
x>0
er < qp

(2.70)

For every p in this sequence, (2.70) has a non-empty bounded solution set, and hence
has a global nimimum. By Lemma 2.12, it has a global minimum which is a reduced
KKT point for (2.70). Applying Lemma 2.14 to the QP (2.70), we know that there
exists a finite collection of matrices {L1,..., L;} independent of the data in the right
hand side constants vector in (2.70), such that every reduced KKT point for (2.70) is

of the form e e
Lt [ —b ] = Lt [ —b
ay 0

for some t. So, for each p = 1,2, ..., there exists a t between 1 to [ such that the global
minimum of (2.70) for that p is of the form given in (2.71). Since there are only a finite

0
+ apLy [o] (2.71)
1

number [, of these ¢’s, there must exist a ¢, say ¢1, which gives the global minimum for
an infinite number of p’s. Let the subsequence corresponding to these p’s in increasing
order be P = {p1,pa,...}. Let

T 0
i’ - Lt1 —b , g - Lt1 0
0 1

Then the global minimum for (2.70) is z(p,) = Z + a,,y when p = p,., for r =1,2,....
So, the optimum objective value in this problem is Q(a:(p,,)) = Q(:E + Ozprgj), and this
is of the form ap + a1, + azagr. The quantity o, is monotonic increasing with r,
so the set of feasible solutions of (2.70) for p = p, becomes larger as r increases, so
Q(a:(pT)) is monotonic decreasing with r. These facts imply that either as < 0 or
a2 =0and a; £ 0. Ifay < 0oray =0and a; <O, Q(a:(p,,)) diverges to —oo as
r tends to +oo, in this case {Z + Ay : A > «,, } is a half-line in K along which Q(z)
diverges to —oo. On the other hand, if as = a; = 0, Q(z) is bounded below by ag on
K, and in this case T + a7 is a global minimum for (2.67) for any r.

[]

The Algorithm

To compute a KKT point for (2.67), apply the complementary pivot method on the
LCP (v, F) of order n +m + 1, where

cT D —AT ¢
v = —b , F = A 0 0

Qn—i—m—f—l
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where ¢, 4m 41 is treated as a large positive valued parameter without giving any specific
value for it (i.e., ¢p1ms1 is treated as being larger than any numer with which it is
compared), with the original column vector of the artificial variable zy taken to be
(-1,-1,...,—1,0) € R"™™*! By Lemma 2.9, it can be verified that the matrix M
defined above is an Ly-matrix. If the complementary pivot method terminates in a
secondary ray, by Theorem 2.5, we conclude that

—Ar < —b
exr é Qn—i-m—i—l
r =2 0

is infeasible for g, +m,1 arbitrarily large, that is

Az

T

b
0

v v

is infeasible. So (2.67) is infeasible, if ray termination occurs in the complementary
pivot algorithm when applied on the LCP (v, F).

Suppose the complementary pivot method terminates with a complementary so-
lution (w = (w;), z = (z;)) where w,z € R"™™ " If w,4mi1 > 0, Znimy1r = 0,
it can be verified that ((@y,...,Wntm), (Z1,- .+, Zntm)) is a complementary solution
for the LCP ( [ < ] [D -4

—-b )’ A 0
T=(21,...,2,)T is a KKT point for (2.67).
On the other hand, if W, {41 = 0 and Z, 4,41 > 0 in the terminal complementary

] >, that is, it is a KKT solution for (2.67) and

BFS, the basic variables are affine functions of the large positive parameter ¢,4m41-
Let Z = (21,...,20)7, § = (Zng1s- -, Zngm). It can be verified that Q(Z) = 3(cZ +
bTy) — %qn+m+12n+m+1 and as ¢p4m+1 tends to 400, this diverges to —oo. Hence in
this case, Q(z) is unbounded below on K, and a feasible half-line along which Q(x)
diverges to —oo can be obtained by letting the parameter ¢,4m+41 tend to 400 in the
solution Z.

When D is not PSD, it is possible for (2.67) to have some KKT points, even when
Q(x) is unbounded below on K. Thus in this case the fact that this algorithm has
terminated with a KKT point of (2.67) is no guarantee that Q(z) is bounded below
on K.

2.9.3 Computing a Global Minimum,
or Even a Local Minimum in

Nonconvex Programming Problems May be Hard

Consider the smooth nonlinear program (NLP)
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minimize 0(x)

subject to  gi(z) >0, i=1tom (2.72)

where each of the functions is a real valued function defined on R"™ with high degrees
of differentiability. (2.72) is convex NLP if 0(x) is convex and g;(z) are concave for all
7, nonconvex NLP, otherwise.

A global minimum for (2.72) is a feasible solution z for it satisfying 6(z) > 0(z)
for all feasible solutions z of the problem. See Section 10.2. For a convex NLP, under
some constraint qualifications (see Appendix 4) necessary and sufficient optimality
conditions are known. Given a feasible solution satisfying the constraint qualification,
using these optimality conditions, it is possible to check efficiently whether that point
is a (global) optimum slution of the problem or not.

For a smooth nonconvex nonlinear program, the problem of computing a global
minimum, or checking whether a given feasible solution is a global minimum, are hard
problems in general. To establish these facts mathematically, consider the subset sum
problem, a hard problem in discrete optimization, which is known to be NP-complete
(see reference [8.12] for a complete discussion of AP-completeness): given postive
integers dy, dq,...,d,; is there a solution to

> djy; = do
7=1

y; = 0or 1 forall j

Now consider the quadratic programming problem (QP)

Jj=1

2
minimize (Z d;y; — do) + 22 yi(1—y;)
Jj=1 '

subject to 0<y; <1, j=1ton.

Because of the second term in the objective function, QP is a nonconvex quadratic
programming problem. Clearly, the subset-sum problem given above has a feasible
solution iff the global minimum objective value in QP is zero. Since the problem of
checking whether the subset-sum problem is A/P-complete, computing the global mini-
mum for QP, a very special and simple case of a smooth nonconvex NLP, is an A/P-hard
problem (see reference [8.12] for a complete discussion of NP-hardness). This shows
that in general, the problem of computing a global minimum in a smooth nonconvex
NLP may be a hard problem. See also Section 10.3 where some of the outstanding
difficult problems in mathematics have been formulated as those of finding global min-
ima in smooth nonconvex NLPs (for example, there we show that the well known
Fermat’s last Theorem in number theory, unresolved since 1637 AD, can be posed
as the problem of checking whether the global minimum objective value in a smooth
nonconvex NLP, (10.1), is zero or greater than zero).
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Since the problem of computing a global minimum in a nonconvex NLP is a hard
problem, we will now study the question whether it is at least possible to compute a
local minimum for such a problem by an efficient algorithm.

For nonconvex NLPs, under constraint qualifications, some necessary conditions
for a local minimum are known (see Section 10.2 for the definitions of a local minimum,
and Appendix 4 for a discussion of necessary conditions for a local minimum) and there
are some sufficient conditions for a point to be a local minimum. But there are no
simple conditions known, which are both necessary and sufficient for a given point to
be a local minimum. The complexity of checking whether a given feasible solution is
a local minimum in a nonconvex NLP, is not usually addressed in the literature. Many
textbooks in NLP, when they discuss algorithms, leave the reader with the impression
that these algorithms converge to a global minimum in convex NLPs, and to a local
minimum in nonconvex NLPs. The documentations distributed for many professional
NLP software packages also create the same impression. This impression could be quite
erroneous, in the general case. In this section we study this problem by examining the
computational complexity of determining whether a given feasible solution is not a local
minimum, and that of determining whether the objective function is not bounded below
on the set of feasible solutions, in smooth continuous variable, nonconvex NLPs. For
this purpose, we use the very special instance of an nonconvex quadratic programming
problem studied in K. G. Murty and S. N. Kabadi [10.32] with integer data, which
may be considered as the simplest nonconvex NLP. It turns out that the questions of
determining whether a given feasible solution is not a local minimum in this problem,
and to check whether the objective function is not bounded below in this problem, can
both be studied using the discrete techniques of computational complexity theory, and
in fact these questions are N/P-complete problems (see reference [8.12] for definition of
NP-completeness). This clearly shows that in general, it is a hard problem to check
whether a given feasible solution in a nonconvex NLP is even a local minimum, or to
check whether the objective function is bouned below. This indicates the following:
when a nonlinear programming algorithm is applied on a nonconvex NLP, unless it
is proved that it converges to a point satisfying some known sufficient condition for a
local minimum, claims that it leads to a local minimum are hard to verify in the worst
case. Also, in continuous variable smooth nonconvex minimization, even the down-to-
earth goal of guaranteeing that a local minimum will be obtained by the algorithm (as
opposed to the lofty goal of finding the global minimum) may be hard to attain.

We review the known optimality conditions for a given feasible solution Z to (2.72)
to be a local minimum. Let J = {i : g;(Z) = 0}. Optimality conditions are derived
under the assumption that some constraint qualifications (CQ, see Appendix 4) are
satisfied at z, which we assume.
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First Order Necessary Conditions for # to be a Local Minimum
for (2.72)

There must exist a jig = (fi; : 4 € J) such that

Vo(z) — > 1 Vgi(z) =0
i€d (2.73)
p; >0, forallzeJ.

Given the feasible solution Z, it is possible to check whether these conditions hold,
efficiently, using Phase I of the simplex method for linear programming.

Second Order Necessary Conditions for z to be a Local Minimum
for (2.72)

These conditions include (2.73). Given fy satisfying (2.73) together with z, let L(z,
py) = 0(x) — > ;cy #igi(z). In addition to (2.73) these conditions require

yTHy >0, for all y € {y : Vg;(Z)y = 0 for each i € J} (2.74)

where H is the Hessian matrix of L(z, fiy) with respect to x at = . Condition (2.74)
requires the solution of a quadratic program involving only equality constraints, which
can be solved efficiently. It is equivalent to checking the positive semidefiniteness of

a matrix which can be carried out efficiently using Gaussian pivot steps (see Section
1.3.1).

Sufficient Conditions for z to be a Local Minimum for (2.72)

Given the feasible solution z, and gy which together satisfy (2.73), the most general
known sufficient optimality condition states that if

yTHy > 0 for ally € T, (2.75)

where Ty = {y : y # 0 and Vg;(Z)y = 0 for each i € {i : 4 € J and fz; > 0}, and
Vgi(Z)y > 0 for each i € {i : i € J and ji; = 0}}, then Z is a local minimum for (2.72).
Unfortunately, when H is not positive semidefinite, the problem of checking whether
(2.75) holds, leads to a nonconvex QP, which, as we will see later, may be hard to
solve.

Aside from the question of the difficulty of checking whether (2.75) holds, we can
verify that the gap between conditions (2.74) and (2.75) is very wide, particulary when
the set {i:i € J and ji; = 0} # (). In this case, condition (2.74) may hold, and even if
we are able to check (2.75), if it is not satisfied, we are unable to determine whether z
is a local minimum for (2.72) with present theory.

Now we will use a simple indefinite QP, related to the problem of checking whether
the sufficient optimality condition (2.75) holds, to study the following questions :
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i) Given a smooth nonconvex NLP and a feasible solution for it, can we check
whether it is a local minimum or not efficiently 7

ii) At least in the simple case when the constraints are linear, can we check
efficiently whether the objective function is bounded below or not on the set
of feasible solutions ?

Let D be an integer square symmetric matrix of order n. The problem of checking
whether D is not PSD involves the question

“is there an = € R" satisfying =7 Dz < 0 ?” (2.76)

This can be answered with an effort of at most n Gaussian pivot steps, by the techniques
discussed in Section 1.3.1. This leads to an O(n3) algorithm for this problem. At the
termination of this algorithm, it is in fact possible to actually produce a vector z
satisfying 7 Dz < 0, if the answer to (2.76) is in the affirmative.

All PSD matrices are copositive, but a matrix which is not PSD may be copositive.
Testing whether the given matrix D is not copositive involves the question

“is there an = > 0 satisfying 7 Dz < 0 ?” (2.77)

If D is not PSD, no efficient algorithm for this question is known (the computational
complexity of the enumerative method of Section 2.9.1 grows exponentially with n in
the worst case). In fact we show later that this question is NP-complete. To study
this question, we are naturally lead to the NLP

minimize Q(z) = 2T Dx

subject to x >0 (2.78)

We will show that this problem is an A/P-hard problem.

We assume that D is not PSD. So @ () is nonconvex and (2.78) is a nonconvex
NLP. It can be considered the simplest nonconvex NLP. We consider the following
decision problems.

Problem 1: Is = 0 not a local minimum for (2.78) 7

Problem 2: Is ()(z) not bounded below on the set of feasible solu-
tions of (2.78) 7

Clearly, the answer to problem 2 is in the affirmative iff the answer to problem 1 is.
We will show that both these problems are N’P-complete. To study problem 1, we can
replace (2.78) by the NLP

minimize Q(z) = 2T Dx

subject to 0 <z; <1, j=1ton (2.79)

Lemma 2.15  The decision problem “is there an T feasible to (2.79) which satisfies
Q(z) < 07, is in the class NP (see [8.12] for the definition of the class NP of decision
problems).
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Proof. Given an z feasible to (2.79), to check whether () < 0, can be done by
computing @Q(z) which takes O(n?) time. Also, if the answer to the problem is in
the affirmative, an optimum solution T of (2.79) satisfies @Q(Z) < 0. There is a linear
complementarity problem (LCP) corresponding to (2.79) and an optimum solution for
(2.79) must correspond to a BFS for this LCP. Since there are only a finite number
of BFSs for an LCP, and they are all rational vectors, a nondeterministic algorithm
can find one of them satisfying Q(x) < 0, if it exists, in polynomial time. Hence, this
problem is in the class NP.

[]

Lemma 2.16  The optimum objective value in (2.79) is either 0 or < —2% where L
is the size of D, (i.e., the total number of binary digits in all the data in D).

Proof. Since the set of feasible solutions of (2.79) is a compact set and Q(x) is contin-
uous, (2.79) has an optimum solution. The necessary optimality conditions for (2.79)
lead to the following LCP

-0 o) ()= (0 280
[3]20, [5]20, (2.81)

(1) ()= a2

It can be verified that whenever (u,v,z,y) satisfies (2.80), (2.81) and (2.82), 27 Dz =
—eT'y, a linear function, where e is the column vector of all 1’s in R™. There exists
an optimum solution of (2.79) which is a BFS of (2.80), (2.81). By the results under
the ellipsoid algorithm (see, for example Chapter 8 in this book, or Chapter 15 in
[2.26]), in every BFS of (2.80), (2.81), each y; is either 0 or > 27L. If the optimum
objective value in (2.79) is not zero, it must be < 0, and this together with the above
facts implies that an optimum solution z or (2.79) corresponds to a BFS (u,v,z,y)
of (2.80), (2.81) in which —eTy < 0. All these facts clearly imply that the optimum
objective value in (2.79) is either 0 or < —2°%.
[]
We now make a list of several decision problems, some of which we have already
seen, and some new ones which we need for establishing our results.

Problem 3: Is there an x > 0 satisfying Q(z) <0 7

Problem 4: For any positive integer ag, is there an z € R" satisfy-
ing e’z =ag, >0 and Q(z) <07

Now consider a subset sum problem with data dy; di,...,d,, which are all positive

2
integers. Let v be a positive integer > 4 (do (2?21 dj)) n3. Let [ be the size of this
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subset sum problem, that is, the total number of binary digits in all the data for the
2
™. The subset sum problem is :

problem. Let € be a positive rational number < 270!

Problem 5: Subset sum problem: Is there a y = (y;) € R" satis-
fying 2?21 djy; = do, 0 <y; < 1,5 =1ton,andy
integer vector ?

1 = cesyn) T

We now define several functions involving nonnegative variables y = (y1,
and s = (s1,...,5,)7T, related to the subset sum problem.
2
n n
flys) =D diyj—do | +v D (wi+si—1%|+ Zygsg
7j=1 1=1

2

n n n
=D diy; | + D uisi+v D (i + i)
=1 =1 =1

n n
— 2dy Zdjyj +272(yj+3j)+n'y+d§
; =

n
f2(y73) :fl(y,8)+2d0 Zdjyj(l
7=1
2
n n n
= (D diyi | D wi+s)?+D uss
j=1 j=1 j=1
n
— 2d Zdjy? +2q/z y; +8;) +ny+dd
j=1 j=1
2
n n n
Fa(ys) = | D _diyy |+ (i + )+ D uis
7j=1 7j=1 7j=1

n
— 2dy Z djy]2 +d2 — ny
2

n n n
Sdiyi | A W+ )%+ D uss;
7j=1 7j=1 7j=1

- 2 d% —ny .

~2o Y+ () | L+ )
=1 '

J=1
2
n

o) = fat9) = (13) | D200+ 59)
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Let P = {(y,s) :y > 0,5 >0, 2?21(313' + sj) = n}. Consider the following additional
decision problems

Problem 6: Is there a (y,s) € P satisfying fi(y, s

IIA

Problem 7: TIs there a (y, s) € P satisfying f5(y, s

(Y, ) (Y, 5)
(9, 5) (¥, 5)
(9, 5) (¥, )
(Y, ) (y;8) <

[IA

07
07
07

Problem 8: TIs there a (y, s) € P satisfying f4(y, s

IIA

Problem 9: Is there a (y, s) € P satisfying f5(y, s

Theorem 2.18 Problem 4 is an NP-hard problem (see [8.11] for the definitions of
an N'P-hard problem).

Proof. Since f;(y, s) is a sum of nonnegative terms whenever (y, s) € P, if (y,5) € P
satisfies fi(y,s) < 0, then we must have f1(y,5) = 0, this clearly implies from the
definition of fi(y, s), that the following conditions must hold.

n
Zdjgj:d(]v gjjgjzoandgj—}-gj:l, foralljzlton.

These conditions clearly imply that 7 is a solution of the subset sum problem and that
the answer to problem 5 is in the affirmative. Conversely if § = (y;) is a solution to
the subset sum problem, define § = (§;) where §; =1 — g; for each j =1 to n, and it
can be verified that fy(g,$) = 0. This verifies that problems 5 and 6 are equivalent.

Whenever y is a 0-1 vector, we have y; = y2 for all 7, and this implies that
f1(y,8) = f2(7, s) for any s. So, from the above arguments, we see that if (7,5) € P
satisfies f1(g,5) < 0, then f1(7,5) = f2(9,5) = 0. If 0 < y; < 1, we have 2dod;y;(1—y;)
> 0. If (y,s) € P, and y; > 1, then (y; + s; — 1)% + 2dod;y; (1 — y;) > 0, since v is
large (from the definition of 7). Using this and the definitions of fi(y,s), fa(y, s), it
can be verified that for (y,s) € P, if fa(y,s) < 0 then fi(y,s) < 0 too. These facts
imply that problems 6 and 7 are equivalent.

Clearly, problems 7 and 8 are equivalent.

From the definition of & (since it is sufficiently small) and using Lemma 2.16, one
can verify that problems 8 and 9 are equivalent.

Problem 9 is a special case of problem 4. Since problem 5 is NP-complete, from
the above chain of arguments we conclude that problem 4 is NP-hard.

O
Theorem 2.19 Problem 4 is NP-complete.

Proof. The answer to problem 4 is in the affirmative iff the answer to the decision
problem in the statement of Lemma 2.15 is in the affirmative. So, from Lemma 2.15
we conlcude that problem 4 is in ANP. From Theorem 2.18, this shows that problem 4
is NP-complete.

[
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Theorem 2.20 Problem 3 is NP-complete.

Proof. Problems 3 and 4 are clearly equivalent, this result follows from Theorem 2.19.

[]
Theorem 2.21  Both problems 1 and 2 are NP-complete.

Proof. Problems 1 and 2 are both equivalent to problem 3, so this result follows from
Theorem 2.20.
[

Theorem 2.22 Given an integer square matrix D, the decision problem “is D not
copositive 7?7 is NP-complete.

Proof. The decision problem “is D not copositive ?” is equivalent to problem 1, hence
this result follows from Theorem 2.21.

[]

Can We Check Local Minimality Efficiently
In Unconstrained Minimization Problems 7

Let 6(z) be a real valued smooth function defined on R". Consider the unconstrained

problem
minimize 6(z) . (2.83)

A necessary condition for a given point Z € R"™ to be a local minimum for (2.83) is

(see Appendix 4)
VO(z) =0, H(O(z)) is PSD (2.84)

where H(0(z)) is the Hessian matrix (the matrix of second order partial derivatives)
of O(x) at z. A sufficient condition for Z to be a local minimum for (2.83) is

VoO(z) =0, H(0(z)) is positive definite. (2.85)

Both conditions (2.84) and (2.85) can be checked very efficiently. If (2.84) is satisfied,
but (2.85) is violated, there are no simple conditions known to check whether or not
is a local minimum for (2.83). Here, we investigate the complexity of checking whether
or not a given point z is a local minimum for (2.83), and that of checking whether 6(x)
is bounded below or not over R".

As before, let D = (d;;) be an integer square symmetric matrix of order n. Con-
sider the unconstrained problem,

minimize h(u) = (u3,...,u2)D(u3,... u2)T (2.86)

Clearly, (2.86) is an instance of the general unconstrained minimization problem (2.83).
Consider the following decision problems.

Problem 10: Is @ = 0 not a local minimum for (2.86) ?

Problem 11: Is h(u) not bounded below on R™ ?
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We have, for 7,7 =1 ton

Oh(u)

P = du;j((ui,...,u2)D.;)
0?h(u) .,
o Suiujdij, 1 F#J
0?h(u)

J

where D.; is the 4t column vector of D. So, % = 0 satisfies the necessary conditions
for being a local minimum for (2.86), but not the sufficient condition given in (2.85).

Using the transformation z; = ujz-, j =1 to n, we see that (2.86) is equivalent to
(2.78). So problem 1 and 10 are equivalent. Likewise, problems 2 and 11 are equivalent.
By Theorem 2.21, we conclude that both problems 10 and 11 are A’P-hard. Thus, even
in the unconstrained minimization problem, to check whether the objective function is
not bounded below, and to check whether a given point is not a local minimum, may
be hard problems in general. This also shows that the problem of checking whether a
given smooth nonlinear function (even a polynomial) is or is not locally convex at a
given point, may be a hard problem in general.

What Are Suitable Goals for Algorithms in Nonconvex NLP 7

Much of nonlinear programming literature stresses that the goal for algorithms in
nonconvex NLPs should be to obtain a local minimum. Our results here show that in
general, this may be hard to guarantee.

Many nonlinear programming algorithms are iterative in nature, that is, beginning
with a initial point 2%, they obtain a sequence of points {z" : 7 = 0,1, ...}. For some of
the algorithms, under certain conditions, it can be shown that the sequence converges
to a KKT point for the original problem, (a KKT point is a feasible solution at which
the first order necessary conditions for a local minimum, (2.73), hold). Unfortunately,
there is no guarantee that a KKT point will be a local minimum, and our results point
out that in general, checking whether or not it is a local minimum may be a hard
problem.

Some algorithms have the property that the sequence of points obtained is ac-
tually a descent sequence, that is, either the objective function, or a measure of the
infesibility of the current solution to the problem, or some merit function or criterion
function which is a combination of both, strictly decreases along the sequence. Given
x", these algorithms generate a y” # 0 such that the direction " + Ay", A > 0, is a de-
scent direction for the functions discussed above. The next point in the sequence z"t!
is usually taken to be the point which minimizes the objective or criterion function
on the half-line {z" 4+ Ay" : A > 0}, obtained by using a line minimization algorithm.
On general nonconvex problems, these methods suffer from the same difficulties, they
cannot theoretically guarantee that the point obtained at termination is even a local
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minimum. However, it seems reasonable to expect that a solution obtained through a
descent process is more likely to be a local minimum, than a solution obtained purely
based on necessary optimality conditions. Thus a suitable goal for algorithms for non-
convex NLPs seems to be a descent sequence converging to a KKT point. Algorithms,
such as the sequential quadratic programming methods discussed in Section 1.3.6, and
those discussed in Chapter 10, reach this goal.

2.10 Exercises

2.5 Let 0(x) be a convex function defined on R", which is known to be unbounded
below on R". Does there exist a half-line along which §(z) diverges to —oo ? Either
prove that it does, or construct a counterexample. Does the answer change if 0(z) is
known to be a differentiable convex function ?

2.6 Consider the problem
Minimize 0(x)
Subject to Az >b

where A is a matrix of order m x n, and 0(x) is a convex function. Suppose it is known
that 0(z) is unbounded below in this problem. Does there exist a feasible half-line along
which 6(x) diverges to —oo ? Either prove that it does, or construct a counterexample.
Does the answer change if §(z) is a differentiabl convex function ?

2.7 If the data in the LCP (g, M) satisfies
i) M+ MT >0, and
i) ¢ — MTz >0, z2>0 is feasible,
prove that the complementary pivot algorithm will terminate with a solution when
applied on the LCP (¢, M).
(Philip C. Jones [2.16])

2.8 Let G be the set {(w,z) cw—Mz=q, w>0, 220, wiz; =0 for all s ;éj}, and
let G=J(Gj:j=1ton). If M is PSD or a P-matrix, prove that G is a connected
subset of R". If (¢, M) is the LCP corresponding to the following quadratic program,
show that G is not connected.

minimize cx + %.TTDCL‘

subject to 0<xz < u

-2 -3 -3 10 4
where D = [3 -5 1],u [10],cT [3

-1 -1 4 10 5)
(W. P. Hallman and I. Kaneko [2.15])
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2.9 Prove that the complementary pivot algorithm will process the LCP (¢, M) if M
is a Z-matrix.

(R. Saigal [2.32])

2.10 Let {A.q,...,A.,_1} be a linearly independent set of column vectors in R". Let
§ = {y',...,y"} be another finite set of column vectors in R"”, and let b € R™ be
another given column vector. It is required to choose A., € § so that the minimum
distance from b to Pos{A4.1,..., A.,,} is a small as possible. Develop an efficient algo-
rithm for doing it.

2.11 Let - )

v- (5 4) - (%)
Show that the LCP (¢, M ) has a solution. However, show that all the variants of the
complementary pivot algorithm discussed in this Chapter are unable to find a solution

to this LCP (g, M).

2.12 Let (P) be a linear programming problem, and (@) the corresponding linear
complementary problem as obtained in Section 1.2. It has been suggested that the
sequence of solutions generated when the LCP, (Q), is solved by the complementary
pivot method, is the same as the sequence of solutions generated when the LP, (P), is
solved by the self-dual parametric algorithm (see Section 8.13 of [2.26]). Discuss, and
examine the similarities between the self-dual parametric algorithm applied to (P) and
the complementary pivot method applied on (Q).

2.13 Let
2 2 1 2 _4
3 3 2 3 —6
M=1_o5 1 5 o 4=| 4
1 -2 1 2 4

i) Prove that M is strictly copositive.
ii) Show that the LCP (g, M) has an infinite number of complementary feasible so-
lutions.

2.14 Given a square matrix M of order n, let K(M) denote the union of all the
complementary cones in C(M). Prove that K(M) is convex iff K(M) = {q : ¢+ M=z > 0,
for some z > 0}.

(B. C. Eaves [2.8])

2.15 Let aq,...,a,, b be positive integers satisfying b > max{ay,...,a,}. Let
q(n+2)=(ay,...,an,,—b,b)T
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0 0

_In

M(n+2) = 0 0
el —1 0

- 0 -1

n

where I,, is the identity matrix of order n, and el is the row vector in R" all the entries
in which are “1”. Consider the LCP (¢(n+2), M (n+2)) of order n+2. Are any of the
algorithms discussed in this chapter able to process this LCP ? Why 7 If not, develop
an algorithm for solving this LCP using the special structure of the matrix M.

2.16 Consider the quadratic program

minimize ~ —x1 — 225 + (20} + 42125 + 423)
subject to 3r1 — 29 — X3 =2
—r1 + 21’2 — Ty = 6

r; 20 forally.

Formulate this program as an LCP of order 4 and write down this LCP clearly. Does
a solution of this LCP lead to a solution of this quadratic program ? Why 7

It is required to solve this LCP using the variant of complementary pivot method
in which the column vector of the artificial variable is (1,2, 2,6)7. Obtain the canonical
tableau corresponding to the initial almost complementary basic vector, and then carry
out exactly one more pivot step in this algorithm.

2.17 Suppose B > 0, and the linear programs

i) Maximize c¢x; subject to Ax <b,z>0 and

ii) Minimize b”y; subject to (A+ B)Ty >c,y>0
have finite optimum solutions. Show that the complementary pivot algorithm termi-
nates with a complementary feasible solution for the LCP (¢, M) with

(3 e ()

(G. B. Dantzig and A. S. Manne [2.6])

2.18 Let I be a nonenmpty closed convex subset of R". For each x € R" let Pr(z)
denote the nearest point in I' to 2 in terms of the usual Euclidean distance. Prove the

following :
(i) ||Pr(z) —yl? <z — y||? for allz e R",y €.

(ii) ||Pr(z) — Pr(y)||? < ||z — y||? for all z,y € R™ .
(Y. C. Cheng [3.6])
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2.19 Let G and H be symmetric PSD matrices of order n and m respectively. Consider
the following quadratic programs :

- 1,.T 1, T
maximize cr — 5x° Gr — Jy" Hy

subject to  Ax — Hy <b

T >0

and
minimize by + %a:TGa: + %yTHy

subject to Gz + ATy > e’
y=0

Prove that if both the problems are feasible, then each has an optimal solution, and
the optimum objective values are equal; moreover, the optimal solutions can be taken
to be the same.

(R. W. Cottle [2.5] and W. S. Dorn [2.7])

2.20 Let M be a nondegenerate square matrix of order n. Let d € R", d > 0 be
such that for every J C {1,...,n}, if dy = (d; : j € J), Mgy = (my; : 4,5 € J),
then (Mjz)~'dy > 0. Then prove that if the LCP (g, M) is solved by the variant of
the complementary pivot algorithm discussed in Section 2.3.3 with —d as the original
column vector for the artificial variable z°, it will terminate with a solution of the LCP
after at most (n + 1) pivot steps.

(J. S. Pang and R. Chandrasekaran [8.18])

2.21 Consider the process of solving the LCP (¢, M) by the complementary pivot
algorithm. Prove that the value of the artificial variable zy decreases as the algorithm
progresses, whenever M is either a PSD matrix or a P-matrix or a Py-matrix, until
termination occurs.

(R. W. Cottle [4.5] and B. C. Eaves [2.8])

2.22 Consider the process of solving the LCP (¢, M) by the variant of the comple-
mentary pivot algorithm discussed in Section 2.3.3 with the column vector d > 0 as
the initial column vector associated with the artificial variable zy. Prove that in this
process, there exists no secondary ray for all d > 0 > ¢ iff M is an L,-matrix. Using
this prove that the variant of the complementary pivot algorithm discussed in Section
2.3.3 with the lexico minimum ratio rule for the dropping variable section in each step,
will always terminate with a complementary solution for all ¢, no matter what d > 0
is used, iff M is an L,-matrix.

(B. C. Eaves [2.8])
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2.23 Consider the convex quadratic programming problem
cx + 227 Dz

b
0

minimize Q(x)
subject Az

8
[AVAIAVAI

where D is a symmetric PSD matrix. If the problem has alternate optimum solution

prove the following :

(i) the set of optimum solutions is a convex set,

(i) (y — 2)TD(y — ) = 0 and actually (y — 2)TD = 0 for every pair of optimum
solutions x and y, of the problem,

(iii) the gradient vector of Q(z), VQ(x) is a constant on the set of optimum solutions,

(iv) the set of optimum solutions is the intersection of the constraint set with some
linear manifold.

(M. Frank and P. Wolfe [10.14])

2.24 Let A', B!, two given matrices of orders m x n each, be the loss matrices in
a bimatrix game problem. Prove that the problem of computing a Nash equilibrium
strategy pair of vectors for this bimatrix game, can be posed as the LCP (¢, M), where

=) = 5)

where A > 0 and B < 0. Prove (use Lemma 2.8) that the complementary pivot
algorithm will terminate with a solution when applied on this LCP.
(B. C. Eaves [2.8])

2.25 Consider the LCP (¢, M) of order n. Let C; be the set of feasible solutions of

the system
w— Mz =q
w, z 20
wjiz; =0, 7=2ton.

If ¢ is nondegenerate in the LCP (g, M) (i.e., if in every solution (w, z) of the system
of linear equations “w — Mz = ¢”, at least n variables are nonzero) prove that Cj is a
disjoint union of edge paths. What happens to this result if ¢ is degenerate 7

2.26 In Merrill’s algorithm for computing a Kakutani fixed point discussed in Section

2.7.8, we defined the piecewise linear map in the top layer of the special triangulation

of R" x [0,1] by defining for any vertex V = [11) ] , f(V) = [f(lv) ] where f(v)

is an arbitrary point chosen from the set F(v). Examine the advantages that could
be gained by defining f(v) to be the nearest point (in terms of the usual Euclidean
distance) in the set F(v) to v.
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2.27 Let M, q be given matrices of orders n x n and n x 1 respectively. If yT My +yTq
is bounded below on the set {y : y > 0}, prove that the LCP (¢, M) has a comple-
mentary solution, and that a complementary solution can be obtained by applying the
complementary pivot algorithm on the LCP of order (n + 1) with data

q M e ]
= , M =
1 [ dn+1 ] [ _eT 0

where g,+1 > 0, with the initial column vector associated with the artificial variable
z to be (—=1,...,—1,0) € R"*1.
(B. C. Eaves [2.8])

2.28 Consider the general quadratic program (2.67). If Q(z) is unbounded below on
the set of feasible solutions K of this problem, prove that there exists a feasible half-line
through an extreme point of K along which Q(x) diverges to —oo.

(B. C. Eaves [2.9])

2.29 Let M be a given square matrix of order n. Let {B.1,...,B..} be a given set
of column vectors in R™. It is required to check whether 27 Mz is > 0 for all z €
Pos{B.1,...,B.,.}. Transform this into the problem of checking the copositivity of a
matrix.

Can the problem of checking whether 27 Mz is > 0 for all # € {z : Az > 0} where
A is a given matrix of order m x n, be also transformed into the problem of checking
the copositivity of a matrix 7 How 7

2.30 (Research Problem) Application to pure 0-1 Integer Programming
Consider the pure 0-1 integer programming problem

minimize cx
subject to Az =0b
Dx > d

z; = 0or 1 forall j

where z € R", and ¢, A, b, D, d are the data in the problem. In the interval 0 < z; <1,
the function z;(1 — z;) is non-negative, and is zero iff z; is either 0 or 1. Using this we
can transfom the above discrete problem into a continuous variable optimization by a
penalty transformation as given below

n
minimize  cz + a( Y, x;(1 — z;))
7=1
subject to Ax =1b

Dz >d
0<z;<1,j=1ton
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where « is a large positive penalty parameter. This is now a quadratic programming
problem (unfortunately, it is a concave minimization problem and may have lots of
local minima, in fact it can be verified that every integer feasible solution is a local
minima for this problem). Check whether any of the algorithm for LCP discussed here
are useful to approach the integer program through the LCP formulation of the above
quadratic program.

2.31 Consider the system
w—Mz=q
w,z >0

where M is a given square matrix of order n. Let C; be the set of feasible solutions of
this problem satisfying the additional conditions

wizj =0, j=2ton.

Assuming that ¢ is nondegenerate in this system (i.e., that in every solution (w, z) of
the system of equations “w— Mz = ¢”, at last n variables are non-zero), study whether
C; can contain an edge path terminating with extreme half-lines at both ends, when
M is a copositive plus matrix.

2.32 (Research Problem) : Consider the general quadratic programming problem
(2.67) of Section 2.9.2, and let K be its set of feasible solutions.

Develop necessary and sufficient conditions for Q(x) to be unbounded below on
K. Develop an efficient procedure to check whether Q(z) is unbounded below on K.

In (2.67), the objective function is said to be strongly unbounded below, if it
remains unbounded below whatever the vector ¢ may be, as long as all the other data
in the problem remains unchanged. Develop necessary and sufficient conditions for
and an efficient procedure to check this strong unboundedness.

Extend the enumeration procedure for solving the general quadratic programming
problem under the assumption of a bounded feasible set discussed in Section 2.9, to
the case when K is unbounded.

The method discussed in Section 2.9 for solving this problem, may be viewed as a
total enumeration method (enumerating over all the faces of K). Develop an efficient
method for computing a lower bound for Q(z) on K, and using it, develop a branch and
bound method for solving this problem (this will be an efficient partial enumeration
method). (See B. C. Eaves [2.9] for some useful information on this problem.)

2.33 Let M be a square matrix of order n which is D + E where
D is symmetric and copositive plus
FE is copositive.
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Let ¢ € R,,. If the system Dz — ETy > —q, y > 0 is feasible, prove that the com-
plementary pivot algorithm will terminate with a solution when applied on the LCP
(g, M).

(P. C. Jones [2.17])

2.34 Let (w, z) be the solution of the LCP (g, M).
i) If M is PSD, prove that z7¢q < 0.
ii) If the LCP (g, M) comes from an LP prove that z7q = 0.

2.35 Prove that if M is a copositive plus matrix of order n, and ¢ € R" then the
optimum objective value in the following quadratic program is zero, if the problem has
a feasible solution.
minimize Q(z) = 27 (Mz + q)
subject to Mz +q >0
x >0

2.36 In Section 2.9.2, we have seen that if a quadratic function Q(z) is bounded
below on a convex polyhedron, then (x) has a finite global minimum point on that
polyhedron. Does this result hold for a general polynomial function ?

(Hint: Examine the fourth degree polynomial function f(z) = 22 + (122 —1)? defined
over R?).

(L. M. Kelly)

2.37 Apply the Complementary pivot method on the LCP with the following data.

(—4) (2 1 1)
a) g=|-5|, M= 1 2 1
( —1) (1 1 2)
(—1) (1 2 0)
b) ¢g=\|-2]1, M=|-2 -1 0
( —3 ) (-1 -3 -1)
(—1) (-1 2 —2)
c) g=1-2|, M= 2 -1 2.
\_3/ \_2 2 _1J

Verify that (z1, 22, 23) is a complementary feasible basic vector for (c).
Also, solve (a) by the variant of the complementary pivot method discussed in
Section 2.4.
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Chapter 3

SEPARATION PROPERTIES,
PRINCIPAL PIVOT TRANSFORMS,
CLASSES OF MATRICES

In this chapter we present the basic mathematical results on the LCP. Many of these
results are used in later chapters to develop algorithms to solve LCPs, and to study
the computational complexity of these algorithms. Here, unless stated otherwise, I
denotes the unit matrix of order n. M is a given square matrix of order n. In tabular
form the LCP (¢, M) is

w z q
w >0, z >0, wlz=0 (3.1)

Definition: Subcomplementary Sets of Column Vectors

A vector (Y1, Yi—1,Yit1s---sYn) Where y,. € {w,., 2.} forr=1,...;i—1,i4+1,...,n
is known as a subcomplementary vector of variables for the LCP (3.1). The com-
plementary pair (w;, z;) is known as the left-out complementary pair of variables
in the subcomplementary vector (yi,...,¥%i—1,%i+1,---,Yn). Let A.; be the column
vector associated with y; in (3.1). The ordered set (A.1,...,Ai—1,Aiy1,...,Ap) is
known as a subcomplementary set of column vectors for the LCP (3.1), and
(I.;,—M.;) is the left-out complementary pair of column vectors in this sub-
complementary set of column vectors.

Sometimes we have to refer to subcomplementary sets which are complementary
sets with several elements missing. For this, we adopt the following notation. Let
Jc{l,...,n}, T #0,J a proper subset. The vector (y; : j € J) where y; € {w;, z;}
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for all j € J is said to be a subcomplementary vector of variables for (3.1) associated
with the subset J. Let t; be the complement of y; and let A.; be the column vector
associated with y; in (3.1), and let B.; be the complement of A.;, for j € J. Then
{A.; : j € J} is said to be a subcomplementary set of column vectors associated with
J, and {B.; : j € J} is its complement. The subcomplementary vector (¢; : j € J) is
the complement of the subcomplementary vector (y; : j € J).

3.1 LCPs ASSOCIATED WITH PRINCIPALLY
NONDEGENERATE MATRICES

If y = (y1,...,Yn) is & complementary vector of variables for (3.1), define

Z(y) = {j : j such that y; = z;} (3.2)
W (y) = {j : j such that y; = w;}. .
Theorem 3.1 If y is a complementary vector of variables for (3.1), it is a com-
plementary basic vector iff the principal subdeterminant of M corresponding to the
subset Z(y) is nonzero.

Proof. Let the cardinality of Z(y) be r. Let A be the complementary matrix associated
with y. For j € W(y), A.; =1.; and for j € Z(y), A.; = —M.;. If r =0, A =1 and its
determinant is 1. If » > 0, by expanding the determinant of A in terms of its elements
in the jth column for each j € W(y) in some order, we see that the determinant of A
is (—1)" (principal subdeterminant of M corresponding to the subset Z(y)). Since y is
a complementary basic vector iff the determinant of A is nonzero, the result follows.
[]
As an example, let n = 4, and consider the LCP (¢, M). Let y = (w1, 22, w3, 24)
be a complementary vector of variables for this problem. The corresponding comple-
mentary matrix is
1 —1MmM12 0 —Mi4
0 —MmMoo 0 —1M24
0 —132 1 —1N34
0 —My2 0 —My4

—Ma22  —M24
—Myg2  —MM44
pal subdeterminant of M corresponding to the subset Z(y) = {2, 4} is non-zero. Thus,
in this problem, y is a complementary basic vector iff the principal subdeterminant of

and its determinant is determinant [ , which is non-zero iff the princi-

M corresponding to the subset Z(y) is non-zero.

Corollary 3.1 Every complementary vector of variables is a basic vector for (3.1)
iff M is a nondegenerate matrix. This follows from Theorem 3.1 and the definition of
nondegeneracy of a matrix.
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Corollary 3.2 The complementary cone associated with the complementary vector
of variables y for (3.1) has a nonempty interior iff the principal subdeterminant of M
corresponding to the subset Z(y) is nonzero.

Proof. If A is the corresponding complementary matrix, the complementary cone is
Pos(A), and it has nonempty interior iff the determinant of A is nonzero. So the result
follows from Theorem 3.1.

[]

Corollary 3.3 Every complementary cone in the class C(M) has a nonempty interior
iff M is a nondegenerate matrix. This follows from Corollary 3.2.

Theorem 3.2  The LCP (q, M) has a finite number of solutions for each ¢ € R" iff
M is a nondegenerate matrix.

Proof. Let (w, %) be a solution of the LCP (¢, M). Let A.; = —M.; if 2; > 0, I;
otherwise; and o; = 2; if Z; > 0, w; otherwise. Then (A.1,...,A.,) is a complementary
set of column vectors and ¢ = 2?21 ajA.;. In this manner each solution of the
LCP (q, M) provides an expression of ¢ as a nonnegative linear combination of a
complementary set of column vectors. There are only 2™ complementary sets of column
vectors. If ¢ € R" is such that the LCP (¢, M) has an infinite number of distinct
solutions, there must exist a complementary set of column vectors, say (A.q,...,A.,),
such that ¢ can be expressed as a nonnegative linear combination of it in an infinite
number of ways. So there exist at least two vectors of = (af,...,af)T >0,t=1,2
such that a! # a? and ¢ = Aa! = Aa?. So A(a! — a?) = 0, and since ol #
a?, {A.4,...,A.,} is linearly dependent. By Theorem 3.1, this implies that M is
degenerate.

Conversely suppose M is degenerate. So, by Theorem 3.1, there exists a com-
plementary set of column vectors, say {A.1,..., A.,} which is linearly dependent. So
there exists a 3 = (f81,...,0,) # 0 such that 2?21 BjA.; = 0. Let § = Maximum
{I8;: 7 =1 ton}. Since 3# 0,5 > 0. Define g = 52?:1 A.j. Let (y1,-..,yn) be the
complementary vector associated with (A.1,..., A.,). Define a solution (w(X), z(A))
by

Complement of y; =0, 7=1ton
Yy =0+ ABj, j=1ton.

Then (w(A),z(A)) is a solution of the LCP (g, M) for each 0 < A < 1, and since 3 # 0,
each of these solutions is distinct. So if M is degenerate, there exist a ¢ € R" such
that the LCP (¢, M) has an infinite number of distinct solutions.

(3.3)

[
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Example 3.1

Consider the following LCP

wy W2 21 z22

1 0 -1 -1 -2
0 1 -1 -1 —2

wi, W, 21,22 2 0, w121 = waze =0

We have

These facts imply that (wy, ws; 21, 22) = (0,0; 14+60,1—0)7T is a complementary solution
to this LCP for all 0 <0 < 1.

The set of ¢ for which the number of complementary solutions for the LCP (¢, M)
is infinite, is always a subset of the union of all degenerate complementary cones.
Also if the LCP (¢, M) has an infinite number of complementary solutions, ¢ must be
degenerate in it (that is, ¢ can be expressed as a linear combination of (m — 1) or less
column vectors of (I : —M)).

Result 3.1 If ¢ is nondegenerate in the LCP (¢, M) of order n (that is, if in
every solution to the system of equations w — Mz = ¢, at least n of the variables in
the system are non-zero), every complementary solution of the LCP (¢, M) must be
a complementary BFS, and so the number of complementary solutions to the LCP
(g, M) is finite and < 27.

Proof. In every complementary solution of the LCP (g, M) at most n variables can
be positive by the complementarity constraint, and hence exactly n variables have to
be positive by the nondegeneracy of ¢, that is one variable from every complementary
pair of variables must be strictly positive. Consider a complementary solution (w,z)
in which the positive variable from the complementary pair {w;, 2;} is y; say, for j =1
to n and suppose y; has value ; > 0 in the solution. Let A.; = I; if y; = wj, or
—M.; otherwise. So

n
q = ZyJA] .
j=1

If {A.4,..., A} is linearly dependent, let the linear dependence relation be

0= zn: ajA.j
j=1
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where o = (ay,...,a,)T # 0. Suppose a; # 0. Let A = — (¥, /1), then 7; + Aoy = 0.
From the above two equations, we have

n n
q= Z(yj + )\O[j)A.j = Z@J + )\aj)A.j
7=1 j=2
that is, ¢ is expressed as a linear combination of {A.q,..., A.,} which is a subset of

n — 1 columns of (I * —M), contradicting the nondegeneracy of q. So {A.1,..., A}

must be linearly independent, that is A = (A.; : -- : A.,) is a complementary basis,
and hence the representation of ¢ as a linear combination of the columns of A is unique,
and (w,z) is a complementary BFS. Thus under the nondegeneracy assumption of g,
every complementary solution for the LCP (¢, M) must be a complementary BFS.
Since the total number of complementary bases is < 2", this implies that there are at
most 2™ complementary solutions in this case.

[]

3.2 PRINCIPAL PIVOT TRANSFORMS

Let y = (y;) be a complementary basic vector associated with the complementary
basis A for (3.1). Let t; be the complement of y; for j = 1 to n (i. e., t; = w; if
y; = zj, t; = zj if y; = w;). Let B.; be the complement of A.; for j = 1 to n, and
B = (B.,...,B.;). Obtain the canonical tableau of (3.1) with respect to the basic
vector y, and after rearranging the variables suppose it is

basic vector Yi---Yn t1...t,

y 4 —D a (3.4)

Then the matrix D is known as the principal pivot transform (PPT in abbrevi-
ation) of M associated with the complementary basic vector y or the corresponding
complementary basis A of (3.1). Clearly D = —A~1B. Also (3.4) can be viewed as the
system of equations of an LCP in which the complementary pairs are (y;,t;), j =1 to
n. Remembering that the variables in (3.4) are just the variables in (3.1) arranged in
a different order, we can verify that the canonical tableau of (3.4) with respect to its
basic vector (wq,...,wy,) is (3.1). This clearly implies that M is a PPT of D. Hence
the property of being a PPT is a mutual symmetric relationship among square matrices
of the same order.
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Consider the LCP (¢, M) where

-1 -2 0 -1
wel
0 —2 0 2
The LCP (¢, M) is
w1 ws W3 W4 21 Zz 23 24
r 0o o o 1 2 0 1 |q
o 1 o0 o0 1 -1 1 2 | g
o o 1 o0 0 1 -1 1 | g3
0o 0 O 1 0 2 0 -2 |q
wj,z; 2 0, wjz; =0 for all j.

(21, wa, 23, wy4) is a complementary basic vector for this problem. The canonical tableau
with respect to it is

Z1 W2 23 W4 W1 Z2 W3 Z4

=] =] =]
=)
[a—t
=)
=]
|
[t
|
L

Thus the matrix

-1 -2 0 -1

1 2 -1 =2

D= 0 1 1 1
0 -2 0 2

is a PPT of M and vice versa.

Each complementary basic vector for (3.1) leads to a PPT of M. We thus get a
class of matrices containing M, such that each matrix in the class is a PPT of each
other matrix in the class. Some of the matrices in the class may be equal to the others
as matrices (for example, it can be verified that every PPT of I is equal to I). This
class of matrices is known as the principal pivot transform class of M.
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Single and Double Principal Pivot Steps

Ify = (y1,-..,yn) is a complementary basic vector for (3.1), then y, can be replaced in
this basic vector by its complement, to yield another complementary basic vector for
(3.1), iff the rth diagonal element in the PPT of M corresponding to y is nonzero. If this
condition is satisfied, the pivot operation of replacing ¥, by its complement, is known
as a single principal pivot step in the rth position in the complementary
basic vector y.

Suppose for r # s, the rth and sth diagonal elements in M = (m;;), the PPT of
M corresponding to the complementary basic vector y, are both zero. Then it is not
possible to make a single principal pivot step either in the rth position, or in the sth
position, in the complementary basic vector y. However, suppose m!.. # 0 and m’, # 0.
In this case we can perform two consecutive pivot steps, in the first one replacing ¥,
in the basic vector by the complement of y,, and in the second one replacing y, in the
resulting basic vector by the complement of y,. In the canonical tableau obtained at
the end of these two pivot steps, the column vector associated with the complement of
ys 18 I.,. and the column vector associated with the complement of ¥, is I.s. So, now
interchange rows r and s in the canonical tableau. After this interchange it can be
verified that in the new canonical tableau the column vector associated with the basic
variable from the jth complementary pair, in the new complementary basic vector, is
I;, for all j (including j = r and s). This operation (one pivot step in position (7, s)
replacing y,- in the basic vector by the complement of y,, followed by another pivot step
in position (s,r) replacing ys in the resulting basic vector by the complement of y,.,
followed by an interchange of rows r and s in the resulting canonical tableau) is called
a double principal pivot step in positions r and s in the complementary

basic vector y. Clearly, this double principal pivot step in positions r and s can

m/

only be carried out if the order two determinant [ 27’" 7e ] # 0. If this order two

sTr S8

determinant is nonzero, and one of its diagonal entries, say m/’

rrs 1S ONZETO; carrying

out the double principal pivot in positions r and s in the complementary basic vector
y, can be verified to have exactly the same effect as carrying out two single principal
pivot steps, first in position 7 in y, and then in position s in the complementary basic
vector resulting from the first. In general, in the algorithms discussed in the following
chapters, a double principal pivot in positions r and s will only be performed if the
diagonal entry in the PPT of M in at least one of the two positions r and s is zero
(i. e., either m,,. = 0 or m., = 0 or both).
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Example 3.3

Consider the following LCP

basic
variable wy W W3 Wa 21 29 X3 24
w1 1 0 0 0 -1 1 -1 -1 | q¢1
wa 0o 1 0 0 -1 0 0 1 |gq
w3 o 0 1 0 0 0 -1 -1 |gs
wy 0 0 0 1 1 —1 1 0 | q4
wj,2; 2 0, and w;z; = 0 for all j

In this problem, in the complementary basic vector w, single principal pivot steps
are only possible in positions 1 and 3. Carrying out a single principal pivot in the
complementary basic vector w in position 1 leads to the following

basic
variable Z1 Wy W3 W4 Wi 29 23 24
Z1 1 0 0 0 -1 -1 1 1 |d¢
wa o 1 0 0 -1 -1 1 2 | qb
ws o 0 1 0 0 0 —1 -1 |q
wy 0 0 0 1 1 0 0 -1 |q

In the above canonical tableau, we have also rearranged the column vectors so that the
basic variables, and the nonbasic variables, appear together and in their proper order.
We can make a double principal pivot step in the complementary basic vector w, in

positions 2, 4 in this problem, because the determinant of the 2 x 2 matrix [ _(1) (1) ]

is non-zero. Carrying out this double principal pivot step requires replacing the basic
variable ws in the basic vector (w, ws, w3, w4) by z4, then replacing the basic variable
wy in the resulting basic vector (wy, z4, w3, w4) by z2, and finally interchanging rows 2
and 4 in the resulting canonical tableau. This is carried out below.
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basic
variable wy Ws W3 Wg 21 Xy 23 24
w1 1 1 0 0 -2 1 -1 0 |q¢
24 o 1 0 0 -1 0 0 1 |d
w3 0 1 1 0 -1 0 =1 0 | d4
Wy o 0 o0 1 1 -1 1 0 | q
w1 1 1 0 1 -1 0 0 0 |dqf
24 o 1 0 0 -1 0 0 1 |44
w3 0 1 1 0 -1 0 -1 0 |d¢
22 o 0o 0 -1 -1 1 -1 0 |gqf
w1 1 1 0o 1 -1 0 0 0 |dqf
22 o o o0 -1 -1 1 -1 0 |gqf
w3 0 1 1 0 -1 0 -1 0 |¢
24 o 1 0 O -1 0 0 1 |4

Block Principal Pivoting

Consider the LCP (¢, M), (3.1). Let J C {1,...,n} be such that Mjy, the principal
submatrix of M corresponding to the subset J, is nonsingular. Define the complemen-
tary vector y = (y;) by

[ wy, for j ¢ J
Yi = zj, forjed

and let A be the complementary matrix corresponding to y. Since Myy is nonsingular,
A is a basis. Let t; be the complement of y; for each j = 1 to n, and let t = (¢;).
Multiplying (3.1) on the left by A=! and rearranging the variables leads to the LCP

Y t
I -D q

y,t >0, yTt=0

where ) )
Djy3 = (Mjy3)™ ", Dy5 = —(M33)” M;5

Dyy = Mgy (Mys)™", Dy = Mgz — Mgy (Maz) ™" My5
a5 = —(My3)" ", d5 = a5 — M5;(M33) " "as -
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Here J = {1,...,n}\ J, and M,5 is the submatrix (m;; : i € J,j € J), etc.; and
g3 = (gj : j € J), etc. D is of course the PPT of M corresponding to the complemen-
tary basic vector y. The above LCP (¢’, D) is said to have been obtained from the
LCP (¢, M) in (3.1) by a block principal pivot step in positions J (or by block
principal pivoting on —Mjy) in (3.1).

Corollary 3.4 If M is a nondegenerate matrix, a single principal pivot step in any
position is always possible in every complementary basic vector.

Proof. Follows from Corollary 3.1 and the argument used in Theorem 3.1.

[]

Corollary 3.5 A square matrix M of order n is nondegenerate (that is, principally
nondegenerate to be specific) iff every diagonal entry in every PPT of M is non-zero.

Proof. Follows from Corollary 3.1.
[]

Theorem 3.3  If M is a PD or a P-matrix, or a nondegenerate matrix in general;
starting with a complementary basic vector y' = (y1,...,yl), any other complemen-
tary basic vector y*> = (y?,y3,...,y2) for (3.1), can be obtained by performing a
sequence of single principal pivot steps.

Proof. In these cases, by Corollary 3.1 every complementary vector of variables is a
complementary basic vector. Hence if y! and y? have n — r common variables; each of
the variables in y! which is not in 2, can be replaced by its complement, to lead to
y? after r single principal pivot steps.

[]

Theorem 3.4  All PPTs of a nondegenerate matrix are nondegenerate.

Proof. Let M be nondegenerate. Let y, y be distinct complementary vectors of vari-
ables associated with the complementary matrices A, A respectively in (3.1). Since M
is nondegenerate, A is a complementary basis. Let (3.4) be the canonical tableau of
(3.1) with respect to y. So D is the PPT of M corresponding to y. We will now prove
that D is nondegenerate. Look at (3.4). The complementary matrix corresponding to
the complementary vector of variables g in (3.4) is A_lfl, and this matrix is nonsingu-
lar since both A and A are. Hence ¢ is a complementary basic vector for (3.4). Since §
is an arbitrary complementary vector of variables, this implies that all complementary
vectors of variables in (3.4) are basic vectors.

Hence by Corollary 3.1, D is nondegenerate.

Theorem 3.5 All PPTs of a P-matrix are P-matrices.

Proof. Let M = (m;;) be a P-matrix of order n. Consider a single principal pivot
step on (3.1) in any position, say position 1. The pivot matrix corresponding to this
pivot step is P, which is the same as the unit matrix of order n, with the exception
that its first column vector is (—1/my1, —mia/mi1, ..., —min/mi1)T. Let M’ be the
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PPT of M obtained after this pivot step. Let J = {j1,...,5.} € {1,...,n}, I # 0,
and let A be the principal subdeterminant of M’ corresponding to the subset J. We
will now prove that A > 0. We consider two cases separately.

Case 1: 1 ¢ J. Let y = (y1,...,yn) where y; = w; if j ¢ JU {1}, or z; otherwise.
Let A, A be the complementary bases corresponding to y, in the original LCP (3.1)
and in the canonical tableau for (3.1) obtained after the single principal pivot step
in position 1, respectively. So A = PA. Let A; be the principal subdeterminant
of M corresponding to the subset {1} UJ. We have A = (—1)" (determinant of
A) = (=1)" (determinant of PA) = (—1)" (determinant of P) (determinant of A) =
(=) (=1/my1)(=1)" A = (A1/mq1) > 0, because my; > 0 and Ay > 0 since M is
a P-matrix.

Case 2: 1 € J. In this case let y = (y1,...,yn) where y; = z; if j € J\ {1},
or w; otherwise. Let A, A be the complementary bases corresponding to y, in the
original LCP (3.1), and in the canonical tableau for (3.1) obtained after the single
principal pivot step in position 1, respectively. Then A = PA. Let A, be the prin-
cipal subdeterminant of M determined by the subset J\ {1}. As in Case 1, we have
A = (=1)" (determinant of A) = (—1)" (determinant of P) (determinant of A) =
(=1)"(=1/m11)(—1)""tAs = (As/m11) > 0, since both Ay, my; are strictly positive
because M is a P-matrix.

Hence the principal subdeterminant of M’ corresponding to the subset J is strictly
positive. This holds for all subsets J C {1,...,n}. So M’ is itself a P-matrix.

Thus the property of being a P-matrix is preserved in the PPTs of M obtained
after a single principal pivot step on (3.1). By Theorem 3.3 any PPT of M can be
obtained by making a sequence of single principal pivot steps on (3.1). So, applying
the above result repeatedly after each single principal pivot step, we conclude that

every PPT of M is also a P-matrix.
[

Theorem 3.6 If all the diagonal entries in every PPT of M are strictly positive,
M is a P-matrix.

Proof. By the hypothesis of the theorem all principal subdeterminants of M of order
1 are strictly positive.

Induction Hypothesis: Under the hypothesis of the theorem, all principal subde-
terminants of M of order less than or equal to r are strictly positive.

We will now prove that under the hypothesis of the theorem, the induction hy-
pothesis implies that any principal subdeterminant of M of order r 4 1 is also strictly
positive. Let A; be the principal subdeterminant of M corresponding to the subset
{j1s-- -y Jrsdrr1} C {1,2,...,n}. Carry out a single principal pivot step in position
Jr+1 in (3.1) and let M’ be the PPT of M obtained after this step. Since M’ is a PPT
of M it also satisfies the hypothesis of the theorem. So by the induction hypothesis, all
principal subdeterminants of M’ of order r or less are strictly positive, and so A, the
principal subdeterminant of M’ corresponding to the subset {ji1,...,7-},is > 0. Asin
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the proof of Theorem 3.5 we have A = Ay/my; ., j .., that is Ay =my ;. A, and
since mj, _, j.., > 0, A >0, we have A; > 0. So under the hypothesis of the theorem,
the induction hypothesis implies also that all principal subdeterminants of M of order
r + 1 are strictly positive. Hence by induction, all principal subdeterminants of M are

strictly positive, and hence M is a P-matrix.

[
Corollary 3.6 The following conditions (i) and (ii) are equivalent
(i) all principal subdeterminants of M are strictly positive
(ii) the diagonal entries in every PPT of M are strictly positive.
Proof. Follows from Theorem 3.5, 3.6. .

Corollary 3.7 If M is a P-matrix, in making any sequence of single principal pivot
steps on (3.1), the pivot element will always be strictly negative.

[]

Theorem 3.7 Let M’ be a PPT of M obtained after carrying out exactly one single
principal pivot step. Then M’ is PD if M is PD. And M’ is PSD if M is PSD.

Proof. Let M = (m;;). Let u = (ug,...,u,)T € R". Define v = (vq,...,v,)7 by

v—Mu=0. (3.5)

!/

Suppose M’ = (my;
step in (3.5) in position r. So m,.. # 0. After this single principal pivot step in position
r, (3.5) becomes

) is the PPT of M obtained after making a single principal pivot

(U1, + vy Up 1y Uy Uy Ly -+ o5 Un) T = M (U, oo Uy 1, Upy Upg1y - - Up) T = 0. (3.6)

For any u € R"™ and v defined by (3.5), let & = (u1,.. ., Up_1, Up, Upi1,y ..., Up),
N = (ViyereyUp_1,Up, Vpi1,...,Uy). Since v, = M,.u and m,,. # 0, as u varies over
all of R", ¢ also varies over all of R™. Also, as u varies over all the nonzero points
in R™, ¢ does the same. Since (3.6) is obtained from (3.5) by a pivot step, they
are equivalent. So for any u € R"™ and v defined by (3.5), (3.6) also holds. Now
uf Mu = uTv = Ty = €T M'¢. These facts imply that €TM’€ > 0 for all € € R™ iff
uTMu > 0 for all w € R™ and £€TM'¢ > 0 for all £ # 0 iff u" Mu > 0 for all u # 0.
Hence M is PD iff M’ is PD. And M’ is PSD iff M is PSD.
[

Theorem 3.8 Let M" be a PPT of M obtained after carrying out exactly one
double principal pivot step. Then M" is PD if M is PD. And M" is PSD if M is PSD.

Proof. Let M = (m;;). Let u = (u1,...,u,)T € R"™. Define v = (v1,...,v,)T by
(3.5). Suppose M" = (m;}) is the PPT of M obtained after making a double principal
pivot step in positions r and s. This implies that

—Mgs —Mgy

A = determinant [
—Myg — My

] #o.
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as otherwise the double principal pivot step in positions r and s cannot be carried
out on (3.5). For any u € R" and v defined by (3.5) define & = (uq,...,us_1,vs,
UstlyroryUp—1,Upy Up41s.-0,y Un)T7 n= (Ulv sy Us—1y Ugy Ustly oo oy Up— 1y Upy Up g1y o v oy Un)T'I
Then after this double principal pivot step in positions r and s, (3.5) gets transformed
into

n—M"€E=0. (3.7)

Since (3.7) is obtained by performing two pivots on (3.5), they are equivalent. So for
any v € R"” and v defined by (3.5), (3.7) holds and we have uT Mu = uTv = ¢Tn =
ETM"¢. Also, since A # 0, as u varies over all of R™, so does &; and as u varies over
all nonzero points in R™ so does £. These facts imply that ¢TM”¢ > 0 for all ¢ € R™
iff T Mu >0 for all u € R" and ¢TM”¢ > 0 for all £ # 0 iff wT Mu > 0 for all u # 0.
Hence M" is PD iff M is PD, and M" is PSD iff M is PSD.

[]

Theorem 3.9  If M is a PD matrix, all its PPTs are also PD.

Proof. By Theorem 3.3 when M is PD, every PPT of M can be obtained by carrying
out a sequence of single principal pivot steps on (3.1). By applying the argument
in Theorem 3.7 repeatedly after each single principal pivot step in the sequence, we
conclude that all PPTs of M are also PD, if M is.

[

Theorem 3.10 If M is PSD, any PPT of M can be obtained by making a sequence
of single or double principal pivot steps on (3.1). Also, all these PPTs of M are also
PSD.

Proof. Let y = (y1,...,yn) be a complementary basic vector of (3.1). Starting with
the complementary basic vector w, perform single principal pivot steps in position j for
as many j € Z(y) as possible in any possible order. If this leads to the complementary
basic vector y, we are done by repeated use of the result in Theorem 3.7 after each single
principal pivot step. Suppose y has not yet been obtained and no more single principal
pivot steps can be carried out in the remaining positions j € Z(y). Let u = (uq,...,uy)
be the complementary basic vector at this stage. Let U = {j : j such that u; # y,}.
So U # 0, U C Z(y). And for each j € U, we have u; = wj, y; = z;. Let t; denote
the complement of u;, j =1 to n. Let the canonical tableau of (3.1) at this stage be

basic vector ULy ooy Up ti,....t, q

u I M | q (3.8)

M’ is the PPT of M corresponding to U, it is PSD by repeated use of Theorem 3.7.
We have —m/;
out in these positions). If U is a singleton set, this would imply that the set of column
vectors corresponding to y in (3.8) is linearly dependent, a contradiction, since y is a

= 0 for each j € U (as single principal pivot steps cannot be carried

complementary basic vector. So cardinality of U is > 2. Let r € U. Since m,.,. = 0 and
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M’ is PSD, by Result 1.6 we have m/.., +m}_ = 0 for all i = 1 to n. Search for an s € U
such that m!, # 0. If an s like this does not exist, again the set of column vectors
corresponding to y in (3.8) is linearly dependent, and y is not a complementary basic
vector, a contradiction. So there always exists an s € U such that m/,. # 0. Since
mi.s +m.,. =0, ml. . #0 too. So the determinant

[ m;’?" m;"s ]

m;?" m;s

is nonzero, and a double principal pivot step can be carried out in (3.8) in positions r, s.
The complementary basic vector obtained after this double principal pivot step contains
two more variables in common with y than u does, and the PPT of M corresponding to
it is also PSD by Theorem 3.8. Delete r, s from U. In the resulting canonical tableau,
make as many single principal pivot steps in positions j € U as possible, deleting such
j from U after each step. Or make another double principal pivot step in positions
selected from U as above, and continue the same way until U becomes empty. At that
stage we reach the canonical tableau with respect to y. By repeated use of Theorems
3.7, 3.8, the PPT of M with respect to y is also PSD.

[
3.2.1 Principal Rearrangements of a Square Matrix
Let M be a given square matrix of order n. Let p = (i1,...,i,) be a permutation of
(1,...,n). The square matrix P of order n whose rows are I; ., I;,.,...,I; . in that

order, is the permutation matrix corresponding to the permutation p. P is obtained
essentially by permuting the rows of the unit matrix I of order n using the permutation
p. The matrix M’ = PMPT is known as the principal rearrangement of M according
to the permutation p. Clearly M’ is obtained by first rearranging the rows of M
according to the permutation p, and in the resulting matrix, rearranging the columns
again according to the same permutation p.

As an example let n = 3, and

mip M2 M13 0 0 1
P = (3, 1, 2) s M = mo1 Mgy 123 s P = 1 0 0
m3y M3z M33 0 1 0
then
m31 Mgz 133 mg3 131 1M32
PM = mi11 ap) mi3 s M/ = PMPT = mi3 miq ap)
m21 M2z Ma3 ma23 M21 M22

and M’ here is the principal rearrangement of M according to the permutation p.
The following results can be obtained directly using the definition. Let M’ be
the principal rearrangement of M according to the permutation p associated with the
permutation matrix P. Then M’ is a P-matrix, iff M is. For all y € R", yT My =
(Py)TM'(Py). So M’ is a PSD, or PD, or NSD, or ND matrix iff M has the same
property. Also, M’ is principally degenerate (or nondegenerate) iff M has the same

property.
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3.3 LCPs ASSOCIATED WITH P-MATRICES

Properties of P-Matrices

The following Theorems 3.11, 3.12 are important properties of P-matrices due to
D. Gale and H. Nikaido (see reference [3.24]).

Theorem 3.11  Let F = (f;;) be a P-matrix of order n. Then the system of linear
inequalities
Fz <0
>0

(3.9)

has “r = 07 as its unique solution.

Proof. The theorem is easily verified to be true for n = 1. We will prove the theorem
for all n by induction.

Induction Hypothesis: If T' is a P-matrix of order r < n — 1, then the system of
inequalities T¢ < 0, £ > 0, £ € R" has “¢ = 0” as its unique solution.

Under the induction hypothesis we will now prove that the statement of the the-
orem holds for the matrix F' which is a P-matrix of order n. Since F' is a P-matrix,
it is nonsingular, and hence F~! exists. Let B = F~! = (b;;). From standard results
in the theory of determinants (for example, see Chapter 3 in F. E. Hohn, Elementary
Matrix Algebra, Macmillan, 2nd edition, 1964) it is known that b; = (principal sub-
determinant of F' corresponding to the subset {1,...,i—1,i+1,...,n})/determinant
of F'. So b;; > 0 for all 7, since F' is a P-matrix. Thus each column of B has at least
one positive entry. Let T € R"™ satisfy (3.9). Select a column of B, say B.;. Let
0 = minimum{T;/b;; : i such that b;; > 0}, and suppose this minimum is attained by
i =s5. S0 0 =71T/bs; >0, and (T;/bj1) > 0, for all j such that bj; > 0. From this
and the fact that T > 0, we have 7 = (7,...,7,)T =T —0B.;1 > 0 and 7j, = 0. Also
Fn=Fz —0FB, = Fr —0I., <0. Let T be the matrix of order n — 1 obtained
by striking off the sth row and the sth column from F'. Since F' is a P-matrix, its
principal submatrix T is also a P-matrix. Let £ = (7, ..., Ts_1,Tyq1s---+7,) " - Since
7s = 0 and F7j <0, we have T¢ < 0. Also since 77 > 0, £ > 0 too. So T¢ <0, £ > 0.
Since T is a P-matrix of order n — 1, by the induction hypothesis, £ =0. £ = 0,7, =0
together imply that 7 = 0. So F7j = 0, that is F(T — #I.;) = 0. Then FZ =011 > 0.
However from (3.9), FZ < 0. So FZ = 0, and since F' is nonsingular, Z = 0.

Thus under the induction hypothesis the statement of the theorem also holds for
F which is a P-matrix of order n. The statement of the theorem is easily verified for
n = 1. Hence, by induction, the statement of the theorem is true for all n.

[



210 CHAPTER 3. SEPARATION PROPERTIES, PRINCIPAL P1vOoT TRANSFORMS, CLASSES ...

Theorem 3.12 The Sign Nonreversal Property: Let F' be a square matrix of
order n. For x € R" let y = Fx. Then F is said to reverse the sign of x if z;3; < 0 for
all i. If F' is a P-matrix it reverses the sign of no vector except zero.

Proof. For this proof we need only to consider the case z > 0. For if F' reverses the
sign of an T 2 0, let J = {j : T; < 0}, let D be the diagonal matrix obtained from
the unit matrix by multiplying its jth column by —1 for each j € J. The matrix
F* = DFD is again a P-matrix, since F'* is obtained by simply changing the signs of
rows and columns in F' for each 7 € J. And F* reverses the sign of & = D%, where
z>0.

Now suppose that z > 0 and that F' reverses the sign of z. Let P = {j : z; > 0}.
Assume that P # (). Let A be the principal submatrix of F' corresponding to P. Let
x be the vector of z; for j € P. The fact that F' reverses the sign of z implies that A
reverses the sign of x. Since x > 0, this implies that Ax < 0. Since A is a P-matrix
Ax <0, x 2 0 implies x = 0 by Theorem 3.11, a contradiction. So x must be zero.

[]

Unique Solution Property of LCPs
Associated with P-Matrices

Theorem 3.13  Let M be a P-matrix. The LCP (q, M) has a unique solution for
each ¢ € R". Also, when the complementary pivot algorithm of Section 2.2 is applied
on the LCP (q, M), it finds the solution.

Proof. Suppose when the complementary pivot algorithm is applied on the LCP
(¢, M) it ends in ray termination. As in the proof of Theorem 2.1 this implies that
there exists a 2" > 0, w" > 0, 2zl > 0 satisfying w" = Mz" + e,2{; w2l = 0 for
all i. So zl'(M;.2") + 2Pzl = 0. This implies that z(M;.2") = —z2) < 0 for all
i. So M reverses the sign of z» > 0, which is a contradiction to Theorem 3.12. So,
when the complementary pivot method is applied on the LCP (g, M) associated with
a P-matrix, it cannot end in ray termination, it has to terminate with a solution of
the LCP. This also proves that every P-matrix is a (Q-matrix.

Now we will prove that if M is a P-matrix, for any ¢ € R", the LCP (¢, M) has
exactly one solution, by induction on n, the order of the problem.

Suppose n = 1. M = (my;) is a P-matrix, iff mi; > 0. In this case ¢ = (q1).
If g1 >0, (w = (w1) = (q1); 2 = (21) = (0)) is the only solution to the LCP (g, M).
If 4 <0, (w=(w1)=1(0); 2= (21) = (—q1/m11)) is the only solution to the LCP
(g, M). Hence the theorem is true for n = 1.

Induction Hypothesis:  Suppose any LCP of order (n — 1) or less, associated with
a P-matrix, has a unique solution for each of its right hand side constant vectors.
Now we will prove that under the induction hypothesis, the LCP (g, M) where
M is a P-matrix of order n, has a unique solution for any ¢ € R". We have shown
above that it has at least one solution, say (w;Zz). For each j =1 to n let u; = z;, if
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Zj > 0; or w; otherwise; and let v; be the complement of u;. Then u = (uq,...,uy)
is a complementary feasible basic vector of variables associated with the BFS (w; 2)
for (3.1). Obtain the canonical tableau for (3.1) with respect to the complementary
feasible basic vector u, and suppose it is

4 —M q (3.10)

¢ > 0 by our assumptions here. (3.10) can itself be viewed as the LCP (q, M), one
solution of this LCP is (u =@ = §; v = 9 = 0). M is a PPT of M, by Theorem 3.5, M
is also a P-matrix. So all the principal submatrices of M are also P-matrices. So the
principal subproblem of the LCP (g, M) in the variables (uq, ..., Ui—1, Ujt1,-..,Up);

(U1, .« s Viz1,Vix1,-..,Uy) is an LCP of order (n—1) associated with a P-matrix, and by
the induction hypothesis this principal subproblem has a unique solution. One solution
of this principal subproblem is (w1, ..., Ui—1, Ujt1,- - -, Un; Uty ooy Oim1, Vi1 - - - Up) =
(G1s- -y Gim1,GQit1y---5Gn; 0,...,0,0,...,0). If the LCP (¢, M), (3.10), has an alternate
solution (u;0) # (@;9) in which 9; = 0, its principal subproblem in the variables
(Upy e ey Uiy Uity e e oy Up); (V1,00 U1, Vg1, ..., U,) Will have an alternate solution
(@1, oy i1y Qi 1, -+ Upj O1y- -, D1, Dig1, .-+, ), & contradiction. So, if the LCP

(¢, M) has an alternate solution (@;9) # (u;0), then 9; must be strictly positive in it,
and by complementarity @; must be zero. Since this holds for each ¢ = 1 to n, 9 > 0,
u = 0. Sou—Mv—q,u—O v > 0. Since ¢ > 0, thlslmphesthatMv——q<0

v > 0, a contradiction to Theorem 3.11, since M is a P-matrix. Hence under the
induction hypothesis the LCP (g, M ) has a unique solution, which implies that the
equivalent LCP (¢, M) has a unique solution also. Since this holds for any ¢ € R",
under the induction hypothesis, the LCP (g, M) of order n has a unique solution for
each ¢ € R" when M is a P-matrix. Hence, by induction the theorem is true.

[]

Theorem 3.14 Let M be a given square matrix of order n. Suppose the LCP
(¢, M) has at most one solution for each ¢ € R". Then M is a P-matrix.

Proof. So, the number of solutions of the LCP (¢, M) is either 1 or 0 and hence is finite
for all ¢, which implies that M is nondegenerate by Theorem 3.2. So the determinant
of M is nonzero, and hence M ! exists.

Proof is by induction on n, the order of the matrix M. We first verify that the
theorem is true if n = 1. In this case ¢ = (¢1), M = (mq1). Since M is shown to
be nondegenerate under the hypothesis of the theorem, mi; # 0. If my; < 0; when
g1 >0, (w=(q1),2=0), (w=0,z=q1/(Jmy1|)) are two distinct solutions of the
LCP (g, M). Hence under the hypothesis of the theorem my; £ 0. So, my; > 0, which
implies that the theorem is true when n = 1.

Induction Hypothesis: If I is a square matrix of order r < n — 1, such that the
LCP (v, F) has at most one solution for each v € R", then F is a P-matrix.
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Under the hypothesis of the theorem, and the induction hypothesis, we will now
prove that M has to be a P-matrix too.

Consider the principal subproblem of the LCP (¢, M) in the variables w = (ws,
ceeyWp), &€ = (22,...,2,). This is an LCP of order n — 1 associated with the principal
submatrix of M determined by the subset {2,...,n}. If there exists a ¢ = (g2, .., qn)T
for which this principal subproblem has two distinct solutions, namely, (@,&) and
(@,€), choose 1 to satisfy ¢, > Maximum{]| > i Zgmagly | Yo5_y Zymagl}, and let Wy =
g1 + Zyzzzjmlj, Z1 =0, w1 = q1 + 2?22 Zimij, 21 = 0, W = (W1, Wa, ..., Wy),
Z = (Z1,22,---,2Zn), W = (W1, W2,...,Wn), 2 = (31,22, 2n), @ = (q1,G2,---,qn)T.
Then (w;Zz), (w;Z) are two distinct solutions of the LCP (g, M), contradicting the
hypothesis of the theorem. So the principal subproblem of the LCP (¢, M) in the
variables w, £ has at most one solution for each of its right hand side constant vectors.
By the induction hypothesis this implies that the principal submatrix of M determined
by the subset {2,...,n} is a P-matrix.

A similar argument can be made for each principal subproblem of the LCP (g, M)
of order (n — 1), and this implies that all principal submatrices of M of order (n — 1)
are P-matrices, by the induction hypothesis. Hence all the principal subdeterminants
of M of order < (n — 1) are strictly positive. In particular, the diagonal entries of M
are strictly positive. It only remains to be proved that the determinant of M itself
is strictly positive. We have already seen that M ~! exists. The canonical tableau of

(3.1) with respect to the complementary basic vector (z1,...,2,) is
z w
I | -M | 3 (3.11)

where M = M~! and § = —M ~'q. The LCP in (3.11) has at most one solution for each
7 € R™. So by the previous arguments all diagonal entries in the matrix M have to be
strictly positive. However since M = (m;;) = M !, m11 = (principal subdeterminant
of M corresponding to the subset {2,...,n})/(determinant of M). Since the principal
subdeterminant of M corresponding by the subset {2,...,n} has been shown to be
strictly positive, m1; > 0 implies that the determinant of M is strictly positive. Hence
under the hypothesis of the theorem, and the induction hypothesis, the matrix M of
order n has to be a P-matrix. So, by induction the theorem is true in general.

[]

Corollary 3.8 Let M be a given square matrix of order n. If the LCP (q, M) has
at most one solution for each ¢ € R", then it has exactly one solution for each ¢ € R".
This follows from Theorems 3.13, 3.14.

[]

Theorem 3.15  Let M be a given square matrix of order n. The LCP (q, M) has
a unique solution for each g € R" iff M is a P-matrix.

[]
Proof. Follows from Theorems 3.13, 3.14.
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Strict Separation Property

The strict separation property is a property of the matrix M, and does not depend
on the right hand side constants vector q. An LCP associated with the matrix M
(or the class of complementary cones C(M)) is said to satisfy the strict separation
property if the following conditions are satisfied.

(i) Every subcomplementary set of column vectors is linearly independent.

(ii) If (A, ..., A1, Ay, ..., Ay) is any subcomplementary set of column vectors,
the hyperplane which is its linear hull strictly separates the points represented by
the left out complementary pair of column vectors (1.;, —M.;).

From (i) and (ii), it is clear that every complementary set of column vectors has
to be linearly independent for the strict separation property to be satisfied.

Example 3.4

1
LetM—[_1 1

—M are plotted in Figure 3.1.

] . Here n = 2. The points representing the column vectors of I,

Since n = 2 here, in 