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vPREFACEINTRODUCTIONI am grateful for the enthusiastic reception given to my book Linear and CombinatorialProgramming published in 1976. Many readers from all over the world commented thatthey liked Chapter 16 on the Linear Complementarity Problem (LCP) in this book, butfound it too brief, and suggested that a new up-to-date book devoted exclusively to thistopic, covering all aspects of linear complementarity would be worthwhile. This book isthe result of the encouragement I have received from all these suggestions.An important class of applications for the LCP stems from the fact that the neces-sary optimality conditions for a Quadratic Programming Problem (QP) lead to an LCP.Until recently, a practitioner of mathematical programming could have brushed o� QP asan academically interesting generalization of linear programming which is not very use-ful. But the recent development of recursive quadratic programming methods for solvingNonlinear Programming Problems (NLP) has changed all that. These methods solve anNLP through a sequence of quadratic approximations, and have become extremely popu-lar. They have suddenly made QP and thereby LCP an important topic in mathematicalprogramming with a large number of practical applications. Because of this, the study ofLCP is attracting a great deal of attention both in academic curricula and in the trainingof practitioners.THE OBJECTIVES1. To provide an in-depth and clear treatment of all the important practical, technical,computational, geometric, and mathematical aspects of the LCP, QP, and their variousapplications.2. To discuss clearly the various algorithms for solving the LCP, to present their e�cientimplementation for the Computer, and to discuss their computational complexity.3. To present the practical applications of these algorithms and extensions of these al-gorithms to solve general nonlinear programming problems.4. To survey new methods for solving linear programs, proposed subsequently to thepublication of [2.26].BACKGROUND NEEDEDThe background required to study this book is some familiarity with matrix algebra andlinear programming (LP). The basics of LP are reviewed in Chapters 1 and 2.



viSUMMARY OF CHAPTER CONTENTSThe book begins with a section titled `notation' in which all the symbols and several termsare de�ned. It is strongly recommended that the reader peruse this section �rst at initialreading, and refer to it whenever there is a question about the meaning of some symbol orterm.Chapter 1 presents a clear geometric interpretation of the LCP through the de�nitionof the system of complementary cones as a generalization of the set of orthants in Rn.Applications to LP, QP, and nonzero sum game problems are discussed. There is a completediscussion of positive de�niteness and positive semide�niteness of square matrices, theirrelationship to convexity, together with e�cient pivotal methods for checking whetherthese properties hold for a given matrix. Various applications of QP are discussed, as wellas the recursive quadratic programming method for solving NLP models.Chapter 2 presents a complete discussion of the many variants of the complemen-tary pivot method and proofs of its convergence on di�erent classes of LCPs. Section2.7 contains a very complete, lucid, but elementary treatment of the extensions of thecomplementary pivot method to simplicial methods for computing �xed points using tri-angulations of Rn, and various applications of these methods to solve a variety of generalNLP models and nonlinear complementarity problems.Chapter 3 covers most of the theoretical properties of the LCP. There is extensivetreatment of the various separation properties in the class of complementary cones, anda complete discussion of principal pivot transforms of matrices. In this chapter we alsodiscuss the various classes of matrices that arise in the study of the LCP. Chapter 4provides a survey of various principal pivoting methods for solving the LCP. Algorithmsfor parametric LCP are presented in Chapter 5.Chapter 6 contains results on the worst case computational complexity of the com-plementary and the principal pivoting methods for the LCP. Chapter 7 presents a specialalgorithm for the LCP associated with positive de�nite symmetric matrices, based on or-thogonal projections, which turned out to be very e�cient in computational tests. Chapter8 presents the polynomially bounded ellipsoid methods for solving LCPs associated withpositive semide�nite matrices, or equivalently convex QPs.Chapter 9 presents various iterative methods for LCPs. In Chapter 10 we presentan extensive survey of various descent methods for unconstrained and linearly constrainedminimization problems; these techniques provide alternative methods for solving quadraticprogramming problems. In Chapter 11 we discuss some of the newer algorithms proposedfor solving linear programming problems and their possible extensions to solve LCPs, andwe discuss several unsolved research problems in linear complementarity.To make the book self-contained, in the appendix we provide a complete treatmentof theorems of alternatives for linear systems, properties of convex functions and convexsets, and various optimality conditions for nonlinear programming problems.



viiEXERCISESEach chapter contains a wealth of various types of exercises. References are providedfor theoretical exercises constructed from published literature. A new sequence of exercisenumbers begins with each chapter (e.g. Exercise 3.2 refers to Exercise number 2 of Chapter3).HOW TO USE THE BOOK IN A COURSEThis book is ideally suited for �rst year graduate level courses in Mathematical Program-ming. For teaching a course in nonlinear programming, the best order for presenting thematerial may be the following: Section 10.1 (formulation example), 10.2 (types of solutionsin NLP), 10.3 (types of nonlinear programs and what can and cannot be done e�ciently byexisting methods), 10.4 (can we at least compute a local minimum e�ciently), 10.5 (pre-cision in computation), 10.6 (rates of convergence), Appendix (theorems of alternativesfor linear systems of constraints; convex sets and separating hyperplane theorems; convex,concave functions and their properties; optimality conditions), Chapters 1 to 9 in serialorder; remaining portions of Chapter 10; and some supplemental material on algorithmsfor solving nonlinearly constrained problems like the GRG, penalty and barrier methods,and augmented Lagrangian methods. For teaching a course in linear complementarity us-ing the book, it is best to cover the Appendix �rst, and then go through Chapters 1 to 10in serial order.The material contained in Chapters 12, 14, 15, 16 of [2.26] can be combined with thatin Appendices 1, 2, Chapter 9 and Section 11.4 of this book to teach an advanced coursein linear programming.Since the book is so complete and comprehensive, it should prove very useful forresearchers in LCP, and practitioners using LCP and nonlinear programming in appliedwork.ACKNOWLEDGEMENTSIn preparing this book, I have received encouragement, advice, and suggestions from sev-eral people. For this I am indebted to Je� Alden, Ahmet Bolat, R. Chandrasekaran, AkliGana, Greg Goulding, Philip Jones, Ikuyo Kaneko, Olvi Mangasarian, Chuck Noon, StevePollock, Romesh Saigal, Richard Stone, Robert Smith, Vasant Ubhaya, Gary Waissi, KaiYang and Bill Ziemba; and to David Gale who �rst introduced me to linear complemen-tarity. Some of the research appearing in this book was supported partially by NationalScience Foundation under grants ECS-8401081 and ECS-8521183, this support is grate-fully acknowledged. I thank Ivajean Marzano and Tana Beard for typing most of themanuscript. My thanks to Bala S. Guthy for drawing many of the �gures with curves inthem; and to K. T. Anantha for some of the other �gures. Finally, I thank my wife VijayaKatta, to whom this book is dedicated, for her patience and understanding.
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Notation xvNOTATIONSuperscriptT Denotes transposition. AT is the transpose of thematrix A. If x is a column vector, xT is the samevector written as a row vector and vice versa. Col-umn vectors are printed as transposes of row vec-tors to conserve space in the text.w, z w = (w1; : : : ; wn)T , z = (z1; : : : ; zn)T are the col-umn vectors of variables in a linear complementar-ity problem of order n.(q;M) A linear complementarity problem in wich the datais the column vector q = (q1; : : : ; qn)T , and squarematrix M = (mij) of order n.Rn Real Euclidean n-dimensional vector space. It isthe set of all ordered vectors (x1; : : : ; xn), whereeach xj is a real number, with the usual operationsof addition and scalar multiplication de�ned on it.' Approximately equal to.�! 0 � tends to zero.�! 0+ � tends to zero through positive values.J, K, H, E, Z, U, P, A���, I, ���, S, W, D These bold face letters usually denote sets that arede�ned in that section or chapter.P Summation sign.P(aj : j 2 J) Sum of terms aj over j contained in the set J.>=, �, > Given two vectors x = (xj), y = (yj) in Rn, x >= ymeans that xj >= yj , that is, xj�yj is nonnegative,for all j. x � y means that x >= y but x 6= y, that is,xj � yj is nonnegative for all j and strictly positivefor at least one j. x > y means that xj � yj > 0,strictly positive, for all j. The vector x is said tobe nonnegative if x >= 0, semipositive if x � 0, andpositive if x > 0.Ai. The ith row vector of the matrix A.



xvi NotationA.j The jth column vector of the matrix A.Superscripts We use superscripts to enumerate vectors or ma-trices or elements in any set. When consideringa set of vectors, in Rn, xr may used to denotethe rth vector in the set, and it will be the vector(xr1; : : : ; xrn)T . In a similar manner, while consider-ing a sequence of matrices, the symbol P r may beused to denote the rth matrix in the sequence. Su-perscripts should not be confused with exponentsand these are distinguished by di�erent type styles.Exponents In the symbol �r, r is the exponent. �r = �� �� : : :��, where there are r �'s in this product. Notice thedi�erence in type style between superscripts andexponents.log2x De�ned only for positive numbers x. It is the log-arithm of the positive real number x, with 2 as thebase (or radix).jjxjj Euclidean norm of a vector x 2 Rn. If x = (x1; : : : ;xn), jjxjj = +px21 + : : :+ x2n.d�e De�ned only for real numbers �. It represents thesmallest integer that is greater than or equal to �,and is often called the ceiling of �. For exampled�4:3e = �4, d4:3e = 5.b�c De�ned only for real numbers �. It represents thelarg-est integer less than or equal to �, and is oftencalled the 
oor of �. For example b�4:3c = �5,b4:3c = 4.1 In�nity.2 Set inclusion symbol. If F is a set, \F1 2 F" meansthat \F1 is an element of F". Also \F2 62 F" meansthat \F2 is not an element of F".� Subset symbol. If E, ��� are two sets, \E � ���"means that \E is a subset of ���", or that \everyelement in E is also an element of ���".



Notation xvii[ Set union symbol. If D, H are two sets, D [H isthe set of all elements that are either in D or in Hor in both D and H.\ Set intersection symbol. If D and H are two sets,D\H is the set of all elements that are in both Dand H.; The empty set. The set containing no elements.n Set di�erence symbol. If D and H are two sets,D nH is the set of all elements of D that are notin H.f g Set brackets. The notation fx : some propertygrepresents the set of all elements x, satisfying theproperty mentioned after the \:".jFj If F is a set, this symbol denotes its cardinality,that is, the number of distinct elements in the setF.e The base of the natural logarithms. e= 1 + 1Pn=1 1n! ,if is approximately equal to 2.7.e, er The symbol e denotes a column vector, all of whoseentries are equal to 1. Its dimension is usually un-derstood from the context. When we want to spec-ify the dimension, er denotes the column vector inRr, all of whose entries are equal to 1.I, Ir The symbol I denotes the unit matrix, its orderunderstood from the context. When we want tospecify the order, Ir denotes the unit matrix of or-der r.j�j Absolut value of the real number �.This symbol indicates the end of a proof.y+ If y = (yj) 2 Rn, let y+j = Maximum f0; yjg, j = 1to n. Then y+ = (y+j ).



xviii Notation� Lexicographically greater than. Given two vectorsx = (xj), y = (yj) in Rn, x � y means that for thesmallest j for which xj�yj 6= 0, we have xj�yj > 0.PosfA1; : : : ; Akg If A1; : : : ; Ak are vectors in Rn then PosfA1; : : : ;Akg = fy : y = �1A1+: : :+�kAk, �1 >= 0; : : :, �k >=0g. It is the cone in Rn which is the nonnegativehull of the set of vectors fA1; : : : ; Akg.Pos(A) If A is a matrix, Pos(A) = fx : x = Ay for somey >= 0g. It is the cone which is the nonnegative hullof the column vectors of the matrix A.n! n factorial. De�ned only for nonnegative integers.0! = 1. And n! is the product of all the positiveintegers from 1 to n, whenever n is a positive inte-ger.�nr� De�ned only for positive integers n >= r. It is thenumber of distinct subsets of r objects from a setof n distinct objects. It is equal to n!r!(n�r)! .hv1; : : : ; vri When v1; : : : ; vr are all column vectors from thespace Rn, say, and satisfy the property that theset of column vectors �8>: 1v19>; ; : : : ; 8>: 1vr9>;� islinearly independent, then v1; : : : ; vr are the ver-tices of an (r � 1)-dimensional simplex, which istheir convex hull, this simplex is denoted by thesymbol hv1; : : : ; vri. See Section 2.7.8.C(M) The class of 2n complementary cones associatedwith the square matrix M of order n.K(M) The union of all complementary cones in C(M). Itis the set of all vectors q for which the LCP (q;M)has at least one solution.Z(y), W(y) If y = (y1; : : : ; yn)T is a complementary vector forthe LCP (q;M) of order n, then Z(y) = fj : yj =zjg and W(y) = fj : yj = wjg. See Section 3.1.



Notation xixMiminumf g The minimum number among the set of numbersappearing inside the set brackets. Maximumf ghas a similar meaning. If the set is empty we willadopt the convention that the minimum in it is +1and the maximum in it is �1.In�mum, minimum;Supremum, maximum Let ��� be a subset of Rn and let f(x) be a realvalued function de�ned on ���. The in�mum forf(x) on ��� is de�ned to be the largest number �satisfying: f(x) >= � for all x 2 ���. If �0 is thein�mum for f(x) on ���, and there exists an �x 2��� satisfying f(�x) = �0, then �0 is said to be theminimum value of f(x) on ��� and �x is the pointwhich attains it. As an example let ��� � R1 be theopen interval 0 < x < 1, and let f(x) = x. Thein�mum of f(x) on ��� in this example is 0, it is nota minimum since 0 62 ���, and there exists no pointx in ��� where f(x) = 0. As another example let��� � R1 be the unbounded set 1 <= x < 1 and letf(x) = 1x . In this example, the in�mum of f(x)on ��� is 0, and again this is not a minimum. In thesame manner, the supremum in ��� of a real valuedfunction f(x) de�ned on ��� � Rn, is the smallestnumber 
 satisfying: f(x) <= 
 for all x 2 ���. If 
0is the supremum of f(x) on ���, and there exists anx̂ 2 ��� satisfying f(x̂) = 
0, then 
0 is said to bethe maximum value of f(x) on ���, and x̂ is thepoint which attains it.



xx NotationLocal minimum,global minimum Consider an optimization problem in which an ob-jective function �(x), which is a real valued functionde�ned over Rn, is required to be minimized, sub-ject to possibly some constraints on the decisionvariables x. Let K � Rn denote the set of feasiblesolutions for this problem. A point x̂ 2 K is saidto be a global minimum for this problem if thereexists no x 2 K satisfying �(x) < �(x̂). A point�x 2 K is said to be a local minimum for this prob-lem if there exists an " > 0 such that the followingsystem has no feasible solutionx 2 K�(x) < �(�x)jjx� �xjj < "that is, �x is a local minimum for this problem i� �x isa global minimum for �(x) over K\fx : jjx� �xjj <"g. See Section 10.2.Cardinality De�ned only for sets. The cardinality of a set isthe number of distinct elements in it.Principal Submatrix FJJof square matrix F Let F = (fij) be a given square matrix of ordern. Let J � f1; : : : ; ng. The principal subma-trix of F determined by the subset J is the matrixFJJ = (fij : i 2 J; j 2 J). See Section 1.3.1. Thedeterminant of FJJ is known as the principal sub-determinant of F corresponding to the subset J.BFGS updating formula The Broyden-Fletcher-Goldfarb-Shanno formula forupdating a positive de�nite symmetric approxima-tion to the Hessian (or its inverse) of a twice con-tinuously real valued function �(x) de�ned on Rn,as the algorithm moves from one point to next. SeeSections 1.3.6 and 10.8.6.LCP Linear complementarity problem.NLCP Nonlinear complementarity problem.LP Linear program.BFS Basic feasible solution.



Notation xxiNLP Nonlinear program.PD Positive de�nite. A square matrix M of order n issaid to be PD if yTMy > 0 for all y 2 Rn, y 6= 0.PSD Positive semide�nite. A square matrix M of ordern is said to be PSD if yTMy >= 0 for all y 2 Rn.ND Negative de�nite. A square matrix of order n issaid to be ND if yTMy < 0 for all y 2 Rn, y 6= 0.NSD Negative semide�nite. A square matrix of order nis said to be NSD if yTMy <= 0 for all y 2 Rn.PPT Principal pivot transform. See Section 3.2.(i:j) This refer to the jth equation in the ith chapter.Equations are numbered serially in each chapter.Section i:j; i:j:k The sections are numbered serially in each chapter.\i:j" refers to section j in Chapter i. \i:j:k" refersto subsection k in section i:j.Figure i:j The jth �gure in Chapter i. The �gures are num-bered serially in this manner in each chapter.Reference [i:j] The jth reference in the list of references given atthe end of the Chapter i. References given at theend of each chapter are numbered serially.Exercise i:j The jth exercise in Chapter i. Exercises are num-bered serially in each chapter.Figure i, Exercise i,Theorem i, Reference i,Example i In the appendices, �gures, examples, exercises, the-orems, references, etc. are numbered serially usinga single number for each. So any �gure, example,exercise, theorem or reference with a single numberlike this must be in the appendix.



xxii NotationLinear Function,a�ne function The real valued function f(x) de�ned over x 2 Rnis called a linear function if f(x) = c1x1 + : : :+cnxn where c1; : : : ; cn are constants, it satis�es theproperty: f(�x1 + �x2) = �f(x1) + �f(x2) for allx1; x2 2 Rn and for all real numbers �, �. The realvalued function g(x) de�ned over x 2 Rn is said tobe an a�ne function if g(x) = 
0 + 
1x1 + : : :+
nxn where 
0; 
1; : : : ; 
n are constants, it satis�esthe property: g(�x1 + �x2) = �g(x1) + �g(x2) forall x1; x2 2 Rn and for all real numbers �, � satis-fying �+ � = 1. Every a�ne function de�ned overRn in a linear function plus a constant.Basis, basic vector,basic solution,basic feasible solution See Section 2.1.Bounded set A subset S � Rn is bounded if there exists a �nitereal number � such that jjxjj <= �, for all x 2 S.Proper subset If E is a subset of a set ���, E is said to be a propersubset of ��� if E 6= ���, that is, if ��� nE 6= ;.Feasible solution A numerical vector that satis�es all the constraintsand restrictions in the problem.Optimum solution orOptimum feasiblesolution A feasible solution that optimizes (i. e., either max-imizes or minimizes as required) the objective valueamong all feasible solutions.Algorithm The word from the last name of the Persian scholarAbu Ja'far Mohammed ibn Mûsâ alkhowârizm�̂whose textbook on arithmetic (about A.D. 825)had a signi�cant in
uence on the development ofthese methods. An algorithm is a set of rules forgetting a required output from a speci�c input, inwhich each step is so precisely de�ned that it canbe translated into computer language and executedby machine.



Notation xxiiiSize The size of an optimization problem is a parameterthat measures how large the problem is. Usuallyit is the number of digits in the data in the op-timization problem, when it is encoded in binaryform.O(nr) A �nitely terminating algorithm for solving an opti-mization problem is said to be of order nr or O(nr),if the computational e�ort required by the algo-rithm in the worst case, to solve a version of theproblem of size n, grows as �nr, where �, r arenumbers that are independent of the size n andthe data in the problem.Polynomially boundedalgorithm An algorithm is said to be polynomially boundedif it can be proved that the computational e�fortrequired by it is bounded above by a �xed polyno-mially in the size of the problem.The class P of problems This is the class of all problems for solving whichthere exists a polynomially bounded algorithm.



xxiv NotationNP-complete classof problems A decision problem is one for which the answer is\yes" or \no". For example, given an integer squarematrix D of Rn, the problem \is there an x 2 Rnsatisfying xTDx < 0?" is a decision problem. Also,given a square matrix M of order n and a columnvector q 2 Rn, the problem \does the LCP (q;M)have a solution?" is a decision problem. Often,optimization problems can be handled by study-ing decision problem versions of them. For exam-ple, consider the problem of minimizing �(x) overx 2 K, where K represents the set of feasible solu-tions of this problem. The decision problem versionof this optimization problem is \is there an x 2 Ksatisfying �(x) <= �?" where � is a speci�ed realnumber. Clearly, by examining this decision prob-lem with varying values of �, we can narrow downthe solution of the optimization problem.The NP-complete class is a class of decision prob-lems in discrete optimization, satisfying the prop-erty that if a polynomially bound algorithm existsfor any one problem in the classs, then polynomi-ally bounded algorithms exist for every problem inthe class. So far no polynomially bounded algo-rithm is known for any problem in theNP-completeclass, and it is believed that all these problemsare hard problems (in the worst case, the compu-tational e�ort required for solving an instance ofany problem in the class by any known algorithm,grows asymptotically, faster than any polynomialin the size of the problem). See reference [8.12] fora complete discussion of NP-completeness.Necessary conditions,su�cient conditions,necessary and su�cientconditions When studying a property of a system, a condi-tion is said to be a necessary condition for thatproperty if that condition is satis�ed whenever theproperty holds. A condition is said to be a su�-cient condition for the property if the propertyholds whenever the condition is satis�ed. A neces-sary and su�cient condition for the propertyis a condition that is both necessary condition anda su�cient condition for that property.



Notation xxvActive or tightconstraint An inequality constraint gp(x) >= 0 is said to beactive or tight, at a point �x satisfying it, if gp(�x) =0. The equality constraint hi(x) = 0 is always anactive constraint at any point �x satifying it.Infeasible system A system of constraints in the variables x = (xj)is said to be infeasible, if there exists no vector xsatisfying all the constraints.Complementary pair A pair of variables in an LCP, at least one of whichis required to be zero. Each variable in a comple-mentary pair is said to be the complement of theother. A pair of column vectors corresponding toa complementary pair of variables in an LCP is acomplementary pair of column vectors. Each col-umn vector in a complementary pair is the comple-ment of the other. In an LCP of order n, there aren complementary pairs, numbered 1 to n.Complementary setof vectors A vector of n variables in an LCP of order n isa complementary vector if the jth variable in thevector is from the jth complementary pair of vari-ables, for each j. A complementary set of columnvectors is an ordered set in which the jth vector isfrom the jth complementary pair for each j.Complementary matrix In an LCP of order n, this is a square matrix oforder n whose jth column vector is from the jthcomplementary pair, for each j.Complementary cone In an LCP of order n, this is Pos(A) where A is acomplementary matrix of this problem.Complemetary basis It is a complementary matrix which is nonsingular.Complementary basicvector It is a complementary vector of variables associatedwith a complementary basis.Complementary feasiblebasis It is a complementary basis which is a feasible basisfor the problem.



xxvi NotationComplementary feasiblebasic vector It is a complementary basic vector which is feasibleto the problem.�z leads to a solutionof the LCP (q;M) We say that the vector �z leads to a solution of theLCP (q;M) if (w = M �z + q; �z) is a solution of theLCP (q;M).To process an LCP When an algorithm for solving LCPs is applied onan LCP, it may either obtain a solution of the LCP,or terminate without obtaining a solution. It is pos-sible that some algorithms may terminate withouta solution even though the LCP may have a so-lution. An algorithm for solving LCPs is said toprocess a speci�ed class of LCPs if, when thealgorithm is applied on any LCP from this classand it terminates without obtaining a solution, wecan prove that the LCP in fact has no solution.In other words, an algorithm is said to process aclass of LCPs i� for every LCP in this class, the al-gorithm either produces a solution or conclusivelyestablishes that the LCP cannot have a solution.Secondary rayor terminal ray This is the half-line or ray obtained at the end ofexecuting the complementary pivot algorithm onan LCP, if the algorithm terminates in ray termi-nation. This secondary ray, if it is obtained, is dis-tinct from the initial ray with which the algorithmis initiated. See Section 2.2.6.Subcomplementary set,vector It is a complementary set or vector with one ele-ment missing.Almost complementaryvector It is a vector that is complementary except for oneviolation which is set up appropriately. See Sec-tions 2.2.4, 2.4.Copositive matrix A square matrix M of order n is said to be copos-itive if yTMy >= 0 for all y >= 0 in Rn.Strictly copositivematrix A square matrix M of order n is said to be strictlycopositive if yTMy > 0 for all y � 0 in Rn.



Notation xxviiCopositive plus matrix A square matrix M of order n is said to be copos-itive plus if it is copositive, and for y >= 0 in Rn ifyTMy = 0 then (M +MT )y = 0.P0-matrix A square matrix is a P0-matrix if all its principalsubdeterminants are >= 0.P -matrix A square matrix is said to be a P -matrix if all itsprincipal subdeterminants are strictly positive.Q-matrix A square matrix M of order n is said to be a Q-matrix if the LCP (q;M) has a solution for all q 2Rn.Z-matrix A square matrixM = (mij) is a Z-matrix if mij <=0 for all i 6= j.Q0-matrix The square matrix M is said to be a Q0-matrix ifK(M) is a convex cone.�Q-matrix, orCompletely Q-matrix A square matrix M such that M and all its princi-pal submatrices are Q-matrices.�Q0-matrix, orCompletely Q0-matrix A square matrix M such that M and all its princi-pal submatrices are Q0-matrices.



xxviii NotationFaces, Facets Let K � Rn be a convex polyhedron. H = fx :ax = a0g where a 6= 0 is a given row vector inRn. H is a hyperplane in Rn. H is said to haveK on one of its sides if either ax >= a0 for all x 2K, or ax <= a0 for all x 2 K. If H has K onone of its sides and H \ K 6= ;, H is said to bea supporting hyperplane for K. A face of Kis either the empty set ;, or the set K itself, orH \ K for some supporting hyperplane H for K.See reference [2.26]. For example, extreme pointsof K are its faces of dimension zero. Edges of Kare its faces of dimension 1, etc.A face of K is said to be a facet if its dimension isone less than the dimension of K.For some special convex polyhedra, simplicial conesor simplexes, it is possible to characterize all faceseasily. If fB.1; : : : ; B.ng is a linearly independentset of column vectors in Rn, then, for the simpli-cial cone PosfB.1; : : : ; B.ng, the cone PosfB.1; : : : ;B.j�1; B.j+1; : : : ; B.ng is a facet for any j, and thecone PosfB.j : j 2 Jg is a face for any subsetJ � f1; : : : ; ng (this face is de�ned to be f0g, ifJ = ;). If fv0; : : : ; vng are the set of vertices of ann-dimensonal simplex inRn, the convex hull of fv0;: : : ; vj�1; vj+1; : : : ; vng is a facet of this simplex forall j, and the convex hull of fvj : j 2 Jg is a faceof this simplex for all subsets J � f1; : : : ; ng (thisface is de�ned to be the empty set if J = ;).Principally degenerate,principallynondegenerate, matrices A square matrix A is said to be principally non-degenerate if all its principal subdeterminantesare nonzero; principally degenerate if at leastone of its principal subdeterminantes has value zero.In this book we are usually concerned only withprincipal degeneracy or nondegeneracy of squarematrices, and hence we usually omit the adjective\principally" and refer to the matrices as being de-generate or nondegenerate.Degenerate ornondegeneratecomplementary cone A complementary cone is nondegenerate if its inte-rior is nonempty, degenerate otherwise.



Notation xxixStrongly degenerateor weakly degeneratecomplementary cone A degenerate complementary cone Pos(A.1; : : : ;A.n) is said to be strongly degenerate if thereexists (�1; : : : ; �n) � 0 such that 0 = �1A.1+ : : :+�nA.n, that is, if the zero vector can be expressedas a semipositive linear combination of the com-plementary set of column vectors fA.1; : : : ; A.ng;weakly degenerate otherwise.Degenerate ornondegeneratebasic solutions, vectors,systems of linearequations
Consider the system of linear constraints \Ax = b"where A is a matrix of order m�n and rank m. Abasic solution �x for this system is said to be non-degenerate if the number of nonzero variables in�x is m, degenerate if this number is < m. Theright hand side constants vector b in the systemis said to be degenerate if the system has at leastone degenerate basic solution, b is said to be non-degenerate if the system has no degenerate basicsolution. Thus b is degenerate in the system if itcan expressed as a linar combination of m � 1 orless column vectors of A, nondegenerate otherwise.The system of constraints is itself said to be degen-erate or nondegenerate depending on whether b isdegenerate or nondegenerate.Lipschitz continuous Let f(x) be a continuous real valued function de-�ned onK � Rn. It is said to be Lipschitz continu-ous (or Lipschitzian) on K if there exists a nonneg-ative number � such that jf(x)� f(y)j <= �jjx� yjjfor all x; y 2 K. The number � is known as theLipschitz constant for this function.Principal subproblem Consider the LCP (q;M) with variables (w1; : : : ;wn)T , (z1; : : : ; zn)T . Let J � f1; : : : ; ng, J 6= ;.Let qJ = (qi : i 2 J)T , MJJ = (mij : i 2 J;j 2 J). The LCP (qJ;MJJ) in variables wJ, zJis called the principal subproblem of the LCP(q;M) corresponding to the subset J.Simplex See Section 2.7.r�(�x) The row vector of partial derivatives �@�(x)@x1 ; : : : ;@�(x)@xn �, gradient vector, evaluated at x = �x.



xxx Notation@f(x) The subdi�erential set of the function f(x) at thepoint x. See Appendix 3 and Section 2.7.1.Di�erentiable function A real valued function �(x) de�ned on an open sub-set ��� � Rn is said to be di�erentiable at a point�x 2 ���, if all the partial derivatives @�(�x)@xj , j = 1 ton exist, and for any y 2 Rn, [�(�x + �y) � �(�x) ��r�(�x)y]=� tends to zero as � tends to zero. If itis di�erentiable at every point �x 2 ���, it is said tobe di�erentiable in ���.Continuouslydi�erentiable function A real-valued function �(x) de�ned on an open sub-set ��� 2 Rn is said to be continuously di�eren-tiable at a point �x 2 ��� if it is di�erentiable at ���and r�(x) is contiuous at �x. If it is continuouslydi�erentiable at every point �x 2 ���, it is said to becontinuoulsy di�erentiable in ���.H(�(�x)) The Hessian matrix of �(x) at �x. It is the squarematrix of second partial derivatives � @2�(x)@xi@xj � eval-uated at �x.Twice di�erentiablefunction A real valued function �(x) de�ned over an open set��� 2 Rn is said to be twice di�erentiable at �x 2 ���if r�(�x) and H(�(�x)) exist, and for all y 2 Rn,[�(�x+�y)��(�x)��(r�(�x))y� �22 yTH(�(�x))y]=�2tends to zero as � tends to zero. �(x) is said to betwice di�erentiable in ��� if it is twice di�erentiableat every point in ���.Twice continuouslydi�erentiable function A real valued function �(x) de�ned over an open set��� 2 Rn is said to be twice continuously di�er-entiable at �x 2 ��� if it is twice di�erentiable at �xand H(�(x)) is continuous at �x. It is twice contin-uously di�erentiable in ��� if it is twice continuouslydi�erentiable at every point in ���.



Notation xxxiSmooth function Mathematically, a real valued function de�ned onRn is said to be a smooth function if it has deriva-tives of all orders. Many of the algorithms dis-cussed in this book use only derivatives of the �rstor at most second orders. So, for our purpose, wewill consider a smooth function to be one which iscontinuously di�erentiable, or twice continuouslydi�erentiable if the method under considerationuses second order derivatives.Optimization problemsin minimization form Whenever a function f(x) has to be maximizedsubject to some conditions, we can look at theequivalent problem of minimizing �f(x) subject tothe same conditions. Both problems have the sameset of optimum solutions and the maximum valueof f(x) = �minimum value of (�f(x)). Because ofthis, we discuss only minimization problems.rh(x) whenh(x) = (h1(x); : : : ; hm(x))T Let h(x) denote the column vector of m di�eren-tiable functions hi(x), i = 1 to m, de�ned over Rn.Then rh(x) = �@hi(x)@xj : i = 1 to m, j = 1 to n�is the Jacobian matrix in which the ith row vec-tor is the gradient vector of hi(x) written as a rowvector.Nonlinear programmingproblem This refers to an optimization problem of the fol-lowing general form :minimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to twhere all the functions �(x), hi(x), gp(x) are realvalued continuous functions of x = (x1; : : : ; xn)T 2Rn. The problem is said to be a smooth non-linear program if all the functions are in factcontinuously di�erentiable functions. In this bookwe only consider smooth nonlinear programs. SeeChapter 10.



xxxii NotationQuadratic forms inmatrix notations Consider the quadratic form in n variables x =(x1; : : : ; xn)T , f(x) = nPi=1 giix2i+ nPi=1 nPj=i+1 gijxixj .An example for n = 3 is h(x) = 81x21 � 7x22 +5x1x2� 6x1x3+18x2x3. Let F = (fij) be a squarematrix of order n satisfyingfii = gii; i = 1 to nfij + fji = gij; for i 6= j and j > i:Then it can be veri�ed that f(x) = xTFx. In par-ticular, if we de�ne the symmetric matrixD = (dij)of order n, wheredii = gii; i = 1 to ndij = dji = 12gij ; for i 6= j and j > ithen f(x) = xTDx. For the quadratic form h(x)in 3 variables, x = (x1; x2; x3)T , given above, thematrix D turns out to beD = 8>>>>>: 81 52 �352 �7 9�3 9 09>>>>>;and h(x) = xTDx.



Notation xxxiiiQuadratic programmingproblem;convex or nonconvexquadratic programs An optimization problem in which a quadratic func-tion of x = (x1; : : : ; xn)T 2 Rn is to be optimizedsubject to linear constraints on the variables, iscalled a quadratic programming problem. Its gen-eral form is:minimize Q(x) = cx+ 12xTDxsubject to Ax >= bEx = dwhere D is a square symmetric matrix of order n.The inequality constraints here include any non-negativity restrictions or the lower or upper boundrestrictions on the variables.This problem is called a convex quadratic pro-gram if D is a PSD matrix (in this case the objec-tive function to be minimized, Q(x), is convex); anonconvex quadratic program otherwise.QP Quadratic Programming Problem.Complemetary basis It is a complementary matrix which is nonsingular.rx(f(x; �)), Hx(f(x; �)) These are respectively the row vector of the partialderi-vates, and the square matrix of the second or-der partial derivates, of the function f(x; �), withrespect to the variables in the vector x, at (x; �).



xxxiv NotationKarush-Kuhn-Tucker(or KKT) necessaryoptimality conditions Let �(x), hi(x), gp(x), be real valued continuouslydi�erentiable functions de�ned on Rn for all i, p.Consider the following mathematical program:minimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to tThe Karush-Kuhn-Tucker (KKT) Lagrangian forthis problem is: L(x; �; �) = �(x) �Pmi=1 �ihi(x)� Ptp=1 �pgp(x) where �i, �p are the Lagrangemultipliers associated with the constraints. TheKarush-Kuhn-Tucker (KKT) necessary optimalitycondition for this problem are :@@xL(x; �; �) = r�(x)� mXi=1 �irhi(x)�� tXp=1 �prgp(x) = 0hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to t�p >= 0; p = 1 to t�pgp(x) = 0; p = 1 to twhere r�(x) etc. are the vectors of partial deriva-tives. If �x is a local minimum for this problem, un-der fairly general conditions (see Appendix 4) it canbe shown that there exist multiplier vectors ��, ��such that �x, ��, �� together satisfy these KKT condi-tions. In the literature these conditions are usuallycalled �rst-order necessary optimality condi-tions or Kuhn-Tucker conditions. But it has beenfound recently that Karush was the �rst to discussthem. Hence, nowadays, the name Karush-Kuhn-Tucker necessary optimality conditions is cominginto Vogue.A feasible solution �x satisfying the property thatthere exist Lagrange multiplier vectors ��, �� suchthat �x, ��, �� together satisfy the KKT conditions,is called a KKT point for the problem.



Notation xxxvStationary pointfor an NLP Given an NLP, a stationary point for it usuallyrefers to any feasible solution satisfying a neces-sary optimality condition for it. Every optimumsolution is a stationary point, but, in general, theremay be stationary points which are not even locallyoptimal to the problem.Direction, half-line Any point y 2 Rn, y 6= 0 de�nes a direction inRn. Given �x 2 Rn, points �x + �y, � >= 0 areobtained when you move from �x in the direction y.The set of all these points fx : x = �x+ �y; � >= 0gis the half-line or ray through �x in the directionof y. See Section 1.1.1.Step length Given �x 2 Rn, y 2 Rn, y 6= 0; for � > 0, the point�x+�y is obtained by taking a step of length � from�x in the direction of y. In this process � is the steplength.Feasible direction Given a set ��� � Rn, and a point �x 2 ���; the direc-tion y 2 Rn, y 6= 0, is called a feasible directionat �x for ��� if there exists a positive number �� suchthat �x+ �y 2 ��� for all 0 <= � <= ��. Thus the direc-tion y is a feasible direction at �x for ��� i� an initialsegment of positive length on the half-line through�x in the direction y is contained in ���.Given an optimization problem, and a feasible solu-tion x for it, the direction y (in the x-space) is saidto be a feasible direction at x for this optimizationproblem if there exists an � > 0 such that x+�y isa feasible solution to the problem for all 0 <= � <= �.Descent direction Let �(x) be a real valued function de�ned over x 2Rn. The direction y 2 Rn, y 6= 0, is said to be adescent direction for �(x) at �x if �(�x+�y) < �(�x)whenever � is positive and su�ciently small. So bymoving from �x a small but positive step length ina descent direction, �(x) is guaranteed to strictlydecrease in value.A descent direction for a minimization problem ata feasible solution x, is a feasible direction for theproblem at x, which is a descent direction at x forthe objective function being minimized.



xxxvi NotationLine search problem,line search method Let �(x) be a real valued function de�ned on Rn.Let �x 2 Rn be a given point and y 2 Rn, y 6= 0a given direction. The problem of minimizing�(�x + �y) over a <= � <= b where a, b are givenbounds on �, is called a line search problem ora line minimization problem; and any methodfor solving such a problem is called a line searchmethod. Since �x, y are given, �(�x+ �y) is purelya function of the single variable �, if we denote�(�x + �y) = f(�), the line search problem is theone dimensional minimization problem of �ndingthe minimum of f(�) over a <= � <= b. Typi-cally, in most line search problems encountered inapplications, we will have a = 0 and b is eithera �nite positive number, or +1. When b is �-nite, the problem is often called a constrainedline search problem. Several line search meth-ods are discussed in Section 10.7. Many nonlinearprogramming algorithms use line search methodsrepeatedly in combination with special subroutinesfor generating feasible descent directions.Hereditary symmetry,hereditary PD Many algorithms for nonlinear programming (forexample those discussed in Section 1.3.6 or Chapter10) are iterative methods which maintain a squarematrix B of order n and update it in each step. LetBt denote this matrix in the tth step. The updatingformula in this method provides Bt+1 as a functionof Bt and other quantities which are computed inthe tth step or earlier. This updating procedure issaid to possess the hereditary symmetry prop-erty if for any t, the fact that Bt is symmetricimplies that Bt+1 is also symmetric. Similarly, theupdating procedure possesses the hereditary PDproperty if for any t the fact that Bt is PD impliesthat Bt+1 is also PD. Thus, if the updating proce-dure has the hereditary symmetry and PD proper-ties, and the initial matrix B used in the method isboth symmetric and PD, the matrices Bt obtainedin all the steps of the method will also be symmet-ric and PD.



Notation xxxviiActive set method Any method for solving an NLP which partitionsthe set of inequality constraints into two groups |the active set consisting of those inequalities whichare to be treated as active, that is, as equalityconstraints; and the inactive set. Inequality con-straints in the inactive set are presumed to holdas strict inequalities at the optimum solution andare essentially ignored. The remaining problem issolved (treating all the constraints as equality con-straints) by any method for solving equality con-strained optimization problems. Active set meth-ods also have procedures for revising the active set(either deleting inequality constraints from it, oradding inequality constraints from the inactive setinto it) in each step, based on information accumu-lated in the method so far.Convex programmingproblem, nonconvexprogramming problem A problem in which a convex objective function isto be minimized over a convex set (usually of theform: minimize �(x), subject to gi(x) >= 0, i = 1 tom and ht(x) = 0, t = 1 to p; where all the functionsare given and �(x) is convex; gi(x) are concave forall i; and ht(x) is a�ne for all t) is said to be aconvex programming problem. A nonconvexprogramming problem is one which is not con-vex, that is, does not belong to the above class. Fora convex programming problem every local mini-mum is a global minimum. In general, it is veryhard to �nd the global minimum in a nonconvexprogramming problem. Necessary and su�cientconditions for optimality are available for convexprogramming problems. For nonconvex program-ming problems we have some necessary conditionsfor a point to be a local minimum, and su�cientconditions for a given point to be a local minimum.No simple set of conditions which are both neces-sary and su�cient for a given point to be a localminimum, are known for general nonconvex pro-gramming problems.



xxxviii NotationMerit function In a nonlinear program where an objective functionde�ned on Rn is to be minimized subject to con-straints, amerit function is a real valued functionde�ned on Rn, it consists of the objective functionplus penalty terms for constraint violations. Usu-ally the penaltyterms come from either the absolute-value penaltyfunction (L1-penalty function) or the quadratic penaltyfunction. Minimizing the merit function balancesthe two competing goals which result from the de-sire to decrease the objective function while reduc-ing the amount by which the constraints fail to besatis�ed. See Section 1.3.6.Cauchy-Schwartzinequality Let x, y be two column vectors in Rn. Then jxT yj<= jjxjj.jjyjj, this inequality is known as theCauchy-Schwartz inequality. To prove it con-sider the quadratic equation in one variable �, f(�)= (�x+ y)T (�x+ y) = �2jjxjj2 + 2�xT y + jjyjj2 =0. Since f(�) = jj�x+ yjj2, it is always >= 0. Thisimplies that the equation f(�) = 0 can have atmost one real solution in �. It is well known thatthe quadratic equation a�2 + b� + c = 0 has atmost one real solution i� b2 � 4ac <= 0, applyingthis to the equation f(�) = 0, we conclude that(xT y)2 <= jjxjj2.jjyjj2, that is, jxT yj <= jjxjj.jjyjj.Also, the quadratic equation a�2 + b�+ c = 0 hasexactly one real solution if b2 � 4ac = 0. Apply-ing this to f(�) = 0, we conclude that f(�) = 0has a real solution if jxT yj = jjxjj.jjyjj, in this casesince f(�) = jj�x + yjj2 = 0 for some real �, wemust have �x+ y = 0, or y is scalar multiple of thevector x. Thus, if the Cauchy-Schwartz inequalityholds as an equation for two vectors x; y 2 Rn, oneof these vectors must be a scalar multiple of theother.



Notation xxxixCholesky factor If M is a square matrix of order n which is sym-metric and positive de�nite, there exists a lowertriangular matrix F of order n with positive diag-onal elements, satisfying M = FFT . This matrixF is known as the Cholesky factor of M . Fore�cient methods for computing Cholesky factors,see books on computational linear algebra, or [1.28,2.26].Homotopy method To solve a system by a homotopy method, wecontinuously deform a simple system with a knownsolution, into the system we are trying to solve. Forexample, consider the problem of solving a smoothsystem of n equations in n unknowns \g(x) = 0".Let a be an initial point from Rn, consider thesimple system of equations \x = a" with a knownsolution. Let F (x; �) = �g(x) + (1� �)(x� a), on0 <= � <= 1, x 2 Rn, F (x; �) is continuous in x and�. The system \F (x; �) = 0", treated as a sys-tem of equations in x, with � as a parameter withgiven value between 0 and 1; is the simple systemwhen � = 0, and the system we want to solve when� = 1. As the parameter � varies from 0 to 1, thesystem \F (x; �) = 0" provides a homotopy (con-tiuous deformation) of the simple system \x = a"into the system \g(x) = 0". The method for solving\g(x) = 0" based on the homotopy F (x; �), wouldfollow the curve x(�) (where x(�) is a solution ofF (x; �) = 0 as a function of the homotopy param-eter �) beginning with x(0) = a, until � assumesthe value 1 at which point we have a solution for\g(x) = 0".



xl NotationPrincipal rearrangementof a square matrix Let M be a given square matrix of order n. Letp = (i1; : : : ; in) be a permutation of (1; : : : ; n). Thesquare matrix P of order n whose rows are Ii1.;Ii2.; : : : ; Iin. in that order is the permutation ma-trix corresponding to p. P is obtained by essen-tially permuting the rows of the unit matrix I oforder n using the permutation p. The matrixM 0 =PMPT is known as the principal rearrangement ofM according to the permutation p. Clearly M 0is obtained by �rst rearranging the rows of M ac-cording to the permutation p, and in the resultingmatrix, rearranging the columns again accordng tothe same permutation p. See Section 3.2.1.Euclidean distance,rectilinear distance Let x = (xj), y = (yj) be two point in Rn. TheEuclidean distance between x and y is jjx� yjj =s nPj=1(xj � yj)2. The rectilinear distance betweenx and y is nPj=1 jxj � yj j.



Notation xliSteepest descentdirection at a feasiblesolution, in a continuousminimization problem. First, consider an unconstrained minimization prob-lem minimize �(x) over x 2 Rn (i)where �(x) is a real valued continuous function de-�ned over Rn.Given any direction y 2 Rn, y 6= 0, the directionalderivative of �(x) at a point x in the direction y isde�ned to be limit �(x+ �y)� �(x)�as �! 0+, and denoted by �0(x; y), when it exists.If �(x) is di�erentiable at x, then �0(x; y) = r�(x)y.In general, �0(x; y) may exist even if �(x) is not dif-ferentiable at x.�0(x; y) measures the rate of change in �(x) at x =x, when moving in the direction y.The direction y is said to be a descent direction atx for problem (i), if �0(x; y) < 0.If x is a local minimum for (i), there is no descentdirection for (i) at x, and hence no steepest descentdirection. Unfortunately, the converse of this state-ment may not always be true, that is, the absence ofa descent direction at a point x does not imply thatx is a local minimum. See Exercise 20 in Appendix6. This just means that descent methods are notalways guaranteed to �nd a local minimum.If x is not a local minimum for (i), an optimumsolution ofminimize �0(x; y) subject to norm (y) = 1 (ii)is called a steepest descent direction at x for (i),under the particular norm used, if it is a descentdirection at x for (i). In (ii), norm (y) is a functionwhich measures the distance between the points 0and y is Rn. Di�erent norms may lead to di�erentsteepest descent directions.In optimization literature, usually norm (y) is takenas yTAy where A is some speci�ed symmetric PDmatrix of order n (taking A = I, the unit matrixof order n, leads to the Euclidean norm).



xlii NotationNow consider a constrained continuous minimiza-tionproblem. Let K � Rn denote its set of feasiblesolutions. Then this problem is of the formminimize �(x) subject to x 2 K (iii)where the objective function �(x) is a real valuedcontinuous function de�ned over Rn. Let x 2 Kbe a given feasible solution.Again, if x is a local minimum for (iii), there isno descent direction and hence no steepest descentdirection for (iii) at x. If x is not a local minimumfor (iii), any optimum solution ofminimize �0(x; y)subject to norm of (y) = 1;and y is a feasible directionat x for K, and a descentdirection for �(x) at x (iv)
is known as a steepest descent direction for (iii) atthe feasible solution x.



Notation xliiiDescent methods Descent methods for smooth minimization prob-lemshave the following features. They are initiated witha feasible solution, x0, for the problem, and gen-erate a sequence fxr : r = 0; 1; 2; : : :g of feasiblepoints. For each r, the objective value at xr+1 isstrictly less than the objective value at xr. Forr >= 0, step r + 1 of the method consists of thefollowing two substeps.1. Generate a feasible direction, yr, for the problemat the present feasible point xr, which is a descentdirection for the objective function.2. Carry out a line search on the half-line fx : x =xr + �yr; � >= 0g for improving the objective value.For this, one has to determine the maximum valueof �, say �, such that xr + �yr remains feasibleto the problem for all 0 <= � <= � and then solvethe line minimization problem of minimizing theobjective function over fx : x = xr + �yr; 0 <= � <=�g, the output of which is the next point in thesequence, xr+1.If there exists no feasible descent direction at xr,the method terminates with xr while carrying outsubstep 1 (unfortunately, this does not guaranteethat xr is even a local minimum for the problem,it just means that we are unable to improve onthe point xr using descent methods.) If subsetp 1does produce a direction yr, from the de�nition offeasible descent directions, � is guaranteed to bepositive in substep 2 (it may happen that � =1).Di�erent descent methods use di�erent proceduresfor carrying out substeps 1, 2.Therefore, the important feature of descent meth-ods is that each move is made along a straight line,and results in a strict improvement in objectivevalue. Since the objective value strictly improvesin each step (assuming that the method does notterminate in that step), the sequence of points gen-erated by a descent method is called a descentsequence.



xliv NotationKarmarkar's algorithmfor LP and an intuitivejusti�cation for it A detailed description of Karmarkar's algorithm,including complete proofs of its polynomial bound-edness are provided in Section 11.4. Here we give astatement of this algorithm, with an intuitive jus-ti�cation, for someone interested in an overviewwithout all the technical details and the proofs.Consider the problem of minimizing a linear func-tion on a convex polytope.
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One can improve the current solution substantiallyby moving in the steepest descent direction, if thecurrent solution is near the center of the feasibleregion, as in x0 in the �gure given above; but notso if it is near the boundary, as in x1.The main ideas behind Karmarkar's algorithm arethe following:i) If the current feasible solution is near the centerof the feasible region, it makes sense to move in thesteepest descent direction.ii) If it is possible to transform the problem withoutchanging it in an essential way, that moves the cur-rent feasible solution near the center of the feasibleregion, do it. Karmarkar uses a projective scalingtransformation to do exactly this.A (relative) interior feasible solution to an LP is onewhich satis�es all inequality constraints as strictinequalities. The basic strategy of Karmarkar's al-gorithm is to start at a (relative) interior feasiblesolution, and to carry out a projective scaling trans-formation to move the current solution to the cen-ter.



Notation xlvIn the transformed problem, move in the steepestdescent direction from this center, but not all theway to the (relative) boundary. Repeat as often asnecessary.Karmarkar considers linear programming problemsin the following formminimize cxsubject to Ax= 0eTx= 1x>= 0 (P)where A is a given matrix of order m � n, and eTis the row vector of all 1's in Rn. The set S = fx :x 2 Rn and eTx = 1; x >= 0g is the standard (n�1)dimensional simplex in Rn. The problem (P) isassumed to satisfy the following assumptions.(1) The point a0 = (1=n)e = (1=n; : : : ; 1=n)T , thecenter of S, is feasible to (P).(2) The problem (P) has an optimum solution, andthe optimum objective value in (P) is zero.Methods for transforming any LP into the form(P) satisfying conditions (1), (2), are discussed inSection 11.4. This is the initialization work beforeapplying Karmarkar's algorithm on an LP. Whilethese initialization methods are simple and math-ematically correct, they can ruin the practical ef-�ciency unless done in a clever way. Practicallye�cient initialization techniques in implementingKarmarkar's algorithm, are the object of intenseresearch investigations at the moment.Let us now consider the LP (P) satisfying (1) and(2). Karmarkar's method generates a sequence offeasible solutions for (P), x0 = a0; x1; x2; : : : ; all ofthem in the relative interior of S (i. e., xr > 0 forall r), with cxr monotonic decreasing. The methodis terminated when we reach a t such that the ob-jective value cxt is su�ciently close to the optimumobjective value of 0. So the terminal solution xt isa near optimum solution to (P). A pivotal method(needing at most n pivot steps) that leads to anoptimum extreme point solution of (P) from a nearoptimum solution, is discussed in Section 11.4, it



xlvi Notationcan be used in a �nal step if necessary. We nowprovide the general step.General step r+1 in Karmarkar's algorithm:Let xr = a = (a1; : : : ; an)T > 0 be the current fea-sible solution of (P). De�ne D as the n�n diagonalmatrix with diagonal entries a1; : : : ; an, that isD = 0@ a1 0. . .0 an1A :Since the matrix D depends on the current solu-tion, you get a di�erent D in each step. Use theprojective transformation T : S! S, de�ning newvariables y = (y1; : : : ; yn) byy = T (x) = D�1xeTD�1x:Since D is a diagonal matrix with positive diagonalentries, D�1 is the diagonal matrix whose ith di-agonal entry is (1=ai). For every x 2 S, T (x) 2 S.Also, points in the relative interior of S in the x-space map into points in the relative interior of Sin the y-space. The current feasible solution a of(P) in the x-space, maps into the solution a0 =(1=n; : : : ; 1=n), the center of the simplex S in they-space, under this transformation.To transform the problem (P), we use the inversetransformationx = T�1(y) = DyeTDy :It can be veri�ed that this transforms the originalLP into minimize cDyeTDy = �(y)subject to ADy= 0eT y= 1y >= 0: (Q)The constraints remain linear and essentially in the



Notation xlviisame form as those in (P), but the objective func-tion in (Q) is nonlinear.Since the current solution for (Q) is a0, the centerof S, it makes sense to move from a0, in the steep-est descent direction in (Q) at a0. Since a0 > 0,the set of feasible directions for (Q) at a0 is f� :� 2 Rn; AD� = 0; eT � = 0g. LetB = 0@AD: : :eT 1A :At a0, the denominator in �(y), eTDy, is equal to(1=n), and it remains quite constant in a smallneighborhood of a0. So, the steepest descent di-rection for (Q) at the current point a0 can be ap-proximated by the steepest descent direction forthe objective function cDy subject to the same con-straints as in (Q), this is the solution ofminimize cD�subject to B�= 0k�k= 1:The optimum solution of this problem is ĉp=kĉpk,where ĉp = cD(I � BT (BBT )�1B)ĉp is the orthogonal projection of cD onto the sub-space f� : B� = 0g. So, the next point for (Q) is ofthe form y0 = a0 � �ĉp=kĉpkwhere � is a positive step length. � can be chosenas large as possible, but keeping y0 > 0. This leadsto the new solution xr+1 for the original problem(P), where xr+1 = Dy0eTDy0 :If cxr+1 is su�ciently close to 0, terminate withcxr+1 as a near optimum solution for (P), other-wise, go to the next step with xr+1 as the currentsolution.



Chapter 1
LINEAR COMPLEMENTARITYPROBLEM, ITS GEOMETRY,AND APPLICATIONS

1.1 THE LINEAR COMPLEMENTARITYPROBLEM AND ITS GEOMETRYThe Linear Complementarity Problem (abbreviated as LCP) is a general problemwhich uni�es linear and quadratic programs and bimatrix games. The study of LCPhas led to many far reaching bene�ts. For example, an algorithm known as the com-plementary pivot algorithm �rst developed for solving LCPs, has been generalizedin a direct manner to yield e�cient algorithms for computing Brouwer and Kakutani�xed points, for computing economic equilibria, and for solving systems of nonlinearequations and nonlinear programming problems. Also, iterative methods developed forsolving LCPs hold great promise for handling very large scale linear programs whichcannot be tackled with the well known simplex method because of their large size andthe consequent numerical di�culties. For these reasons the study of LCP o�ers richrewards for people learning or doing research in optimization or engaged in practicalapplications of optimization. In this book we discuss the LCP in all its depth.LetM be a given square matrix of order n and q a column vector in Rn. Through-out this book we will use the symbols w1; : : : ; wn; z1; : : : ; zn to denote the variables inthe problem. In an LCP there is no objective function to be optimized. Theproblem is: �nd w = (w1; : : : ; wn)T , z = (z1; : : : ; zn)T satisfyingw �Mz = qw >= 0; z >= 0 and wizi = 0 for all i (1:1)



2 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsThe only data in the problem is the column vector q and the square matrix M . So wewill denote the LCP of �nding w 2 Rn, z 2 Rn satisfying (1.1) by the symbol (q;M).It is said to be an LCP of order n. In an LCP of order n there are 2n variables. Asa speci�c example, let n = 2, M = 8>: 2 11 29>;, q = 8>:�5�69>;. This leads to the LCPw1 � 2z1� z2 = �5w2 � z1�2z2 = �6:w1; w2; z1; z2 >= 0 and w1z1 = w2z2 = 0: (1:2)The problem (1.2) can be expressed in the form of a vector equation asw18>: 109>;+ w28>: 019>;+ z18>:�2�19>;+ z28>:�1�29>; = 8>:�5�69>; (1:3)w1; w2; z1; z2 >= 0 and w1z1 = w2z2 = 0 (1:4)In any solution satisfying (1.4), at least one of the variables in each pair (wj ; zj),has to equal zero. One approach for solving this problem is to pick one variable fromeach of the pairs (w1; z1), (w2; z2) and to �x them at zero value in (1.3). The remainingvariables in the system may be called usable variables. After eliminating the zerovariables from (1.3), if the remaining system has a solution in which the usable variablesare nonnegative, that would provide a solution to (1.3) and (1.4).Pick w1, w2 as the zero-valued variables. After setting w1, w2 equal to 0 in (1.3),the remaining system isz18>:�2�19>;+ z28>:�1�29>; = 8>:�5�69>; = 8>: q1q29>; = qz1 >= 0; z2 >= 0 (1:5)
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-2 Figure 1.1 A Complementary ConeEquation (1.5) has a solution i� the vector q can be expressed as a nonnegativelinear combination of the vectors (�2;�1)T and (�1;�2)T . The set of all nonnegative



1.1. The Linear Complementarity Problem and its Geometry 3linear combinations of (�2;�1)T and (�1;�2)T is a cone in the q1; q2-space as inFigure 1.1. Only if the given vector q = (�5;�6)T lies in this cone, does the LCP(1.2) have a solution in which the usable variables are z1; z2. We verify that the point(�5;�6)T does lie in the cone, that the solution of (1.5) is (z1; z2) = (4=3; 7=3) and,hence, a solution for (1.2) is (w1; w2; z1; z2) = (0; 0; 4=3; 7=3). The cone in Figure 1.1is known as a complementary cone associated with the LCP (1.2). Complementarycones are generalizations of the well-known class of quadrants or orthants.1.1.1 NotationThe symbol I usually denotes the unit matrix. If we want to emphasize its order, wedenote the unit matrix of order n by the symbol In.We will use the abbreviation LP for \Linear Program" and BFS for \Basic FeasibleSolution". See [1.28, 2.26]. LCP is the abbreviation for \Linear ComplementarityProblem" and NLP is the abbreviation for \Nonlinear Program".Column and Row Vectors of a MatrixIf A = (aij) is a matrix of order m � n say, we will denote its jth column vector(a1j; : : : ; amj)T by the symbol A.j , and its ith row vector (ai1; : : : ; ain) by Ai..Nonnegative, Semipositive, Positive VectorsLet x = (x1; : : : ; xn)T 2 Rn. x >= 0, that is nonnegative, if xj >= 0 for all j. Clearly,0 >= 0. x is said to be semipositive, denoted by x � 0, if xj >= 0 for all j and at leastone xj > 0. Notice the distinction in the symbols for denoting nonnegative (>= withtwo lines under the >) and semipositive (� with only a single line under the >). 0 6� 0,the zero vector is the only nonnegative vector which is not semipositive. Also, if x � 0,Pnj=1 xj > 0. The vector x > 0, strictly positive, if xj > 0 for all j. Given two vectorsx; y 2 Rn; we write x >= y, if x� y >= 0, x � y if x� y � 0, and x > y if x� y > 0.Pos ConesIf fx1; : : : ; xrg � Rn, the cone fx : x = �1x1 + : : :+ �rxr; �1; : : : ; �r >= 0g is denotedby Posfx1; : : : ; xrg. Given the matrix A of order m � n, Pos(A) denotes the conePosfA.1; : : : ; A.ng = fx : x = A� for � = (�1; : : : ; �n)T >= 0g.Directions, Rays, Half-Lines, and Step LengthAny point y 2 Rn, y 6= 0, de�nes a direction in Rn. Given the direction y, it's rayis the half-line obtained by joining the origin 0 to y and continuing inde�nitely in the



4 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationssame direction, it is the set of points f�y : � >= 0g. Given x 2 Rn, by moving fromx in the direction y we get points of the form x + �y where � >= 0, and the set of allsuch points fx+ �y : � >= 0g is the hal
ine or ray through x in the direction y. Thepoint x+�y for � > 0 is said to have been obtained by moving from x in the directiony a step length of �. As an example, if y = (1; 1)T 2 Rn, the ray of y is the set of allpoints of the form f(�; �)T : � >= 0g. In addition, if, x = (1;�1)T , the hal
ine throughx in the direction y is the set of all points of the form f(1 + �;�1+ �)T : � >= 0g. SeeFigure 1.2. In this half-line, letting � = 9, we get the point (10; 8)T , and this point isobtained by taking a step of length 9 from x = (1;�1)T in the direction y = (1; 1)T .
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Figure 1.2 Rays and Half-Lines
1.1.2 Complementary ConesIn the LCP (q;M), the complementary cones are de�ned by the matrix M . The pointq does not play any role in the de�nition of complementary cones.Let M be a given square matrix of order n. For obtaining C(M), the class ofcomplementary cones corresponding to M , the pair of column vectors (I.j ;�M.j) is



1.1. The Linear Complementarity Problem and its Geometry 5known as the jth complementary pair of vectors, 1 <= j <= n. Pick a vector fromthe pair (I.j ;�M.j) and denote it by A.j . The ordered set of vectors (A.1; : : : ; A.n) isknown as a complementary set of vectors. The cone Pos(A.1; : : : ; A.n) = fy : y =�1A.1+ : : :+�nA.n;�1 >= 0; : : : ; �n >= 0g is known as a complementary cone in theclass C(M). Clearly there are 2n complementary cones.Example 1.1Let n = 2 andM = I. In this case, the class C(I) is just the class of orthants in R2. Ingeneral for any n, C(I) is the class of orthants in Rn. Thus the class of complementarycones is a generalization of the class of orthants. See Figure 1.3. Figures 1.4 and 1.5provide some more examples of complementary cones. In the example in Figure 1.5since fI.1;�M.2g is a linearly dependent set, the cone Pos(I.1;�M.2) has an emptyinterior. It consists of all the points on the horizontal axis in Figure 1.6 (the thickaxis). The remaining three complementary cones have nonempty interiors.
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Figure 1.3 When M = I, the Complementarity Cones are the Orthants.Figure 1.4 Complementary Cones when M = 8>: 2 �11 39>;.



6 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsDegenerate, Nondegenerate Complementary ConesLet Pos(A.1; : : : ; A.n) be a complementary cone in C(M). This cone is said to be a non-degenerate complementary cone if it has a nonempty interior, that is if fA.1; : : : ; A.ngis a linearly independent set; degenerate complementary cone if its interior is empty,which happens when fA.1; : : : ; A.ng is a linearly dependent set. As examples, all thecomplementary cones in Figures 1.3, 1.4, 1.5, are nondegenerate. In Figure 1.6 thecomplementary cone Pos(I.1;�M.2) is degenerate, the remaining three complemen-tary cones are nondegenerate.
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Figure 1.5 Complementary Cones when M = 8>:�2 11 �29>;.Figure 1.6 Complementary Cones when M = 8>: 1 12 09>;.1.1.3 The Linear Complementary ProblemGiven the square matrixM of order n and the column vector q 2 Rn, the LCP (q;M),is equivalent to the problem of �nding a complementary cone in C(M) that containsthe point q, that is, to �nd a complementary set of column vectors (A.1; : : : ; A.n) suchthat (i) A.j 2 fI.j ;�M.jg for 1 <= j <= n(ii) q can be expressed as a nonnegative linear combination of (A.1; : : : ; A.n)



1.1. The Linear Complementarity Problem and its Geometry 7where I is the identity matrix of order n and I.j is its jth column vector. This isequivalent to �nding w 2 Rn, z 2 Rn satisfyingPnj=1 I.jwj�Pnj=1M.jzj = q; wj >= 0;zj >= 0 for all j, and either wj = 0 or zj = 0 for all j. In matrix notation this isw �Mz = q (1:6)w >= 0 z >= 0 (1:7)wjzj = 0 for all j: (1:8)Because of (1.7), the condition (1.8) is equivalent to Pnj=1wjzj = wT z = 0; this con-dition is known as the complementarity constraint. In any solution of the LCP(q;M), if one of the variables in the pair (wj ; zj) is positive, the other should be zero.Hence, the pair (wj ; zj) is known as the jth complementary pair of variables andeach variable in this pair is the complement of the other. In (1.6) the column vectorcorresponding to wj is I.j , and the column vector corresponding to zj is �M.j . Forj = 1 to n, the pair (I.j ;�M.j) is the jth complementary pair of column vectors inthe LCP (q;M). For j = 1 to n, let yj 2 fwj ; zjg and let A.j be the column vectorcorresponding to yj in (1.6). So A.j 2 fI.j �M.jg. Then y = (y1; : : : ; yn) is a com-plementary vector of variables in this LCP, the ordered set (A.1; : : : ; A.n) is thecomplementary set of column vectors corresponding to it and the matrix Awith its column vectors as A.1; : : : ; A.n in that order is known as the complemen-tary matrix corresponding to it. If fA.1; : : : ; A.ng is linearly independent, y is acomplementary basic vector of variables in this LCP, and the complementarymatrix A whose column vectors are A.1; : : : ; A.n in that order, is known as the com-plementary basis for (1.6) corresponding to the complementary basic vector y. Thecone Pos(A.1; : : : ; A.n) = fx : x = �1A.1 + : : : + �nA.n; �1 >= 0; : : : ; �n >= 0g is thecomplementary cone in the class C(M) corresponding to the complementary set ofcolumn vectors (A.1; : : : ; A.n), or the associated complementary vector of variables y.A solution of the LCP (q;M), always means a (w; z) satisfying all the constraints(1.6), (1.7), (1.8).A complementary feasible basic vector for this LCP is a complementary basicvector satisfying the property that q can be expressed as a nonnegative combination ofcolumn vectors in the corresponding complementary basis. Thus each complementaryfeasible basic vector leads to a solution of the LCP.The union of all the complementary cones associated with the square matrix Mis denoted by the symbol K(M). K(M) is clearly the set of all vectors q for which theLCP (q;M) has at least one solution.We will say that the vector z leads to a solution of the LCP (q;M) i� (w =Mz + q; z) is a solution of this LCP.As an illustration, here are all the complementary vectors of variables and thecorresponding complementary matrices for (1.2), an LCP of order 2.



8 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsComplementary The correspondingvector of variables complementary matrix(w1; w2) 8>: 1 00 19>;(w1; z2) 8>: 1 �10 �29>;(z1; w2) 8>:�2 0�1 19>;(z1; z2) 8>:�2 �1�1 �29>;Since each of these complementary matrices is nonsingular, all the complemen-tary vectors are complementary basic vectors, and all the complementary matrices arecomplementary bases, in this LCP. Since q = (�5;�6)T in (1.2) can be expressedas a nonnegative combination of the complementary matrix corresponding to (z1; z2);(z1; z2) is a complementary feasible basic vector for this LCP. The reader should drawall the complementary cones corresponding to this LCP on the two dimensional Carte-sian plane, and verify that for this LCP, their union, the set K(M) = R2.The Total Enumeration Method for the LCPConsider the LCP (q;M) of order n. The complementarity constraint (1.8) impliesthat in any solution (w; z) of this LCP, for each j = 1 to n, we must haveeither wj = 0or zj = 0:This gives the LCP a combinatorial, rather than nonlinear 
avour. It automaticallyleads to an enumeration method for the LCP.There are exactly 2n complementary vectors of variables. Letyr = (yr1; : : : ; yrn); r = 1 to 2nwhere yrj 2 fwj ; zjg for each j = 1 to n, be all the complementary vectors of variables.Let Ar be the complementary matrix corresponding to yr, r = 1 to 2n. Solve thefollowing system (Pr). Aryr = qyr >= 0 : (Pr)This system can be solved by Phase I of the simplex method for LP, or by other methodsfor solving linear equality and inequality systems. If this system has a feasible solution,yr, say, then yr = yrall variables not in yr, equal to zero



1.2. Application to Linear Programming 9is a solution of LCP (q;M). If the complementary matrix Ar is singular, the system(Pr) may have no feasible solution, or have one or an in�nite number of feasible solu-tions. Each feasible solution of (Pr) leads to a solution of the LCP (q;M) as discussedabove. When this is repeated for r = 1 to 2n, all solutions of the LCP (q;M) can beobtained. The method discussed at the beginning of Section 1.1 to solve an LCP oforder 2 is exactly this enumeration method.This enumeration method is convenient to use only when n = 2, since 22 = 4 issmall; and to check whether the system (Pr) has a solution for any r, we can draw thecorresponding complementary cone in the two dimensional Cartesian plane and checkwhether it contains q. When n > 2, particularly for large n, this enumeration methodbecomes impractical since 2n grows very rapidly. In Chapter 2 and later chapters wediscuss e�cient pivotal and other methods for solving special classes of LCPs that arisein several practical applications. In Section 8.7 we show that the general LCP is a hardproblem. At the moment, the only known algorithms which are guaranteed to solvethe general LCP are enumerative methods, see Section 11.3.1.2 APPLICATION TOLINEAR PROGRAMMINGIn a general LP there may be some inequality constraints, equality constraints, signrestricted variables and unrestricted variables. Transform each lower bounded variable,say xj >= lj , into a nonnegative variable by substituting xj = lj + yj where yj >= 0.Transform each sign restricted variable of the form xj <= 0 into a nonnegative variableby substituting xj = �yj where yj >= 0. Eliminate the unrestricted variables oneafter the other, using the equality constraints (see Chapter 2 of [1.28 or 2.26]). In theresulting system, if there is still an equality constraint left, eliminate a nonnegativevariable from the system using it, thereby transforming the constraint into an inequalityconstraint in the remaining variables. Repeat this process until there are no moreequality constraints. In the resulting system, transform any inequality constraint ofthe \<=" form into one of \>=" form, by multiplying both sides of it by `-1'. If the objetivefunction is to be maximized, replace it by its negative which should be minimized, andeliminate any constant terms in it. When all this work is completed, the original LPis transformed into: Minimize cxSubject to Ax >= bx >= 0 (1:9)which is in symmetric form. Here, suppose A is of order m�N . If x is an optimumfeasible solution of (1.9), by the results of the duality theory of linear programming(see [1.28, 2.26]) there exists a dual vector y 2 Rm, primal slack vector v 2 Rm, anddual slack vector u 2 RN which together satisfy



10 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applications8>:uv9>;�8>: 0 �ATA 0 9>;8>:xy9>; = 8>: cT�b9>;8>:uv9>; >= 0 8>:xy9>; >= 0 and 8>:uv9>;T 8>:xy9>; = 0 : (1:10)Conversely, if u, v, x, y together satisfy all the conditions in (1.10), x is an optimumsolution of (1.9). In (1.10) all the vectors and matrices are written in partitionedform. For example, �uv� is the vector (u1; : : : ; uN ; v1; : : : ; vm)T . If n = m+N ,w = 8>:uv9>; ; z = 8>:xy9>; ; M = 8>: 0 �ATA 0 9>; ; q = 8>: cT�b9>; ;(1.10) is seen to be an LCP of order n of the type (1.6) to (1.8). Solving the LP (1.9)can be achieved by solving the LCP (1.10).Also, the various complementary pairs of variables in the LCP (1.10) are exactlythose in the pair of primal, dual LPs (1.9) and its dual. As an example consider thefollowing LP. Minimize �13x1+42x2Subject to 8x1� x2+ 3x2 >= �16� 3x1+ 2x2� 13x3 >= 12xj >= 0; j = 1; 2; 3:Let (v1; y1), (v2; y2) denote the nonnegative slack variable, dual variable respectively,associated with the two primal constraints in that order. Let u1, u2, u3 denote thenonnegative dual slack variable associated with the dual constraint corresponding tothe primal variable x1, x2, x3, in that order. Then the primal and dual systemstogether with the complementary slackness conditions for optimality are8x1� x2+ 3x3 � v1 =�16�3x1+ 2x2� 13x3 � v2 = 128y1� 3y2 +u1 =�13� y1+ 2y2 +u2 = 423y1� 13y2 +u3 = 0:xj ; uj ; yi; vi >= 0 for all i; j.xjuj = yivi = 0 for all i; j.



1.3. Quadratic Programming 11This is exactly the following LCP.u1 u2 u3 v1 v2 x1 x2 x3 y1 y21 0 0 0 0 0 0 0 8 �3 �130 1 0 0 0 0 0 0 �1 2 420 0 1 0 0 0 0 0 3 �13 00 0 0 1 0 �8 1 �3 0 0 160 0 0 0 1 3 �2 13 0 0 �12All variables >= 0. u1x1 = u2x2 = u3x3 = v1y1 = v2y2 = 0.1.3 QUADRATIC PROGRAMMINGUsing the methods discussed in Section 1.2 any problem in which a quadratic objectivefunction has to be optimized subject to linear equality and inequality constraints canbe transformed into a problem of the formMinimize Q(x) = cx+ 12xTDxSubject to Ax>= bx>= 0 (1:11)where A is a matrix of order m�N , and D is a square symmetric matrix of orderN . There is no loss of generality in assuming that D is a symmetric matrix, because ifit is not symmetric replacing D by (D +DT )=2 (which is a symmetric matrix) leavesQ(x) unchanged. We assume that D is symmetric.1.3.1 Review on Positive Semide�nite MatricesA square matrix F = (fij) of order n, whether it is symmetric or not, is said to be apositive semide�nite matrix if yTFy >= 0 for all y 2 Rn. It is said to be a positivede�nite matrix if yTFy > 0 for all y 6= 0. We will use the abbreviations PSD, PDfor \positive semide�nite" and \positive de�nite", respectively.Principal Submatrices, Principal SubdeterminantsLet F = (fij) be a square matrix of order n. Let fi1; : : : ; irg � f1; : : : ; ng with itselements arranged in increasing order. Erase all the entries in F in row i and columni for each i 62 fi1; : : : ; irg. What remains is a square submatrix of F of order r:



12 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applications8>>>>>>>: fi1;i1 : : : fi1;ir... ...fir;i1 : : : fir;ir 9>>>>>>>; :This submatrix is known as the principal submatrix of F determined by the subsetfi1; : : : ; irg. Denoting the subset fi1; : : : ; irg by J, we denote this principal submatrixby the symbol FJJ. It is (fij : i 2 J; j 2 J). The determinant of this principalsubmatrix is called the principal subdeterminant of F determined by the subset J. Theprincipal submatrix of F determined by �, the empty set, is the empty matrix whichhas no entries. Its determinant is de�ned by convention to be equal to 1. The principalsubmatrix of F determined by f1; : : : ; ng is F itself. The principal submatrices of Fdetermined by nonempty subsets of f1; : : : ; ng are nonempty principal submatricesof F . Since the number of distinct nonempty subsets of f1; : : : ; ng is 2n � 1, there are2n�1 nonempty principal submatrices of F . The principal submatrices of F determinedby proper subsets of f1; : : : ; ng are known as proper principal submatrices of F .So each proper principal submatrix of F is of order <= n� 1.Example 1.2Let F = 8>>>>>: 0 �1 21 3 41 5 �39>>>>>; :The principal submatrix corresponding to the subset f1; 3g is 8>: 0 21 �39>;. The princi-pal submatrix corresponding to the subset f2g is 3, the second element in the principaldiagonal of F .Several results useful in studying P(S)D matrices will now be discussed.Results on P(S)D MatricesResult 1.1 If B = (b11) is a matrix of order 1 � 1, it is PD i� b11 > 0, and it isPSD i� b11 >= 0.Proof. Let y = (y1) 2 R1. Then yTBy = b11y21 . So yTBy > 0 for all y 2 R1, y 6= 0,i� b11 > 0, and hence B is PD i� b11 > 0. Also yTBy >= 0 for all y 2 R1, i� b11 >= 0,and hence B is PSD i� b11 >= 0.Result 1.2 If F is a PD matrix all its principal submatrices must also be PD.Proof. Consider the principal submatrix, G, generated by the subset f1; 2g.G = 8>: f11 f12f21 f229>; : Let t = 8>: y1y29>; :



1.3. Quadratic Programming 13Pick y = (y1; y2; 0; 0; : : : ; 0)T . Then yTFy = tTGt. However, since F is PD, yTFy > 0for all y 6= 0. So tTGt > 0 for all t 6= 0. Hence, G is PD too. A similar argument canbe used to prove that every principal submatrix of F is also PD.Result 1.3 If F is PD, fii > 0 for all i. This follows as a corollary of Result 1.2.Result 1.4 If F is a PSD matrix, all principal submatrices of F are also PSD. Thisis proved using arguments similar to those in Result 1.2.Result 1.5 If F is PSD matrix, fii >= 0 for all i. This follows from Result 1.4.Result 1.6 Suppose F is a PSD matrix. If fii = 0, then fij + fji = 0 for all j.Proof. To be speci�c let f11 be 0 and suppose that f12 + f21 6= 0. By Result 1.4 theprincipal submatrix 8>: f11 f12f21 f229>; = 8>: 0 f12f21 f229>;must be PSD. Hence f22y22 + (f12 + f21)y1y2 >= 0 for all y1; y2. Since f12 + f21 6= 0,take y1 = (�f22 � 1)=(f12 + f21) and y2 = 1. The above inequality is violated sincethe left-hand side becomes equal to �1, leading to a contradiction.Result 1.7 If D is a symmetric PSD matrix and dii = 0, then D.i = Di. = 0. Thisfollows from Result 1.6.De�nition: The Gaussian Pivot StepLet A = (aij) be a matrix of order m� n. A Gaussian pivot step on A, with row r asthe pivot row and column s as the pivot column can only be carried out if the elementlying in both of them, ars, is nonzero. This element ars is known as the pivot elementfor this pivot step. The pivot step subtracts suitable multiples of the pivot row fromeach row i for i > r so as to transform the entry in this row and the pivot column intozero. Thus this pivot step transforms
A = 8>>>>>>>>>>>>>>>>>>>>:

a11 : : : a1s : : : a1n... ... ...ar1 : : : ars : : : arnar+1;1 : : : ar+1;s : : : ar+1; n... ... ...am1 : : : ams : : : amn
9>>>>>>>>>>>>>>>>>>>>;

into 8>>>>>>>>>>>>>>>>>>>>>:
a11 : : : a1s : : : a1n... ... ...ar1 : : : ars : : : arna0r+1;1 : : : 0 : : : a0r+1; n... ... ...a0m1 : : : 0 : : : a0mn

9>>>>>>>>>>>>>>>>>>>>>;



14 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationswhere a0ij = aij � (arjais)=ars, for i = r+ 1 to m, j = 1 to n. As an example considerthe Gaussian pivot step in the following matrix with row 2 as the pivot row and column3 as the pivot column. The pivot element is inside a box.8>>>>>>>>>: 1 �2 10 �4 �14 6 2 �8 �4�3 1 � 1 2 31 �4 2 3 09>>>>>>>>>;This Gaussian pivot step transforms this matrix into8>>>>>>>>: 1 � 2 10 � 4 �14 6 2 � 8 �4�1 4 0 � 2 1�3 �10 0 11 49>>>>>>>>;Result 1.8 Let D be a square symmetric matrix of order n >= 2. Suppose D is PD.Subtract suitable multiples of row 1 from each of the other rows so that all the entriesin column 1 except the �rst is transformed into zero. That is, transformD = 2664 d11 : : : d1nd21 : : : d2n... ...dn1 : : : dnn 3775 into D1 = 2664 d11 : : : d1n0 ~d22 : : : ~d2n... ... ...0 ~dn2 : : : ~dnn 3775by a Gaussian pivot step with row 1 as pivot row and column 1 as pivot column, clearly~dij = dij � d1jdi1=d11 for all i; j >= 2. E1, the matrix obtained by striking o� the �rstrow and the �rst column from D1, is also symmetric and PD.Also, if D is an arbitrary square symmetric matrix, it is PD i� d11 > 0 and thematrix E1 obtained as above is PD.Proof. Since D is symmetric dij = dji for all i; j. Therefore,yTDy = nXi=1 nXj=1 yiyjdij = d11y21 + 2y1 nXj=2 d1jyj + Xi;j>=2 yiyjdij= d11�y1 + � nXj=2 d1jyj�=d11�2 + Xi;j>=2 yi ~dijyj :Letting y1 = �(Pnj=2 d1jyj)=d11, we verify that if D is PD, thenPi;j>=2 yi ~dijyj > 0 forall (y2; : : : ; yn) 6= 0, which implies that E1 is PD. The fact that E1 is also symmetricis clear since ~dij = dij � d1jdi1=d11 = ~dji by the symmetry of D. If D is an arbitrarysymmetric matrix, the above equation clearly implies that D is PD i� d11 > 0 and E1is PD.



1.3. Quadratic Programming 15Result 1.9 A square matrix F is PD (or PSD) i� F + FT is PD (or PSD).Proof. This follows because xT (F + FT )x = 2xTFx.Result 1.10 Let F be a square matrix of order n and E a matrix of order m� n.The square matrix A = 8>:F �ETE 0 9>; of order (m+ n) is PSD i� F is PSD.Proof. Let � = (y1; : : : ; yn; t1; : : : ; tm)T 2 Rn+m and y = (y1; : : : ; yn)T . For all �, wehave �TA� = yTFy. So �TA� >= 0 for all � 2 Rn+m i� yTFy >= 0 for all y 2 Rn. Thatis, A is PSD i� F is PSD.Result 1.11 If B is a square nonsingular matrix of order n, D = BTB is PD andsymmetric.Proof. The symmetry follows because DT = D. For any y 2 Rn, y 6= 0, yTDy =yTBTBy = kyBk2 > 0 since yB 6= 0 (because B is nonsingular, y 6= 0 implies yB 6= 0).So D is PD.Result 1.12 If A is any matrix of order m� n, ATA is PSD and symmetric.Proof. Similar to the proof of Result 1.11.Principal Subdeterminants of PD, PSD MatricesWe will need the following theorem from elementary calculus.Theorem 1.1 Intermediate value theorem: Let f(�) be a continuous real valuedfunction de�ned on the closed interval �0 <= � <= �1 where �0 < �1. Let f be a realnumber strictly between f(�0) and f(�1). Then there exists a � satisfying �0 < � < �1,and f(�) = f .For a proof of Theorem 1.1 see books on calculus, for example, W. Rudin, Prin-ciples of Mathematical Analysis, McGraw-Hill, second edition, 1964, p. 81. Theorem1.1 states that a continuous real valued function de�ned on a closed interval, assumesall intermediate values between its initial and �nal values in this interval.Now we will resume our discussion of PD, PSD matrices.Theorem 1.2 If F is a PD matrix, whether it is symmetric or not, the determinantof F is strictly positive.Proof. Let F be of order n. Let I be the identity matrix of order n. If the determinantof F is zero, F is singular, and hence there exists a nonzero column vector x 2 Rn suchthat xTF = 0, which implies that xTFx = 0, a contradiction to the hypothesis that F



16 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsis PD. So the determinant of F is nonzero. In a similar manner we conclude that thedeterminant of any PD-matrix is nonzero. For 0 < � < 1, de�ne F (�) = �F +(1��)I,and f(�) = determinant of F (�).Obviously f(�) is a polynomial in �, and hence f(�) is a real valued continuousfunction de�ned on the interval 0 <= � <= 1. Given a column vector x 2 Rn, x 6= 0,xTF (�)x = �xTFx + (1 � �)xTx > 0 for all 0 <= � <= 1 because F is PD. So F (�)is a PD matrix for all 0 <= � <= 1. So from the above argument f(�) 6= 0 for any �satisfying 0 <= � <= 1. Clearly, f(0) = 1, and f(1) = determinant of F . If f(1) < 0by Theorem 1.1 there exists a � satisfying 0 < � < 1 and f(�) = 0, a contradiction.Hence f(1) 6< 0. Hence the determinant of F cannot be negative. Also it is nonzero.Hence the determinant of F is strictly positive.Theorem 1.3 If F is a PD matrix, whether it is symmetric or not, all principalsubdeterminants of F are strictly positive.Proof. This follows from Result 1.2 and Theorem 1.2.Theorem 1.4 If F is a PSD matrix, whether it is symmetric or not, its determinantis nonnegative.Proof. For 0 <= � <= 1, de�ne F (�), f(�) as in the proof of Theorem 1.2. Since I isPD, and F is PSD; F (�) is a PD matrix for 0 <= � < 1. f(0) = 1, and f(1) is thedeterminant of F . If f(1) < 0, there exists a � satisfying 0 < � < 1, and f(�) = 0, acontradiction since F (�) is a PD matrix. Hence f(1) 6< 0. So the determinant of F isnonnegative.Theorem 1.5 If F is a PSD matrix, whether it is symmetric or not, all its principalsubdeterminants are nonnegative.Proof. Follows from Result 1.4 and Theorem 1.4.Theorem 1.6 LetH = 8>>>>>>>>>>: d11 : : : d1n d1;n+1... ... ...dn1 : : : dnn dn;n+1dn+1;1 : : : dn+1;n dn+1;n+19>>>>>>>>>>; ; D = 8>>>>>>: d11 : : : d1n... ...dn1 : : : dnn9>>>>>>;be symmetric matrices. H is of order n + 1 and D is a principal submatrix of H.So dij = dji for all i, j = 1 to n + 1. Let x 2 Rn, d = (d1;n+1; : : : ; dn;n+1)T , andQ(x) = xTDx+2dTx+dn+1;n+1. Suppose D is a PD matrix. Let x� = �D�1d. Thenx� is the point which minimizes Q(x) over x 2 Rn, andQ(x�) = (determinant of H) / (determinant of D). (1:12)



1.3. Quadratic Programming 17Also for any x 2 Rn Q(x) = Q(x�) + (x� x�)TD(x� x�): (1:13)Proof. Since H is symmetric @Q(x)@x = 2(Dx + d). Hence x� is the only point in Rnwhich satis�es @Q(x)@x = 0. Also Dx� = �d impliesQ(x�) = x�TDx� + 2dTx� + dn+1;n+1= dTx� + dn+1;n+1 : (1:14)For i = 1 to n + 1, if gi;n+1 = di;n+1 +Pnj=1 dijx�j , and if g = (g1;n+1; : : : ; gn;n+1)T ,then g = d+Dx� = 0. Also gn+1;n+1 = dn+1;n+1 + dTx� = Q(x�) from (1.14). Now,from the properties of determinants, it is well known that the value of a determinantis unaltered if a constant multiple of one of its columns is added to another. For j = 1to n, multiply the jth column of H by x�j and add the result to column n + 1 of H.This leads toDeterminant of H = determinant of 8>>>>>>>>>>: d11 : : : d1n g1;n+1... ... ...dn1 : : : dnn gn;n+1dn+1;1 : : : dn+1;n gn+1;n+19>>>>>>>>>>;= determinant of 8>>>>>>>>>>: d11 : : : d1n 0... ... ...dn1 : : : dnn 0dn+1;1 : : : dn+1;n Q(x�)9>>>>>>>>>>;= (Q(x�)) (determinant of D)which yields (1.12). (1.13) can be veri�ed by straight forward expansion of its righthand side, or it also follows from Taylor expansion of Q(x) around x�, since @2Q(x)@x2 =2D and x� satis�es @Q(x)@x = 0. Since D is a PD matrix, we have (x�x�)TD(x�x�) > 0,for all x 2 Rn, x 6= x�. This and (1.13) together imply that: Q(x) > Q(x�), for allx 2 Rn, x 6= x�. Hence x� is the point which minimizes Q(x) over x 2 Rn.Theorem 1.7 Let H, D be square, symmetric matrices de�ned as in Theorem 1.6.H is PD i� D is PD and the determinant of H is strictly positive.Proof. Suppose H is PD. By Theorem 1.2 the determinant of H is strictly positive,and by Result 1.2 its principal submatrix D is also PD.Suppose that D is PD and the determinant of H is strictly positive. Let x = (x1;: : : ; xn)T and � = (x1; : : : ; xn; xn+1)T . De�ne d, Q(x) as in Theorem 1.6. If xn+1 = 0,but � 6= 0 (i. e., x 6= 0), �TH� = xTDx > 0, since D is PD. Now suppose xn+1 6= 0.Let � = (1=xn+1)x. Then �TH� = xTDx + 2xn+1dTx + dn+1;n+1x2n+1 = x2n+1Q(�).



18 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsSo, when xn+1 6= 0, �TH� = x2n+1Q(�) >= x2n+1 (minimum value of Q(�) over � 2 Rn)= x2n+1 ((determinant of H)/determinant of D)) > 0. So under our hypothesis that Dis PD and the determinant of H is strictly positive, we have �TH� > 0 for all � 2 Rn+1,� 6= 0, that is H is PD.Theorem 1.8 Let H be the square symmetric matrix de�ned in Theorem 1.6. His PD i� the determinants of these n+ 1 principal submatrices of H,(d11); 8>: d11 d12d21 d229>; ; 8>>>>>: d11 d12 d13d21 d22 d23d31 d32 d339>>>>>; ; : : : ; D;Hare strictly positive.Proof. Proof is by induction on the order of the matrix. Clearly, the statement of thetheorem is true if H is of order 1. Now suppose the statement of the theorem is truefor all square symmetric matrices of order n. By this and the hypothesis, we know thatthe matrix D is PD. So D is PD and the determinant of H is strictly positive by thehypothesis. By Theorem 1.7 these facts imply that H is PD too. Hence, by induction,the statement of the theorem is true in general.Theorem 1.9 A square symmetric matrix is PD i� all its principal subdeterminantsare strictly positive.Proof. Let the matrix be H de�ned as in Theorem 1.6. If H is PD, all its principalsubdeterminants are strictly positive by Theorem 1.3. On the other hand, if all theprincipal subdeterminants ofH are strictly positive, the n+1 principal subdeterminantsof H discussed in Theorem 1.8 are strictly positive, and by Theorem 1.8 this impliesthat H is PD.De�nition: P -matrixA square matrix, whether symmetric or not, is said to be a P -matrix i� all its principalsubdeterminants are strictly positive.As examples, the matrices I, 8>: 2 240 29>;, 8>: 2 12 29>; are P -matrices. The matrices8>: 0 10 19>;, 8>:�1 00 109>;, 8>: 2 22 29>; are not P -matrices.Theorem 1.10 A symmetric P -matrix is always PD. If a P -matrix is not symmetric,it may not be PD.Proof. By Theorem 1.9 B, a symmetric matrix is PD i� it is a P -matrix. Considerthe matrix B, B = 8>: 1 06 19>; ; B + BT = 8>: 2 66 29>; :



1.3. Quadratic Programming 19Since all its principal subdeterminants are 1, B is a P -matrix. However, the determi-nant of (B + BT ) is strictly negative, and hence it is not a PD matrix by Theorem1.9, and by Result 1.9 this implies that B is not PD. Actually, it can be veri�ed that,(1;�1)B(1;�1)T = �4 < 0.Note 1.1 The interesting thing to note is that if H is a symmetric matrix, and ifthe n+1 principal subdeterminants of H discussed in Theorem 1.8 are strictly positive,by Theorems 1.10 and 1.8 all principal subdeterminants of H are positive. This resultmay not be true if H is not symmetric.Exercises1.1 If H is a square symmetric PSD matrix, and its determinant is strictly positive,then prove that H is a PD matrix. Construct a numerical example to show that thisresult is not necessarily true if H is not symmetric.1.2 Is the following statement true? \H is PSD i� its (n+1) principal subdeterminantsdiscussed in Theorem 1.8 are all nonnegative." Why? Illustrate with a numericalexample.By Theorem 1.9 the class of PD matrices is a subset of the class of P -matrices.By Theorem 1.10 when restricted to symmetric matrices, the property of being a PDmatrix is the same as the property of being a P -matrix. An asymmetric P -matrix maynot be PD, it may be a PSD matrix as the matrix fM(n) below is, or it may not evenbe a PSD matrix. Let
fM(n) = 8>>>>>>>>>>>>>>>>>>:

1 0 0 : : : 0 02 1 0 : : : 0 02 2 1 : : : 0 0... ... ... . . . ... ...2 2 2 : : : 1 02 2 2 : : : 2 1
9>>>>>>>>>>>>>>>>>>; : (1:15)

fM(n) is a lower triangular matrix in which all the diagonal entries are 1, and all entriesbelow the diagonal are 2. All the principal subdeterminants of fM(n) are clearly equalto 1, and hence fM(n) is a P -matrix. However, fM(n)+(fM(n))T is the matrix in whichall the entries are 2, and it can be veri�ed that it is a PSD matrix and not a PD matrix.Theorem 1.11 Let F be a square PSD matrix of order n, whether it is symmetricor not. If x 2 Rn is such that xTFx = 0, then (F + FT )x = 0.



20 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsProof. Let D = F+FT . D is symmetric and by Result 1.9, D is PSD. For all x 2 Rn,xTDx = 2xTFx. So xTDx = 0 too. We wish to prove that Dx = 0. Let x 2 Rn. Forall real numbers �; (x+ �x)T D(x+ �x) >= 0, that is�2xTDx+ 2�xTDx >= 0 (1:16)since xTDx = 0. If xTDx = 0, by taking � = 1 and then �1 in (1.16), we concludethat xTDx = 0. If xTDx 6= 0, since D is PSD, xTDx > 0. In this case, from (1.16)we conclude that 2xTDx >= ��xTDx for � > 0, and 2xTDx <= ��xTDx for � < 0.Taking � to be a real number of very small absolute value, from these we concludethat xTDx must be equal to zero in this case. Thus whether xTDx = 0, or xTDx > 0,we have xTDx = 0. Since this holds for all x 2 Rn, we must have xTD = 0, that isDx = 0.Algorithm for Testing Positive De�nitenessLet F = (fij) be a given square matrix of order n. Find D = F + FT . F is PD i�D is. To test whether F is PD, we can compute the n principal subdeterminants ofD determined by the subsets f1g; f1; 2g; : : : ; f1; 2; : : : ; ng. F is PD i� each of these ndeterminants are positive, by Theorem 1.8. However, this is not an e�cient methodunless n is very small, since the computation of these separate determinants is timeconsuming.We now describe a method for testing positive de�niteness of F which requires atmost n Gaussian pivot steps on D along its main diagonal; hence the computationale�ort required by this method is O(n3). This method is based on Result 1.8.(i) If any of the principal diagonal elements in D are nonpositive, D is not PD.Terminate.(ii) Subtract suitable multiples of row 1 from all the other rows, so that all the entriesin column 1 and rows 2 to n of D are transformed into zero. That is, transformD into D1 as in Result 1.8. If any diagonal element in the transformed matrix,D1, is nonpositive, D is not PD. Terminate.(iii) In general, after r steps we will have a matrix Dr of the form:26666666664
d11 d12 : : : d1n0 ~d22 : : : ~d1n0 .. . ...drr : : : drn0 d̂r+1;r+1 : : : d̂r+1;n... ... ... ... ...0 0 0 d̂n;r+1 : : : d̂nn

37777777775 :
Subtract suitable multiples of row r + 1 in Dr from rows i for i > r + 1, so thatall the entries in column r + 1 and rows i for i > r + 1 are transformed into 0.



1.3. Quadratic Programming 21This transforms Dr into Dr+1. If any element in the principle diagonal of Dr+1is nonpositive, D is not PD. Terminate. Otherwise continue the algorithm in thesame manner for n� 1 steps, until Dn�1 is obtained, which is of the form266664 d11 d12 : : : d1n0 ~d22 : : : ~d2n0... ... ...0 0 : : : dnn
377775 :Dn�1 is upper triangular. That's why this algorithm is called the superdiago-nalization algorithm. If no termination has occured earlier and all the diagonalelements of Dn�1 are positive, D, and hence, F is PD.Example 1.3Test whetherF = 264 3 1 2 2�1 2 0 20 4 4 530 �2 �133 6 375 is PD, D = F + FT = 264 6 0 2 20 4 4 02 4 8 �832 0 �83 12375 :All the entries in the principal diagonal of D (i. e., the entries dii for all i) are strictlypositive. So apply the �rst step in superdiagonalization getting D1. Since all elementsin the principal diagonal of D1 are strictly positive, continue. The matrices obtainedin the order are:D1 = 2664 6 0 2 20 4 4 00 4 223 �1030 0 �103 343 3775 ; D2 = 2664 6 0 2 20 4 4 00 0 103 �1030 0 �103 343 3775 ;D3 = 2664 6 0 2 20 4 4 00 0 103 �1030 0 0 8 3775 :The algorithm terminates now. Since all diagonal entries in D3 are strictly positive,conclude that D and, hence, F is PD.Example 1.4Test whether D = 8>>>>>>>>: 1 0 2 00 2 4 02 4 4 50 0 5 39>>>>>>>>; is PD.



22 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsD is already symmetric, and all its diagonal elements are positive. The �rst step ofthe algorithm requires performing the operation: (row 3) { 2(row 1) on D. This leadsto D1 = 8>>>>>>>>: 1 0 2 00 2 4 00 4 0 50 0 5 39>>>>>>>>; :Since the third diagonal element in D1 is not strictly positive, D is not PD.Algorithm for Testing Positive Semide�nitenessLet F = (fij) be the given square matrix. Obtain D = F + FT . If any diagonalelement of D is 0, all the entries in the row and column of the zero diagonal entrymust be zero. Otherwise D (and hence F ) is not PSD and we terminate. Also, if anydiagonal entries in D are negative, D cannot be PSD and we terminate. If terminationhas not occurred, reduce the matrix D by striking o� the rows and columns of zerodiagonal entries.Start o� by performing the row operations as in (ii) above, that is, transform Dinto D1. If any diagonal element in D1 is negative, D is not PSD. Let E1 be thesubmatrix of D1 obtained by striking o� the �rst row and column of D1. Also, if adiagonal element in E1 is zero, all entries in its row and column in E1 must be zero.Otherwise D is not PSD. Terminate. Continue if termination does not occur.In general, after r steps we will have a matrix Dr as in (iii) above. Let Er be thesquare submatrix of Dr obtained by striking o� the �rst r rows and columns of Dr.If any diagonal element in Er is negative, D cannot be PSD. If any diagonal elementof Er is zero, all the entries in its row and column in Er must be zero; otherwise D isnot PSD. Terminate. If termination does not occur, continue.Let dss be the �rst nonzero (and, hence, positive) diagonal element in Er. Subtractsuitable multiples of row s in Dr from rows i, i > s, so that all the entries in columns and rows i, i > s in Dr, are transformed into 0. This transforms Dr into Ds andwe repeat the same operations with Ds. If termination does not occur until Dn�1 isobtained and, if the diagonal entries in Dn�1 are nonnegative, D and hence F arePSD.In the process of obtaining Dn�1, if all the diagonal elements in all the matricesobtained during the algorithm are strictly positive, D and hence F is not only PSDbut actually PD.Example 1.5Is the matrixF = 26664 0 �2 �3 �4 52 3 3 0 03 3 3 0 04 0 0 8 4�5 0 0 4 2
37775 PSD? D = F + FT = 26664 0 0 0 0 00 6 6 0 00 6 6 0 00 0 0 16 80 0 0 8 4

37775 :



1.3. Quadratic Programming 23D.1 and D1. are both zero vectors. So we eliminate them, but we will call the remainingmatrix by the same name D. All the diagonal entries in D are nonnegative. Thus weapply the �rst step in superdiagonalization. This leads toD1 = 8>>>>>>>>: 6 6 0 00 0 0 00 0 16 80 0 8 49>>>>>>>>; E1 = 8>>>>>: 0 0 00 16 80 8 49>>>>>; :The �rst diagonal entry in E1 is 0, but the �rst column and row of E1 are both zerovectors. Also all the remaining diagonal entries in D1 are strictly positive. So continuewith superdiagonalization. Since the second diagonal element in D1 is zero, move tothe third diagonal element of D1. This step leads toD3 = 8>>>>>>>>: 6 6 0 00 0 0 00 0 16 80 0 0 09>>>>>>>>; :All the diagonal entries in D3 are nonnegative. D and hence F is PSD but not PD.Example 1.6Is the matrix D in Example 1.4 PSD? Referring to Example 1.4 after the �rst step insuperdiagonalization, we have E1 = 8>>>>>: 2 4 04 0 50 5 39>>>>>; :The second diagonal entry in E1 is 0, but the second row and column of E1 are notzero vectors. So D is not PSD.
1.3.2 Relationship of Positive Semide�nitenessto the Convexity of Quadratic FunctionsLet ��� be a convex subset of Rn, and let g(x) be a real valued function de�ned on ���.g(x) is said to be a convex function on ���, ifg(�x1 + (1� �)x2) <= �g(x1) + (1� �)g(x2) (1:17)



24 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsfor every pair of points x1, x2 in ���, and for all 0 <= � <= 1. g(x) is said to be a strictlyconvex function on ��� if (1.17) holds as a strict inequality for every pair of distinctpoints x1, x2 in ��� (i. e., x1 6= x2) and for all 0 < � < 1. See Appendix 3.Let F be a given square matrix of order n and c a row vector in Rn. Letf(x) = cx+ xTFx. Here we discuss conditions under which f(x) is convex, or strictlyconvex. Let D = (1=2)(F + FT ). If F is symmetric then F = D, otherwise D isthe symmetrized form of F . Clearly f(x) = cx + xTDx. It can be veri�ed that@f(x)@x = �@f(x)@x1 ; : : : ; @f(x)@xn �T = cT + (F + FT )x = cT + 2Dx, and that @2f(x)@x2 = theHessian of f(x) = F + FT = 2D. Let x1, x2 be two arbitrary column vectors in Rnand let � = x1 � x2. Let � be a number between 0 and 1. By expanding both sides itcan be veri�ed that �f(x1)+(1��)f(x2)�f(�x1+(1��)x2) = �(1��)�TD� where� = x1 � x2. So �f(x1) + (1� �)f(x2) � f(�x1 + (1� �)x2) >= 0 for all x1; x2 2 Rnand 0 <= � <= 1, i� �TD� >= 0 for all � 2 Rn, that is i� D (or equivalently F ) is PSD.Hence f(x) is convex on Rn i� F (or equivalently D) is PSD.Also by the above argument we see that �f(x1)+(1��)f(x2)�f(�x1+(1��)x2)> 0 for all x1 6= x2 in Rn and 0 < � < 1, i� �TD� > 0 for all � 2 Rn, � 6= 0.Hence f(x) is strictly convex on Rn i� �TD� > 0 for all � 6= 0, that is i� D (orequivalently F ) is PD. These are the conditions for the convexity or strict convexityof the quadratic function f(x) over the whole space Rn. It is possible for f(x) tobe convex on a lower dimensional convex subset of Rn (for example, a subspace ofRn) even though the matrix F is not PSD. For example, the quadratic form f(x) =(x1; x2)8>:�1 00 19>; (x1; x2)T is convex over the subspace f(x1; x2) : x1 = 0g but notover the whole of R2.Exercise1.3 Let K � Rn be a convex set and Q(x) = cx+ 12xTDx. If Q(x) is convex over Kand K has a nonempty interior, prove that Q(x) is convex over the whole space Rn.
1.3.3 Necessary Optimality Conditionsfor Quadratic ProgrammingWe will now resume our discussion of the quadratic program (1.11).Theorem 1.12 If x is an optimum solution of (1.11), x is also an optimum solutionof the LP minimize (c+ xTD)xsubject to Ax >= bx >= 0 : (1:18)



1.3. Quadratic Programming 25Proof. Notice that the vector of decision variables in (1.18) is x; x is a given pointand the cost coe�cients in the LP (1.18) depend on x. The constraints in both (1.11)and (1.18) are the same. The set of feasible solutions is a convex polyhedron. Let x̂ beany feasible solution. By convexity of the set of feasible solutions x� = �x̂+(1��)x =x + �(x̂ � x) is also a feasible solution for any 0 < � < 1. Since x is an optimumfeasible solution of (1.11), Q(x�) � Q(x) >= 0, that is �(c + xTD)(x̂ � x) + (1=2)�2(x̂�x)TD(x̂�x) >= 0 for all 0 < � < 1. Dividing both sides by � leads to (c+xTD)(x̂�x) >= (��=2)(x̂�x)TD(x̂�x) for all 0 < � < 1. This obviously implies (c+xTD)(x̂� x) >= 0, that is, (c+ xTD)x̂ >= (c+ xTD)x. Since this must hold for an arbitraryfeasible solution x̂, x must be an optimum feasible solution of (1.18).Corollary 1.1 If x is an optimum feasible solution of (1.11), there exist vectorsy 2 Rm and slack vectors u 2 RN , v 2 Rm such that x, y, u, v together satisfy8>:uv9>; � 8>:D �ATA 0 9>; 8>:xy9>; = 8>: cT�b 9>;8>:uv9>; >= 0 8>:xy9>; >= 0 and 8>:uv9>;T 8>:xy9>; = 0 : (1:19)Proof. >From the above theorem x must be an optimum solution of the LP (1.18).The corollary follows by using the results of Section 1.2 on this fact.Necessary and Su�cient Optimality Conditionsfor Convex Quadratic ProgramsThe quadratic minimization problem (1.11) is said to be a convex quadratic pro-gram if Q(x) is convex, that is, if D is a PSD matrix (by the results in Section1.3.2, or Theorem 17 of Appendix 3). If D is not PSD, (1.11) is said to be a non-convex quadratic program. Associate a Lagrange multiplier yi to the ith constraint\Ai.x >= bi" i = 1 to m; and a Lagrange multiplier uj to the sign restriction on xj in(1.11), j = 1 to N . Let y = (y1; : : : ; ym)T , u = (u1; : : : ; uN )T . Then the Lagrangiancorresponding to the quadratic program (1.11) is L(x; y; u) = Q(x)�yT (Ax�b)�uTx.The Karush-Kuhn-Tucker necessary optimality conditions for (1.11) are@L@x (x; y; u) = cT +Dx� AT y � u = 0y >= 0; u >= 0yT (Ax� b) = 0; uTx = 0Ax� b >= 0; x >= 0 : (1:20)
Denoting the slack variables Ax � b by v, the conditions (1.20) can be veri�ed tobe exactly those in (1.19), written out in the form of an LCP. A feasible solution x



26 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsfor (1.11), is said to be a Karush-Kuhn-Tucker point (or abbreviated as a KKTpoint) if there exist Lagrange multiplier vectors y, u, such that x, y, u together satisfy(1.20) or the equivalent (1.19). So the LCP (1.19) is the problem of �nding a KKTpoint for (1.11). We now have the following results.Theorem 1.13 If x is an optimum solution for (1.11), x must be a KKT point forit, whether Q(x) is convex or not.Proof. Follows from Theorem 1.12 and Corollary 1.1.Thus (1.20) or equivalently (1.19) provide the necessary optimality conditions for afeasible solution x of (1.11) to be optimal. Or, in other words, every optimum solutionfor (1.11) must be a KKT point for it. However, given a KKT point for (1.11) wecannot guarantee that it is optimal to (1.11) in general. In the special case when Dis PSD, every KKT point for (1.11) is optimal to (1.11), this is proved in Theorem1.14 below. Thus for convex quadratic programs, (1.20) or equivalently (1.19) providenecessary and su�cient optimality conditions.Theorem 1.14 If D is PSD and x is a KKT point of (1.11), x is an optimumfeasible solution of (1.11).Proof. >From the de�nition of a KKT point and the results in Section 1.2, if x is aKKT point for (1.11), it must be an optimum feasible solution of the LP (1.18). Let xbe any feasible solution of (1.11).Q(x)�Q(x) = (c+ xTD)(x� x) + 12(x� x)TD(x� x) :The �rst term on the right-hand side expression is nonnegative since x is an optimalfeasible solution of (1.18). The second term in that expression is also nonnegative sinceD is PSD. Hence, Q(x)�Q(x) >= 0 for all feasible solutions, x, of (1.11). This impliesthat x is an optimum feasible solution of (1.11).Clearly (1.19) is an LCP. An optimum solution of (1.11) must be a KKT point forit. Solving (1.19) provides a KKT point for (1.11) and if D is PSD, this KKT point isan optimum solution of (1.11). [If D is not PSD and if a KKT point is obtained when(1.19) is solved, it may not be an optimum solution of (1.11).]Example 1.7 Minimum Distance Problem.Let K denote the shaded convex polyhedral region in Figure 1.7. Let P0 be the point(�2;�1). Find the point in K that is closest to P0 (in terms of the usual Euclideandistance). Such problems appear very often in operations research applications.
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P0 P2Figure 1.7Every point in K can be expressed as a convex combination of its extreme points (orcorner points) P1, P2, P3, P4. That is, the coordinates of a general point in K are:(�1+4�2+5�3+5�4; 3�1+0�2+2�3+4�4) where the �i satisfy �1+�2+�3+�4 = 1and �i >= 0 for all i. Hence, the problem of �nding the point in K closest to P0 isequivalent to solving:Minimize (�1 + 4�2 + 5�3 + 5�4 � (�2))2 + (3�1 + 2�3 + 4�4 � (�1))2Subject to �1 + �2 + �3 + �4 = 1�i >= 0 for all i :�4 can be eliminated from this problem by substituting the expression �4 = 1��1��2��3 for it. Doing this and simplifying, leads to the quadratic programMinimize (�66;�54;�20)�+ �12��T 8>>>>>: 34 16 416 34 164 16 89>>>>>; �Subject to ��1 � �2 � �3 >= �1� >= 0where � = (�1; �2; �3)T . Solving this quadratic program is equivalent to solving theLCP 8>>>>>>>>:u1u2u3v19>>>>>>>>; � 8>>>>>>>>: 34 16 4 116 34 16 14 16 8 1� 1 � 1 � 1 09>>>>>>>>;8>>>>>>>>:�1�2�3y19>>>>>>>>; = 8>>>>>>>>:�66�54�2019>>>>>>>>; :



28 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsAll variables u1; u2; u3; v1; �1; �2; �3; y1 >= 0and u1�1 = u2�2 = u3�3 = v1y1 = 0 :Let (~u1; ~u2; ~u3; ~v1; ~�1; ~�2; ~�3; ~y1) be a solution to this LCP. Let ~�4 = 1� ~�1 � ~�2 � ~�3.Then ~x = (~�1 + 4~�2 + 5~�3 + 5~�4; 3~�1 + 2~�3 + 4~�4) is the point in K that is closest toP0.
1.3.4 Convex Quadratic Programs and LCPsAssociated with PSD MatricesConsider the LCP (q;M), which is (1.6) { (1.8), in which the matrix M is PSD.Consider also the quadratic programMinimize zT (Mz + q)Subject to Mz + q >= 0z >= 0 :This is a convex quadratic programming problem since M is PSD. If the optimumobjective value in this quadratic program is> 0, clearly the LCP (q;M) has no solution.If the optimum objective value in this quadratic program is zero, and z is any optimumsolution for it, then (w = Mz + q; z) is a solution of the LCP. Conversely if ( ~w; ~z) isany solution of the LCP (q;M), the optimum objective value in the above quadraticprogram must be zero, and ~z is an optimum solution for it. Thus every LCP associatedwith a PSD matrix can be posed as a convex quadratic program.Now, consider a convex quadratic program in which Q(x) = cx+ 12xTDx (where Dis a symmetric PSD matrix) has to be minimized subject to linear constraints. Replaceeach equality constraint by a pair of opposing inequality constraints (for example,Ax = b is replaced by Ax <= b and Ax >= b). Now the problem is one of minimizingQ(x) subject to a system of linear inequality constraints. This can be transformed intoan LCP as discussed in Section 1.3.3. The matrix M in the corresponding LCP willbe PSD by Result 1.10, since D is PSD. Thus every convex quadratic programmingproblem can be posed as an LCP associated with a PSD matrix.



1.3. Quadratic Programming 291.3.5 Applications of Quadratic ProgrammingThe Portfolio ProblemA big investment �rm has a total of $ a to invest. It has a list of n stocks in which thismoney can be invested. The problem is to determine how much of the available moneyshould be invested in each stock. The solution of this problem is called a portfolio. Inthis problem, it is well known that \one should never put all of their eggs in one basket".So after a thorough study, the manager of the company has determined a lower bound$ lj and an upper bound $ kj for the amount to be invested in stock j, j = 1 to n.The yield from each stock varies randomly from year to year. By the analysis of pastdata, �j , the expected (or average) yield per dollar invested in stock j per year hasbeen estimated. The yields from various stocks are not mutually independent, and theanalysis of past data has also provided an estimate of the variance-covariance matrix,D, for the annual yields from the various stocks per dollar invested. D is a symmetricpositive de�nite matrix of order n. If $ xj is the amount invested in stock j, j = 1 to n,the portfolio is x = (x1; : : : ; xn)T , the expected annual yield from it is Pnj=1 �jxj andthe variance of the yield is xTDx. The variance is a measure of the random 
uctuationin the annual yield and hence it should be minimized. The company would, of course,like to see its expected yield maximized. One way of achieving both of these objectivesis to specify a target or lower bound, say �, on the expected yield and to minimize thevariance subject to this constraint. This leads to the problem:Minimize xTDxSubject to Pnj=1 �jxj >= �Pxj <= alj <= xj <= kj ; j = 1 to nwhich is a quadratic programming problem.Constrained Linear RegressionWe will illustrate this application with an example of eggs and chickens due to C. Mar-molinero [1.22]. The �rst step in chicken farming is hatching, carried out by specializedhatcheries. When hatched, a day-old-chicken is born. It needs no food for the �rsttwo days, at the end of which it is called a growing pullet and moved out of thehatchery. Pullets have to grow over a period of approximately 19 weeks before theystart producing eggs, and this is done by specialized growing units under optimumconditions of diet, heating, lighting etc. After 19 weeks of age, pullets are moved intothe laying 
ock and are then called hens. Consider a geographical region, say a State.Data on the number of chickens hatched by hatcheries in the state during each monthis available from published state government statistics. But, day-old-chickens may be



30 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsbought from, or sold to �rms outside the state, statistics on which are not available.De�neyt = number (in millions) of growing pullets in the state, on the �rst day ofmonth t.dt = number (in millions) of day-old-chickens hatched by hatcheries in thestate in month t (from government statistics).Here dt are not variables, but are the given data. People in the business of producingchicken feed are very much interested in getting estimates of yt from dt. This providesuseful information to them in their production planning, etc. Not all the day-old-chickens placed by hatcheries in a month may be alive in a future month. Also, after�ve months of age, they are recorded as hens and do not form part of the population ofgrowing pullets. So the appropriate linear regression model for yt as a function of thedt's seems to be yt = �0 +P5i=1 �idt�i, where �0 is the number of pullets in census,which are not registered as being hatched (pullets imported into the State, or chickensexported from the State), and �i is a survival rate (the proportion of chickens placed inmonth t� i that are alive in month t, i = 1 to 5). We, of course, expect the parameters�i to satisfy the constraints0 <= �5 <= �4 <= �3 <= �2 <= �1 <= 1 : (1:21)To get the best estimates for the parameters � = (�0; �1; �2; �3; �4; �5)T from pastdata, the least squares method could be used. Given data on yt, dt over a period oftime (say for the last 10 years), de�ne L2(�) =Pt(yt��0�P5i=1 �idt�i)2. Under theleast squares method the best values for � are taken to be those that minimize L2(�)subject to the constraints (1.21). This is clearly a quadratic programming problem.One may be tempted to simplify this problem by ignoring the constraints (1.21)on the parameters �. The unconstrained minimum of L2(�) can be found very easilyby solving the system of equations @L2(�)@� = 0.There are two main di�culties with this approach. The �rst is that the solution ofthis system of equations requires the handling of a square matrix (aij) with aij = 1=(i+j � 1), known as the Hilbert matrix, which is di�cult to use in actual computationbecause of ill-conditioning. It magni�es the uncertainty in the data by very largefactors. We will illustrate this using the Hilbert matrix of order 2. This matrix isH2 = 8>: 1 1312 13 9>; :Consider the following system of linear equations with H2 as the coe�cient matrix.x1 x21 12 b112 13 b2



1.3. Quadratic Programming 31It can be veri�ed that the solution of this system of linear equations is x = (4b1� 6b2;�6b1 + 12b2)T . Suppose we have the exact value for b1 but only an approximatevalue for b2. In the solution x, errors in b2 are magni�ed by 12 times in x2, and 6times in x1. This is only in a small system involving the Hilbert matrix of order 2.The error magni�cation grows very rapidly in systems of linear equations involvingHilbert matrices of higher orders. In real world applications, the coe�cients in thesystem of linear equations (constants corresponding to b1, b2 in the above system)are constructed using observed data, which are always likely to have small errors.These errors are magni�ed in the solution obtained by solving the system of equations,making that solution very unreliable. See reference [1.36]. The second di�culty isthat even if we are able to obtain a reasonable accurate solution �̂ for the system ofequations @L2(�)@� = 0, �̂ may violate the constraints (1.21) that the parameter vector� is required to satisfy. For example, when this approach was applied on our problemwith actual data over a 10-year horizon from a State, it led to the estimated parametervector �̂ = (4; :22; 1:24; :70� :13; :80)T . We have �̂4 < 0 and �̂2 > 1, these values arenot admissible for survival rates. So � = �̂ does not make any sense in the problem.For the same problem, when L2(�) was minimized subject to the constraints (1.21),using a quadratic programming algorithm it gave an estimate for the parameter vectorwhich was quite good.Parameter estimation in linear regression using the least squares method is a verycommon problem in many statistical applications, and in almost all branches of sci-enti�c research. In a large proportion of these applications, the parameter values areknown to satisfy one or more constraints (which are usually linear). The parameter es-timation problem in constrained linear regression is a quadratic programming problemwhen the constraints on the parameters are linear.
1.3.6 Application of Quadratic Programmingin Algorithms for NLP, Recursive QuadraticProgramming Methods for NLPRecently, algorithms for solving general nonlinear programs, through the solutionof a series of quadratic subproblems have been developed [1.41 to 1.54]. These methodsare called recursive quadratic programming methods, or sequential quadraticprogramming methods, or successive quadratic programming methods in theliterature. Computational tests have shown that these methods are especially e�cientin terms of the number of function and gradient evaluations required. Implementationof these methods requires e�cient algorithms for quadratic programming. We providehere a brief description of this approach for nonlinear programming. Consider thenonlinear program:



32 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsMinimize �(x)Subject to gi(x) = 0; i = 1 to kgi(x) >= 0; i = k + 1 to m (1:22)where �(x) and gi(x) are real valued twice continuously di�erentiable functions de�nedover Rn. Let g(x) = (g1(x); : : : ; gm(x))T . Given the Lagrange multiplier vector � =(�1; : : : ; �k; �k+1; : : : ; �m), the Lagrangian corresponding to (1.22) is L(x; �) = �(x)��g(x). The �rst order (or Karush-Kuhn-Tucker) necessary optimality conditions forthis problem are rxL(x; �) = r�(x)��rg(x) = 0�i >= 0 i = k + 1 to m�igi(x) = 0 i = k + 1 to mgi(x) = 0 i = 1 to kgi(x) >= 0 i = k + 1 to m: (1:23)The methods described here for tackling (1.22) try to obtain a solution x and a La-grange multiplier vector �, which together satisfy (1.23), through an iterative process.In each iteration, a quadratic programming problem is solved, the solution of whichprovides revised estimates of the Lagrange multipliers and also determines a searchdirection for a merit function. The merit function is an absolute value penalty func-tion (L1-penalty function) that balances the two competing goals of decreasing �(x)and reducing the amounts by which the constraints are violated. The merit functionis then minimized in the descent direction by using a line minimization procedure.The solution of this line minimization problem produces a revised point x. With therevised x and �, the method goes to the next iteration. The �rst iteration begins withan initial point x and Lagrange multiplier vector � satisfying �i >= 0, i = k + 1 to m.At the beginning of an iteration, let x̂, �̂ be the current vectors. De�neQ(d) = L(x̂; �̂) + �rxL(x̂; �̂)�d+ 12dT @2L(x̂; �̂)@x2 d (1:24)where d = x�x̂. Q(d) is the Taylor series approximation for L(x; �̂) around the currentpoint x̂ up to the second order. Clearly @2L(x̂;�̂)@x2 changes in each iteration. Since thisis an n � n matrix, recomputing it in each iteration can be very expensive computa-tionally. So in computer implementations of this method, @2L(x̂;�̂)@x2 is approximated bya matrix B which is revised from iteration to iteration using the BFGS Quasi-Newtonupdate formula that is widely used for unconstrained minimization. In the initial step,approximate @2L@x2 by B0 = I, the unit matrix of order n. Let xt, �t, Bt, denote theinitial point, the initial Lagrange multiplier vector, and the approximation for @2L@x2 inthe t-th iteration. Let xt+1 be the point and �t+1 the Lagrange multiplier vector atthe end of this iteration. De�ne�t+1 = xt+1 � xtqt+1 = �rxL(xt+1; �t+1)�rxL(xt; �t+1)�Tpt+1 = rt+1qt+1 + (1� rt+1)Bt�t+1



1.3. Quadratic Programming 33wherert+1 8<:= 1 if (�t+1)T qt+1 >= (0:2)(�t+1)TBt�t+1= (0:8)((�t+1)TBt�t+1)(�t+1)TBt�t+1 � (�t+1)T qt+1 ; if (�t+1)T qt+1 < (0:2)(�t+1)TBt�t+1 :Then update @2L@x2 by the formulaBt+1 = Bt + pt+1(pt+1)T(�t+1)T pt+1 � (Bt�t+1)(Bt�t+1)T(�t+1)TBt�t+1 : (1:25)This updating formula is a slight modi�cation of the BFGS (Broyden-Fletcher-Gold-farb-Shanno) formula for updating the Hessian (the BFGS updating formula discussedin Section 10.8.6 is for updating the inverse of the Hessian, the one given here is forupdating the actual Hessian itself).If rt+1 = 1, then pt+1 = qt+1 and the updating formula reduces to the standardBFGS formula for the approximation of the Hessian. The de�nition of pt+1 using rt+1is introduced to assure that (�t+1)T pt+1 > 0, which guarantees the hereditary positivede�niteness of the updates Bt. The quantities 0.2, 0.8 are choosen from numerical ex-periments, they can be changed. This updating formula provides a symmetric positivede�nite approximation for @2L@x2 . Also, in actual implementation, the second term inQ(d) in (1.24) is replaced by (r�(x̂))d.Therefore, the quadratic program solved in this iteration is: �nd d thatminimizes (r�(x̂))d+ (1=2)dT B̂dsubject to gi(x̂) + (rgi(x̂))d (= 0; i = 1 to k>= 0; i = k + 1 to m (1:26)where B̂ is the current approximation for @2L@x2 .Let ~d denote the optimum solution of the quadratic program (1.26), and let ~� =(~�1; : : : ; ~�m) denote the associated Lagrange multiplier vector corresponding to theconstraints in (1.26). If ~d = 0, from the optimality conditions for the quadratic program(1.26), it can be veri�ed that (x̂; ~�) together satisfy (1.23) and we terminate. If ~d 6= 0,it will be a descent direction for the merit function at x̂. In the quadratic programm(1.26), to make sure that the Taylor series approximations remain reasonable, onecould add additional bound conditions of the form ��j <= dj <= �j , j = 1 to n, where�j are suitably choosen small positive numbers.The form of the function that is minimized in the line search in this iteration isthe merit function which is a L1-penalty functionS(x) = �(x) + kXi=1 �̂ijgi(x)j+ mXi=k+1 �̂ijminimum f0; gi(x)gj (1:27)where the last two terms are weighted sums of the absolute constraint violations. Theweights �̂i used in (1.27) satisfy �i > j~�ij, they are usually obtained from�̂i = maximum fj~�ij; (1=2)(�i + j~�ij)g ; i = 1 to m;



34 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationswhere �i are the weights used in the previous iteration. In Theorem 1.15 given belowwe prove that if ~d 6= 0, it is a descent direction at the current point x̂, for the speciallychoosen merit functions S(x) de�ned in (1.27) (this means that for � > 0 and smallS(x̂+� ~d) < S(x̂), i. e., that S(x) strictly decreases as we move from x̂ in the direction~d). The merit function S(x) is minimized on the half-line fx : x = x̂ + � ~d; � >= 0g.For this we de�ne f(�) = S(x̂ + � ~d) and minimize f(�) over � >= 0 by using someone dimensional line search algorithm (see Chapter 10). If ~� is the value of � thatminimizes f(�) over � >= 0, let ~x = x̂+ ~� ~d. The point ~x is the new point, it is obtainedby moving a step length of ~� from x̂ in the direction ~d.If ~x, ~� satisfy (1.23) to a reasonalbe degree of approximation, the method termi-nates, otherwise it moves to the next iteration with them.The Descent PropertyTheorem 1.15 Suppose B̂ is symmetric and PD. Let ~d, ~� be the optimum solutionand the associated Lagrange multiplier vector for the quadratic program (1.26). If~d 6= 0, it is a descent direction for the merit function S(x) at x̂.Proof. By the �rst order necessary optimality conditions for the quadratic program(1.26) we have r�(x̂) + (B̂ ~d)T � ~�rg(x̂) = 0~�i(gi(x̂) + (rgi(x̂)) ~d) = 0 ; i = 1 to m: (1:28)So, for � positive and su�ciently small, since all the functions are continuously di�er-entiable, we havef(�) = S(x̂+ � ~d) = �(x̂) + �(r�(x̂)) ~d+kXi=1 �̂ijgi(x̂) + �(rgi(x̂)) ~dj� mXi=k+1 �̂i(minf0; gi(x̂) + �(rgi(x̂)) ~dg) + o(�) (1:29)
where o(�) is a function of � satisfying the property that the limit (o(�)=�) as �! 0is 0 (the reason for the minus sign in the last line of (1.29) is the following. Sinceminf0; gi(x)g <= 0, jminf0; gi(x)gj = �minf0; gi(x)g).Let J = fi : k + 1 <= i <= m; gi(x̂) < 0g, the index set of inequality constraints inthe original problem (1.22) violated by the current point x̂. For k + 1 <= i <= m, i 62 J,if gi(x̂) = 0, then (rgi(x̂)) ~d >= 0, from the constraints in (1.26). So, when � is positivebut su�ciently small, for k + 1 <= i <= m, i 62 J, minf0; gi(x̂) + �(rgi(x̂)) ~dg = 0.Therefore,mXi=k+1 �̂i(minf0; gi(x̂) + �(rgi(x̂)) ~dg) =Xi2J �̂i(gi(x̂) + �(rgi(x̂)) ~d) : (1:30)



1.3. Quadratic Programming 35Also, for 1 <= i <= k, (rgi(x̂)) ~d = �gi(x̂) by the constraints in (1.26). ThereforekXi=1 �̂ijgi(x̂) + �(rgi(x̂)) ~dj = (1� �) kXi=1 �̂ijgi(x̂)j : (1:31)>From (1.28) we have (r�(x̂)) ~d = � ~dT B̂ ~d+(~�rg(x̂)) ~d = � ~dT B̂ ~d+Pmi=1 ~�i(rgi(x̂)) ~d =� ~dT B̂ ~d�Pmi=1 ~�igi(x̂). Using this and (1.30), (1.31) in (1.29), we getf(�) = �(x̂) + kXi=1 �̂ijgi(x̂)j �Xi2J �̂igi(x̂)+ �[� ~dT B̂ ~d� kXi=1 �̂ijgi(x̂)j � mXi=1 ~�igi(x̂)�Xi2J �̂i(rgi(x̂)) ~d] + o(�)= f(0) + �[� ~dT B̂ ~d� kXi=1(�̂ijgi(x̂)j+ �̂igi(x̂))�Xi2J ~�igi(x̂)�Xi2J(�̂i(rgi(x̂)) ~d+ ~�igi(x̂))] + o(�) ; (1:32)
where J = fk + 1; : : : ;mg n J. Now ~dT B̂ ~d > 0 since B̂ is PD and ~d 6= 0. Also,Pki=1(�̂ijgi(x̂)j+~�igi(x̂)) >= 0, since �̂i >= j~�ij for all i = 1 to k. AgainPi2J ~�igi(x̂) >= 0since ~�i >= 0 and gi(x̂) >= 0 for all i 2 J = fk + 1; : : : ;mg n J. Further, for i 2 J,gi(x̂) < 0, the constraints in the quadratic program imply (rgi(x̂)) ~d >= �gi(x̂) > 0;therefore, Pi2J(�̂i(rgi(x̂)) ~d + ~�igi(x̂)) >= Pi2J jgi(x̂)j(�̂i � ~�i) >= 0. All this impliesthat the coe�cient of � on the right hand side of (1.32) is strictly negative, that is,f(�)� f(0) < 0 when � is su�ciently small and positive.It is possible that even though the original problem is feasible and has a KKTpoint, the quadratic program (1.26) may be infeasible in some steps. See Example1.8. In such steps, it is possible to de�ne an alternate quadratic program of higherdimension which is always feasible, whose solution again provides a descent directionfor the merit function S(x). One such modi�cation is given by the following quadraticprogramming problemminimize (r�(x̂))d+ (1=2)dT B̂d+ �� mXi=1 ui + kXi=1 vi�subject to gi(x̂) + (rgi(x̂))d+ ui � vi = 0 ; i = 1 to kgi(x̂) + (rgi(x̂))d+ ui >= 0 ; i = k + 1 to mui; vi >= 0; for all i (1:33)
where � is a positive penalty parameter.



36 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsThe quadratic program (1.33) is always feasible, since, d = 0 leads to a feasiblesolution to it. Let ~d, ~� be an optimum solution and the associated Lagrange multipliervector for (1.33). If ~d 6= 0, it can be shown that it provides a descent direction forthe merit function S(x) at the current point x̂ using arguments similar to those in theproof of Theorem 1.15, and the method proceeds as usual. If (1.26) is infeasible and~d = 0 is an optimum solution of (1.33), we cannot conclude that x̂ is a KKT point forthe original problem (1.22), and the method breaks down; however, the possibility ofthis occurrence can be discounted in practice.Example 1.8Consider the following nonlinear program from the paper of K. Tone [1.53].Minimize �(x) = x31+x22Subject to g1(x) = x21+x22�10 = 0g2(x) = x1 � 1 >= 0g3(x) = x2� 1 >= 0 : (1:34)
The set of feasible solutions for this problem is the thick chord of the circle in R2 inFigure 1.8. It can be veri�ed that x = (1; 3)T is an optimum solution of this problem.
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1.3. Quadratic Programming 37We have: r�(x) = (3x21 ; 2x2)rg1(x) = (2x1; 2x2)rg2(x) = (1; 0)rg3(x) = (0; 1) :We try to solve this problem by the recursive quadratic programming method usingx� = (�10;�10)T as the initial point. The constraints for the initial quadratic pro-gramming subproblem areg1(x�) + (rg1(x�))d = 190�20d1�20d2 = 0g2(x�) + (rg2(x�))d = � 11+ d1 >= 0g3(x�) + (rg3(x�))d = � 11 + d2 >= 0 :Even though the original NLP is feasible and has an optimum solution, it can beveri�ed that this quadratic subproblem is infeasible. So, we use the quadratic pro-gramming subproblem as in (1.33). Taking the initial approximation to the Hessianof the Lagrangian to be B� = I2, this leads to the following quadratic programmingproblem. minimize 300d1�20d2+(1=2)(d21 + d22)+�(u1 + u2 + u3 + v1)subject to 20d1+20d2 +u1�v1= 190d1 +u2 >= 11d2 +u3>= 11u1; v1; u2; u3 >= 0 : (1:35)
Taking the penalty parameter � = 1000, this quadratic program has ~d = (�1:5; 11)Tas the optimum solution with ~� = (�35 � 75; 1000; 692 � 5) as the associated Lagrangemultiplier vector corresponding to the constraints.If we take penalty parameter vector � = (1100; 1100; 1100) for constructing themerit function, we get the merit functionS(x) = x31 + x21 + 1100jx21 + x22 � 10j+ 1100jminf0; x1 � 1gj+ 1100jminf0; x2 � 1gj :We minimize S(x) on the half-line fx�+� ~d = (�10� 1 � 5�;�10+11�)T ; � >= 0g. Thisproblem can be solved using some of the line minimization algorithms discussed inChapter 10. If the output of this problem is x1, we update the Hessian approximationB, and with x1, ~� move over to the next quadratic programming subproblem andcontinue in the same way.Under the assumptions:(i) the quadratic program has an optimum solution in each step,(ii) if (x; �) satis�es the KKT optimality conditions (1.23), then letting J(x) = fi :1 <= i <= m; gi(x) = 0g, we have frgi(x) : i 2 J(x)g is linearly independent; �i > 0



38 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsfor all i 2 J(x) \ fk + 1; : : : ;mg; and for any y 6= 0, y 2 fy : (rgi(x)) y = 0; i 2J(x)g, yT �@2L(x;�)@x2 �y > 0,(iii) the initial point x0 is su�ciently close to a KKT point for (1.22);it has been proved (see references [1.44, 1.45]) that the sequence (xr; �r) generated bythe algorithm converges superlinearly to (x; �) which together satisfy (1.23).These recursive quadratic programming methods have given outstanding numer-ical performance and thereby attracted a lot of attention. However, as pointed outabove, one di�culty with this approach is that the quadratic programming problem(1.26) may be infeasible in some steps, even if the original nonlinear program has anoptimum solution, in addition the modi�ed quadratic program (1.33) may have theoptimum solution ~d = 0, in which case the method breaks down. Another di�culty isthat constraint gradients need to be computed for each constraint in each step, even forconstraints which are inactive. Yet another di�culty is the function f(�) minimizedin the line search routine in each step, which is a non-di�erentiable L1-penalty func-tion. To avoid these and other di�culties, the following modi�ed sequential quadraticprogramming method has been proposed for solving (1.22) by K. Schittkowski [1.50,1.51].Choose the initial point x0, multiplier vector �0, B0 = I or some PD symmetricapproximation for @2L(x0;�0)@x2 , �0 2 R1, 
0 2 Rm (�0 > 0, 
0 > 0) and constants " > 0,� > 1, 0 < � < 1. The choice of " = 10�7, � = 0:9, � = 100, and suitable positivevalues for �0, 
0 is reported to work well by K. Schittkowski [1.51]. Evaluate �(x0),gi(x0), rgi(x0), i = 1 to m and go to stage 1.General Stage r+1: Let xr, �r denote the current solution and Lagrange multipliervector. De�neJ1 = f1; : : : ; kg [ fi : k + 1 <= i <= m; and either gi(xr) <= " or �ri > 0gJ2 = f1; : : : ;mg n J1 :The constraints in (1.22) corresponding to i 2 J1 are treated as the active set ofconstraints at this stage, constraints in (1.22) corresponding to i 2 J2 are the currentinactive constraints.Let Br be the present matrix which is a PD symmetric approximation for @2L(xr ;�r)@x2 ,this matrix is updated from step to step using the BFGS quasi-Newton update formuladiscussed earlier. The quadratic programming subproblem to be solved at this stagecontains an additional variable, xn+1, to make sure it is feasible. It is the followingminimize P (d) = 12dTBrd+ (r�(xr))d+ 12��rx2n+1�subject to (rgi(xr))d+ (1� xn+1)gi(xr)�= 0; i = 1 to k>= 0; i 2 J1 \ fk + 1; : : : ;mg(rgi(xsi))d+ gi(xr) >= 0; i 2 J20 <= xn+1 <= 1 (1:36)



1.3. Quadratic Programming 39where, for each i 2 J2, xsi denotes the most recent point in the sequence of pointsobtained under the method, at which rgi(x) was evaluated; and �r is a positive penaltyparameter which is updated in each step using the formula�r = maximum (�0 ; ��((dr�1)TAr�1ur�1)2�1� xr�1n+1�2(dr�1)TBr�1dr�1) (1:37)where xr�1n+1 ur�1, dr�1 are the value of xn+1 in the optimum solution, the optimumLagrange multiplier vector, and the optimum d-vector, associated with the quadraticprogramming problem in the previous stage; �� > 1 is a constant; and Ar�1 is then�m matrix, whose jth column is the gradient vector of gi(x) computed at the mostrecent point, written as a column vector.By de�nition of the set J2, the vector (d = 0; xn+1 = 1) is feasible to this quadraticprogram, and hence, when Br is PD, this quadratic program (1.34) has a �nite uniqueoptimum solution. One could also add additional bound constraints on the variablesof the form �j <= dj <= �j , j = 1 to n, where �j are suitable chosen positive numbers,to the quadratic programming subproblem (1.34), as discussed earlier.Let (dr; xrn+1), ur, be the optimum solution and the optimum Lagrange multipliervector, for the quadratic program (1.36). The solution of the quadratic programmingsubproblem (1.36) gives us the search direction dr, for conducting a line search for amerit function or line search function corresponding to the original nonlinear program(1.22). If xrn+1 > �, change �r into ��r in (1.36) and solve (1.36) after this change. Ifthis fails to lead to a solution with the value of xn+1 within the upper bound, de�nedr = �B�1r �rx(�
r (xr; �r))�Tur = �r �r�(�
r (xr; �r)) (1:38)where �
r (xr; �r) is the line search function or the merit function de�ned later on in(1.39).The new point in this stage is of the formxr+1 = xr + �rdr�r+1 = �r + �r(ur � �r)where �r is a step length obtained by solving the line search problemminimize h(�) = �
r+1(xr + �dr; �r + �(ur � �r))over � 2 R1, where�
(x; �) = �(x)�Xi2�(�igi(x)� 12
i(gi(x))2)� 12Xi2��2i =
i (1:39)where � = f1; : : : ; kg [ fi : k < i <= m, gi(x) <= �i=
ig, � = f1; : : : ;mg n �, and thepenalty parameters 
i are updated using the formula
r+1i = maximum ��ri 
ri ; 2m(uri � �ri )2(1� xrn+1)(dr)TBrdr� ; i = 1 to m: (1:40)



40 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsThe sequence f�ri : r = 0; 1; : : :g is a bounded sequence with �ri <= 1 for all r, and itallows the possibility of decreasing the penalty parameters 
i. A possible choice forupdating these parameters �r from stage to stage is by the formula�ri = minimum n1; rp
ri o ; r = 1; 2; : : : ; i = 1 to m:The function �
(x; �) is a di�erentiable augmented Lagrangian function. If (dr; ur)are obtained from the solution of the quadratic program (1.36), let 
r+1 be obtainedusing (1.40). On the other hand, if (dr; ur) are obtained from (1.38), let 
r+1 = 
r.If d h(0)d� >= 0, replace �r by ��r, and go back to solving the modi�ed quadraticsubproblem (1.36). Otherwise, perform a line search to minimize h(�) with respectto �, over � >= 0, and let �r be the optimum value of � for this line minimizationproblem. De�ne xr+1 = xr + �rdr�r+1 = �r + �r(ur � �r)update the matrix Br by the BFGS updating formula (1.25) and go to the next stagewith these new quantities.The algorithm can be terminated in the rth stage, if the following conditions aresatis�ed (dr)TBrdr <= "2mXi=1 juri gi(xr)j <= "krxL(xr; ur))k2 <= "kXi=1 jgi(xr)j+ mXi=k+1 j minimum (0; gi(xr))j <= p" :For a global convergence analysis of this algorithm under suitable constraint quali�ca-tion assumptions, see [1.51].Algorithms for Quadratic Programming ProblemsIn this book we will discuss algorithms for quadratic programming problems whichare based on its transformation to an LCP as discussed above. Since the quadraticprogram is a special case of a nonlinear program, it can also be solved by the reducedgradient methods, linearly constrained nonlinear programming algorithms, and variousother methods for solving nonlinear programs. For a survey of all these nonlinearprogramming algorithms, see Chapter 10.1.4 TWO PERSON GAMESConsider a game where in each play of the game, player I picks one out of a possibleset of his m choices and independently player II picks one out of a possible set of his



1.4. Two Person Games 41N choices. In a play, if player I has picked his choice, i, and player II has picked hischoice j, then player I loses an amount a0ij dollars and player II loses an amount b0ijdollars, where A0 = (a0ij) and B0 = (b0ij) are given loss matrices.If a0ij + b0ij = 0 for all i and j, the game is known as a zero sum game; inthis case it is possible to develop the concept of an optimum strategy for playingthe game using Von Neumann's Minimax theorem. Games that are not zero sumgames are called nonzero sum games or bimatrix games. In bimatrix games it isdi�cult to de�ne an optimum strategy. However, in this case, an equilibrium pairof strategies can be de�ned (see next paragraph) and the problem of computing anequilibrium pair of strategies can be transformed into an LCP.Suppose player I picks his choice i with a probability of xi. The column vectorx = (xi) 2 Rm completely de�nes player I's strategy. Similarly let the probabilityvector y = (yj) 2 RN be player II's strategy. If player I adopts strategy x and playerII adopts strategy y, the expected loss of player I is obviously xTA0y and that of playerII is xTB0y.The strategy pair (x; y) is said to be an equilibrium pair if no player bene�tsby unilaterally changing his own strategy while the other player keeps his strategy inthe pair (x; y) unchanged, that is, ifxTA0y <= xTA0y for all probability vectors x 2 Rmand xTB0y <= xTB0y for all probability vectors y 2 RN :Let �, � be arbitrary positive numbers such that aij = a0ij+� > 0 and bij = b0ij+� > 0 for all i, j. Let A = (aij), B = (bij). Since xTA0y = xTAy � � and xTB0y =xTBy � � for all probability vectors x 2 Rm and y 2 RN , if (x; y) is an equilibriumpair of strategies for the game with loss matrices A0, B0, then (x; y) is an equilibriumpair of strategies for the game with loss matrices A, B, and vice versa. So without anyloss of generality, consider the game in which the loss matrices are A, B.Since x is a probability vector, the condition xTAy <= xTAy for all probabilityvectors x 2 Rm is equivalent to the system of constraintsxTAy <= Ai.y for all i = 1 to m:Let er denote the column vector in Rr in which all the elements are equal to 1. Inmatrix notation the above system of constraints can be written as (xTAy)em <= Ay.In a similar way the condition xTBy <= xTBy for all probability vectors y 2 RN isequivalent to (xTBy)eN <= BTx. Hence the strategy pair (x; y) is an equilibrium pairof strategies for the game with loss matrices A, B i�Ay >= (xTAy)emBTx >= (xTBy)eN : (1:41)



42 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsSince A, B are strictly positive matrices, xTAy and xTBy are strictly positive numbers.Let � = x=(xTBy) and � = y=(xTAy). Introducing slack variables corresponding tothe inequality constraints, (1.41) is equivalent to8>:uv9>;�8>: 0 ABT 0 9>;8>: ��9>; = 8>:�em�eN 9>;8>:uv9>; >= 0; 8>: ��9>; >= 0; 8>:uv9>;T 8>: ��9>; = 0 : (1:42)Conversely, it can easily be shown that if (u; v; �; �) is a solution of the LCP (1.42) thenan equilibrium pair of strategies for the original game is (x; y) where x = �=(P �i) andy = �=(P �j). Thus an equilibrium pair of strategies can be computed by solving theLCP (1.42).Example 1.9Consider the game in which the loss matrices areA0 = 8>: 1 1 00 1 19>; B0 = 8>:�1 1 00 �1 19>; :Player I's strategy is a probability vector x = (x1; x2)T and player II's strategy is aprobability vector y = (y1; y2; y3)T . Add 1 to all the elements in A0 and 2 to all theelements in B0, to make all the elements in the loss matrices strictly positive. Thisleads to A = 8>: 2 2 11 2 29>; B = 8>: 1 3 22 1 39>; :The LCP corresponding to this game problem is26664u1u2v1v2v3
37775� 26664 0 0 2 2 10 0 1 2 21 2 0 0 03 1 0 0 02 3 0 0 0

37775 26664 �1�2�1�2�3
37775 = 26664�1�1�1�1�1

37775 (1:43)u; v; �; � >= 0 and u1�1 = u2�2 = v1�1 = v2�2 = v3�3 = 0 :
Example 1.10The Prisoner's Dilemma:Here is an illustration of a bimatrix game problem from [1.31]. Two well knowncriminals were caught. During plea bargaining their Judge urged them both to confessand plead guilty. He explained that if one of them confesses and the other does not,the one who confesses will be acquitted and the other one given a sentence of 10 years



1.4. Two Person Games 43in prison. If both of them confess, each will get a 5 year prison sentence. Both ofthem know very well that the prosecution's case against them is not strong, and theestablished evidence against them rather weak. However, the Judge said that if bothof them decide not to confess, he will book both of them on some tra�c violations fora year's prison term each. For each prisoner, let 1 refer to his choice of confessing and2 to the choice of pleading not guilty. Measuring the loss in years in prison, their lossmatrices are: A BPlayer II's Choice ! 1 2 1 21 5 0 5 10Player I's Choice 2 10 1 0 1In this game it can be veri�ed that the probability vectors (x = (1; 0)T ; y = (1; 0)T )provide the unique equilibrium pair for this game, resulting in a loss of a �ve year prisonterm for each player. But if both player's collude and agree to use the probabilityvectors (x̂ = (0; 1)T ; ŷ = (0; 1)T ), the result, loss of a year's prison term for eachplayer, is much better for both. The trouble with the strategy (x̂; ŷ) is that each cangain by double-crossing the other.Example 1.11The Battle of the Sexes:Here is another illustration of a bimatrix game from [1.31]. A newly married couplehave to decide how they will spend Friday evening. The husband (player II) proposesto go to a boxing match and the wife (player I) proposes to go to a musical concert.The man rates the pleasure (or gain, or negative loss) he derives by going to the concertand the boxing match to be 1 and 4 units respectively on a scale from 0 to 5; and thecorresponding �gure for the woman are 4 and 1 units respectively. For each player let1, 2 refer to the choices of insisting on going to concert, boxing match respectively. Iftheir choices disagree, there is a �ght, and neither gains any pleasure from going outthat evening. Treating loss as negative pleasure, here are the loss matrices.A BPlayer II's Choice ! 1 2 1 21 �4 0 �1 0Player I's Choice 2 0 �1 0 �4



44 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsFor this game, it can be veri�ed that the probability vectors (x = (1; 0)T ; y = (1; 0)T ).(x̂ = (0; 1)T ; ŷ = (0; 1)T ) are both equilibrium pairs. The losses from the two equi-librium pairs (x; y), (x̂; ŷ) are distinct, (x; y) will be preferred by player I, whereas IIwill prefer (x̂; ŷ). Because of this, these equilibrium pairs are unstable. Even if playerI knows that II will use the strategy ŷ, she may insist on using strategy x rather thanx̂, hoping that this will induce II to switch to y. So, in this game, it is di�cult toforesee what will happen. The probability vectors (~x = (4=5; 1=5); ~y = (1=5; 4=5)T ) isanother equilibrium pair. In this problem, knowledge of these equilibrium pairs seemsto have contributed very little towards the development of any \optimum" strategy.Even though the theory of equilibrium strategies is mathematically elegant, andalgorithms for computing them (through the LCP formulation) are practically e�cient,they have not found many real world applications because of the problems with themillustrated in the above examples.1.5 OTHER APPLICATIONSBesides these applications, LCP has important applications in the nonlinear analysis ofcertain elastic-plastic structures such as reinforced concrete beams, in the free bound-ary problems for journal bearings, in the study of �nance models, and in several otherareas. See references [1.1 to 1.5, 1.8, 1.12, 1.13, 1.19, 1.21, 1.29, 1.32, 1.35].1.6 THE NONLINEARCOMPLEMENTARITY PROBLEMFor each j = 1 to n, let fj(z) be a real valued function de�ned on Rn. Let f(z) =(f1(z); : : : ; fn(z))T . The problem of �nding z 2 Rn satisfyingz >= 0; f(z) >= 0zjfj(z) = 0; for each j = 1 to n (1:44)is known as a nonlinear complementarity problem (abbreviated as NLCP). If we de�nefj(z) = Mj.z + qj for j = 1 to n, it can be veri�ed that (1.44) becomes the LCP(1.1). Thus the LCP is a special case of the NLCP. Often, it is possible to transformthe necessary optimality conditions for a nonlinear program into that of an NLCP andthereby solve the nonlinear program using algorithms for NLCP. The NLCP can betransformed into a �xed point computing problem, as discussed in Section 2.7.7, andsolved by the piecewise linear simplicial methods presented in Section 2.7. Other thanthis, we will not discuss any detailed results on NLCP, but the references [1.14 to 1.16,1.24, 1.25, 1.39] can be consulted by the interested reader.



1.7. Exercises 451.7 Exercises
1.4 Consider the two person game with loss matrices A, B. Suppose A + B = 0.Then the game is said to be a zero sum game (see references [1.28, 1.31]). In thiscase prove that every equilibrium pair of strategies for this game is an optimal pairof strategies in the minimax sense (that is, it minimizes the maximum loss that eachplayer may incur. See references [1.28, 1.31]). Show that the same results continue tohold as long as aij + bij is a constant independent of i and j.1.5 Consider the bimatrix game problem with given loss matrices A, B. Let x =(x1; : : : ; xm)T and y = (y1; : : : ; yn)T be the probability vectors of the two players. LetX = (x1; : : : ; xm; xm+1)T and Y = (y1; : : : ; yn; yn+1)T . Let er be the column vector inRr all of whose entries are 1. Let S = fX : BTx� eTnxm+1 >= 0; eTmx = 1; x >= 0g andT = fY : Ay�eTmyn+1 >= 0; eTny = 1; y >= 0g. Let Q(X;Y ) = xT (A+B)y�xm+1�yn+1.If (x; y) is an equilibrium pair of strategies for the game and xm+1 = xTBy, yn+1 =xTAy, prove that (X;Y ) minimizes Q(X;Y ) over S�T = f(X;Y ) : X 2 S; Y 2 Tg.(O. L. Mangasarian)1.6 Consider the quadratic program:Minimize Q(x) = cx+ 12xTDxSubject to Ax >= bx >= 0where D is a symmetric matrix. K is the set of feasible solutions for this problem. xis an interior point of K (i. e., Ax > b and x > 0).(a) What are the necessary conditions for x to be an optimum solution of the problem?(b) Using the above conditions, prove that if D is not PSD, x could not be an optimumsolution of the problem.1.7 For the following quadratic program write down the corresponding LCP.Minimize �6x1 � 4x2 � 2x3 +3x21 + 2x22 + 13x23Subject to x1 + 2x2 + x3 <= 4xj >= 0 for allj :If it is known that this LCP has a solution in which all the variables x1; x2; x3 arepositive, �nd it.



46 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applications1.8 Write down the LCP corresponding toMinimize cx+ 12xTDxSubject to x >= 0 :1.9 Let M = 8>:�2 11 �29>; ; q = 8>: 119>; :Show that the LCP (q;M) has four distinct solutions. For n = 3, construct a squarematrix M of order 3 and a q 2 R3 such that (q;M) has eight distinct solutions.Hint. Try �M = 8>>>>>: 2 �1 �1�1 3 �1�1 �1 49>>>>>; q = 8>>>>>: 1119>>>>>; ; or try M = �I; q > 0 :
1.10 Let M = 8>>>>>: 0 0 10 0 10 0 09>>>>>; q = 8>>>>>: 0�109>>>>>; :Find out a solution of the LCP (q;M) by inspection. However, prove that there existsno complementary feasible basis for this problem.(L. Watson)1.11 Test whether the following matrices are PD, PSD, or not PSD by using thealgorithms described in Section 1.3.18>>>>>: 0 1 �10 0 �21 2 19>>>>>; ; 8>>>>>: 4 3 �70 0 �20 0 69>>>>>; ; 8>>>>>: 4 100 20 2 100 0 19>>>>>; ; 8>>>>>: 5 �2 �20 5 �20 0 59>>>>>; :
1.12 Let Q(x) = (1=2)xTDx� cx. If D is PD, prove that Q(x) is bounded below.1.13 Let K be a nonempty closed convex polytope in Rn. Let f(x) be a real valuedfunction de�ned on Rn. If f(x) is a concave function, prove that there exists anextreme point of K which minimizes f(x) on K.1.14 Let D be an arbitrary square matrix of order n. Prove that, for every positiveand su�ciently large �, the function Q�(x) = xT (D � �I)x+ cx is a concave functionon Rn.



1.7. Exercises 471.15 Consider the following quadratic assignment problem.minimize z(x) = nXi=1 nXj=1 nXp=1 nXq=1 cijpqxijxpqsubject to nXj=1 xij = 1; for all i = 1 to nnXi=1 xij = 1; for all j = 1 to nxij >= 0; for all i; j = 1 to n (1:45)
and xij integral for i; j = 1 to n : (1:46)Show that this discrete problem (1.45), (1.46) can be posed as another problem of thesame form as (1.45) without the integrality constraints (1.46).1.16 Consider an optimization problem of the following formminimize (xTDx)1=2dx+ �subject to Ax >= bx >= 0where D is a given PSD matrix and it is known that dx + � > 0 on the set of fea-sible solutions of this problem. Using the techniques of fractional programming (seeSection 3.20 in [2.26]), show how this problem can be solved by solving a single con-vex quadratic programming problem. Using this, develop an approach for solving thisproblem e�ciently by algorithms for solving LCPs(J. S. Pang, [1.33]).1.17 Let D be a given square matrix of order n. Develop an e�cient algorithm whicheither con�rms that D is PSD or produces a vector y 2 Rn satisfying yTDy < 0.1.18 Consider the following quadratic programming problemminimize Q(x)= cx+ 12xTDxsubject to a<= Ax <= bl<= x <= uwhere A, D, c, a, b, l, u are given matrices of orders m � n, n � n, 1 � n, m � 1,m� 1, n�1, n�1 respectively, and D is symmetric. Express the necessary optimalityconditions for this problem in the form of an LCP. (R. W. H. Sargent, [1.37])



48 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applications1.19 Suppose D is a symmetric matrix of order n. Show that the KKT necessaryoptimality conditions for the quadratic programminimize cx+ (1=2)xTDxsubject to 0 <= x <= bwhere b > 0 is a given vector, are of the form: �nd, x; y >= 0 in Rn satisfying cT +Dx+ y >= 0, b� x >= 0, xT (cT +Dx+ y) = yT (b� x) = 0. Express these conditions inthe form of an LCP. Also prove that this is equivalent to �nding an x 2 Rn satisfying0 <= x <= b and (u� x)T (Dx+ cT ) >= 0 for all 0 <= u <= b. Prove that this LCP alwayshas a solution and that the solution is unique if D is a P -matrix.(B. H. Ahn [9.4], S. Karamardian [1.15])1.20 Weighted Min-Max Location Problem: Givenm points ai = (ai1; : : : ; ain)T2 Rn, i = 1 to m, and positive weights �i, i = 1 to m associated with these points,de�ne the function �(x) = maximum f�ip(x� ai)T (x� ai) : i = 1 to mg over x 2Rn. The weighted min-max location problem is to �nd an x 2 Rn that minimizes�(x). Show that this problem is equivalent to the problemminimize �subject to �� �2i (kaik2 + nXj=1 x2j � 2 nXj=1 aijxj) >= 0; i = 1 to m (1:47)where � is treated as another variable in (1.47). Consider the following quadraticprogram minimize Q(X) = nXj=1 x2j � xn+1subject to xn+1 � 2 nXj=1 aijxj <= kaik2 + ��2i ; i = 1 to m (1:48)where xn+1 is an additional variable in (1.48), X = (x1; : : : ; xn; xn+1). Prove thatif (x; �) is feasible to (1.47), (x; �; xn+1) where xn+1 = Pnj=1 x2j , is feasible to (1.48)with Q(X) = 0. Conversely if (x̂; �̂) is feasible to (1.48) with Q(X̂) <= 0, then showthat (x̂ = (x̂1; : : : ; x̂n); �̂) is feasible to (1.47). Also, for each � > 0, prove that theoptimum solution of (1.48) is unique. Treating � as a parameter, denote the optimumsolution of (1.48) as a function of � by X(�). Let ~� be the smallest value of � forwhich Q(X(�)) <= 0. Prove that x(~�) is the optimum solution of the min-max locationproblem. Use these results to develop an algorithm for the min-max location problembased on solving a parametric right hand side LCP.(R. Chandrasekaran and M. J. A. P. Pacca, [1.2])1.21 Let F be a square matrix of order n. In general there may be no relationbetween determinant ((F + FT )=2) and determinant (F ). Establish conditions underwhich determinant ((F + FT )=2) <= determinant (F ).



1.7. Exercises 491.22 Let K � Rn convex and Q(x) = cx+ 12xTDx. If Q(x) is convex over K and Khas nonempty interior, prove that Q(x) is convex over the whole space Rn.1.23 Concave Regression Problem: Here, given a real valued function �(t) de-�ned on an interval, it is desired to �nd a convex (or concave, depending on theapplication) function that approximates it as closely as possible. Speci�cally, supposewe are given �i = �(�i), i = 1 to n, where �1 < �2 < : : : < �n. So we are given thevalues of �(t) at the points t = �1; : : : ; �n. It is required to �nd real values f1; : : : ; fnso that fi = f(�i), i = 1 to n where f is a convex function de�ned on the real line,that minimizes the measure of deviation Pni=1 
i(�i � fi)2 where 
i, i = 1 to n aregiven positive weights. Formulate this problem as an LCP.1.24 K1 and K2 are two convex polyhedra in Rn, each of them provided as the setof feasible solutions of a given system of linear inequalities. Develop an algorithm forthe problem minimize kx� ykx 2 K1;y 2 K2 :1.25 Sylvester's Problem: We are given a set of n points in Rm, fA.1; : : : ; A.ng,where A.j = (a1j; : : : ; amj)T , j = 1 to n. It is required to �nd the smallest diametersphere in Rm containing all the points in the set fA.1; : : : ; A.ng. Transform this into aquadratic program and discuss an algorithm for solving it. Apply your algorithm to �ndthe smallest diameter circle containing all the points in f(1; 1); (�3; 2); (1;�5); (�2; 4)gin R2.(References [1.5, 1.29])1.26 Let K be any convex polyhedral subset of Rn (you can assume that K is theset of feasible solutions of Ax >= b where A, b are given). Let x0, x1 be given points inRn. Let ~x, x̂ be respectively the nearest points in K (in terms of the usual Euclideandistance) to x0, x1 respectively. Prove that k~x� x̂k <= kx0 � x1k.1.27 Let � = (�1; : : : ; �n) be a given row vector of Rn and let x0 2 Rn be anothergiven column vector. It is required to �nd the nearest point in K = fx : �x <= 0; x >= 0gto x0, in terms of the usual Euclidean distance. For this, do the following. Let � bea real valued parameter. Let �0 be the smallest nonnegative value of � for whichthe piecewise linear, monotonically decreasing function �(x0 � ��T )+ assumes a non-positive value. Let x = (x0 � �0�T )+. (For any vector y = (yj) 2 Rn, y+ = (y+j )where y+j = Maximum f0; yjg for each j.) Prove that x is the nearest point in K tox0.



50 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsExtend this method into one for �nding the nearest point in � = fx : x >= 0; �x <=�g to x0, where � is a given number, assuming that � 6= ;.(W. Oettli [1.30])1.28 Let M be a square matrix of order n and q 2 Rn. Let z 2 Rn be a vector ofvariables. De�ne: fi(z) = minimum fzi;Mi.z + qig, that isfi(z) = Ii.z if (Mi. � Ii.)z + qi >= 0= Mi.z + qi if (Mi. � Ii.)z + qi <= 0for each i = 1 to n.(a) Show that fi(z) is a piecewise linear concave function de�ned on Rn(b) Consider the system of equationsfi(z) = 0 i = 1 to n :Let z be a solution of this system. Let w = Mz + q. Prove that (w; z) is acomplementary feasible solution of the LCP (q;M).(c) Using (b) show that every LCP is equivalent to solving a system of piecewise linearequations.(R. Saigal)1.29 For j = 1 to n de�ne x+j = Maximum f0; xjg, x�j = � Minimum f0; xjg. Letx = (xj) 2 Rn, x+ = (x+j ), x� = (x�j ). Given the square matrix M of order n, de�nethe piecewise linear function TM (x) = x+ �Mx� :Show that TM (x) is linear in each orthant of Rn. Prove that (w = x+; z = x�) solvesthe LCP (q;M) i� q = TM (x).(R. E. Stone [3.71])1.30 Let D be a given square matrix of order n, and f(x) = xTDx. Prove that thereexists a nonsingular linear transformation: y = Ax (where A is a square nonsingularmatrix of order n) such thatf(x) = y21 + : : :+ y2p � y2p+1 � : : :� y2rwhere 0 <= p <= r <= n. Discuss an e�cient method for �nding such a matrix A, givenD.Find such a transformation for the quadratic form f(x1; x2; x3) = x21+x22+x23�2x1x2�2x1x3 � 2x2x3 (this dates back to Lagrange in 1759, see D. E. Knuth [10.20]).



1.7. Exercises 511.31 Sylvester's Law of Inertia (dates from 1852): Let D be a given squarematrix of order n, and f(x) = xTDx. If there exist nonsingular linear transformations:y = Ax, z = Bx (A, B are both square nonsingular matrices of order n) such thatf(x) = y21 + : : :+ y2p � y2p+1 � : : :� y2r = z21 + : : :+ z2q � z2q+1 � : : :� z2sthen prove that p = q and r = s.This shows that the numbers p and r associated with a quadratic form, de�ned inExercise 1.30 are unique(see D. E. Knuth [10.20]).1.32 Using the notation of Exercise 1.30 prove that r = n i� the matrix (D +DT )=2has no zero eigenvalues and that p is the number of positive eigenvalues of(D +DT )=2.Let D0, D1 be two given square matrices of order n, and let D� = (1 � �)D0 +�D1. Let r(D�), p(D�) be the numbers r, p, associated with the quadratic form f� =xTD�x as de�ned in Exercise 1.30. If r(D�) = n for all 0 <= � <= 1, prove that p(D0) =p(D1).(See D. E. Knuth [10.20].)1.33 To Determine Optimum Mix of Ingredients for Moulding Sand in aFoundry: In a heavy casting steel foundry, moulding sand is prepared by mixingsand, resin (Phenol formaledhyde) and catalyst (Para toluene sulfonic acid). In themixture the resin undergoes a condensation polymerization reaction resulting in aphenol formaldehyde polymer that bonds and gives strength. The bench life of themixed sand is de�ned to be the length of the time interval between mixing and thestarting point of setting of the sand mix. In order to give the workers adequate timeto use the sand and for proper mould strength, the bench life should be at least 10minutes. Another important characteristic of the mixed sand is the dry compressionstrength which should be maximized. An important variable which in
uences thesecharacteristics is the resin percentage in the mix, extensive studies have shown that theoptimum level for this variable is 2 % of the weight of sand in the mix, so the companyhas �xed this variable at this optimal level. The other process variables which in
uencethe output characteristics are:x1 = temperature of sand at mixing timex2 = % of catalyst, as a percent of resin addedx3 = dilution of catalyst added at mixing :The variable x3 can be varied by adding water to the catalyst before it is mixed. Anexperiment conducted yielded the following data.



52 Chapter 1. Linear Complementarity Problem, Its Geometry, and ApplicationsDry Compression Strengthx3 = 0 10x1 x2 = 25 30 35 40 25 30 35 4020c 31:4 32:4 33:7 37:3 32:7 33:7 36:3 34:030c 33:4 34:1 34:9 32:6 30:1 31:1 35:0 35:240c 33:8 31:4 38:0 32:4 31:6 32:3 34:7 34:8Bench Lifex3 = 0 10x1 x2 = 25 30 35 40 25 30 35 4020c 13:3 11:5 10:8 10:3 15:8 14:0 12:8 11:830c 10:3 9:0 8:0 6:8 12:3 11:0 10:3 9:340c 7:0 6:3 5:0 4:3 11:8 10:5 7:3 5:8Bench life can be approximated very closely by an a�ne function in the variables x1,x2, x3; and dry compression strength can be approximated by a quadratic function inthe same variables. Find the functional forms for these characteristics that provide thebest approximation. Using them, formulate the problem of �nding the optimal valuesof the variables in the region 0 <= x3 <= 10, 25 <= x2 <= 40, 20 <= x1 <= 40, so as tomaximize the dry compression strength subject to the additional constraint that thebench life should be at least ten, as a mathematical programming problem. Find anoptimum solution to this mathematical program. (Hint: For curve �tting use eitherthe least squares method discussed in Section 1.3.5, or the minimum absolute deviationmethods based on linear programming discussed in [2.26, Section 1.2.5].)(Bharat Heavy Electricals Ltd., Hardwar, India).1.34 Synchronous Motor Design Problem: There are 11 important design vari-ables (these are variables like the gauge of the copper wring used, etc. etc.) denoted byx1 to x11 and let x = (x1; : : : ; x11)T . These variables e�ect the raw material cost forthis motor, denoted by f0(x); the e�ciency of the motor (= (output energy)/(inputenergy) measured as a percentage) denoted by f1(x); and the power factor (this mea-sures leakage, it is a loss measured as a percentage) denoted by f2(x). Subroutinesare available for computing each of the functions f0(x), f1(x), f2(x) for given x. Theproblem is to �nd optimal values for the variables which minimizes f0(x) subject tof1(x) >= 86:8 and f2(x) <= 90 and l <= x <= u, where l, u are speci�ed lower and upperbound vectors for the variables. Discuss a method for solving this problem.



1.7. Exercises 531.35 Quadratic Programming Model to Determine State Taxes: It is re-quired to determine optimum levels for various state government taxes that minimizesinstability while meeting constraints on growth rates over time. Seven di�erent taxesare considered, sales, motor fuel, alcoholic beverages, tobacco, motor vehicle, personalincome, and corporate taxes. State government �nance is based on the assumptionof predictable and steady growth of each tax over time. Instability in tax revenue ismeasured by the degree to which the actual revenue di�ers from predicted revenue.Using past data, a regression equation can be determined to measure the growthin tax revenue over time. Let s be the tax rate for a particular tax and St the expectedtax revenue from this tax in year t. Then the regression equation used islogeSt = a+ bt+ cswhere a, b, c are parameters to be determined using past data to give the closest �t.Data for the past 10 years from a state is used for this parameter estimation. Clearly,the parameter c can only be estimated, if the tax rate s for that tax has changed duringthis period, this has happened only for the motor fuel and the tobacco taxes. The best�t parameter values for the various taxes are given below (for all but the motor fueland tobacco taxes, the tax rate has remained the same over the 10 years period forwhich the tax data is available, and hence the parameter a given below for these taxes,is actually the value of a+ cs, as it was not possible to estimate a and c individuallyfrom the data). Table 1: Regression coe�cient valuesj Tax j a b c1 Sales 12:61 :1082 Motor fuel 10:16 :020 :2763 Alcoholic beverages 10:97 :0444 Tobacco 9:79 :027 :1025 Motor vehicle 10:37 :0366 Personal income 11:89 :1607 Corporate 211:09 :112The annual growth rate is simply the regression coe�cient b multiplied by 100 toconvert it to percent.For 1984, the tax revenue from each tax as a function of the tax rate can bedetermined by estimating the tax base. This data, available with the state, is givenbelow.



54 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsj Tax j Tax base (millions of dollars)1 Sales 34,3292 Motor fuel 3,2693 Alcoholic beverages 8114 Tobacco 7025 Motor vehicle 2,9356 Personal income 30,8097 Corporate 4,200If sj is the tax rate for tax j in 1984 as a fraction, xj = tax revenue to be collected in1984 in millions of dollars for the jth tax is expected to be: (tax base for tax j) sj.Choosing the decision variables to be xj for j = 1 to 7, let x = (x1; : : : ; x7)T .The total tax revenue is P7j=1 xj. Then the variability or instability in this revenue ismeasured by the quadratic function Q(x) = xTV x where V , the variance-covariancematrix estimated from past data is8>>>>>>>>>>>>>>>>>>>>:
:00070 �:00007 :00108 �:00002 :00050 :00114 :00105:00115 :00054 �:00002 :00058 �:00055 :00139:00279 :00016 :00142 :00112 :00183:00010 :00009 �:00007 �:00003:00156 :00047 :00177:00274 :00177:00652

9>>>>>>>>>>>>>>>>>>>>; :
Since V is symmetric, only the upper half of V is recorded above.The problem is to determine the vector x that minimizes Q(x), subject to severalconstraints. One of the constraints is that the total expected tax revenue for 1984should be T = 3300 in millions of dollars. The second constraint is that a speci�edgrowth rate of � in the total tax revenue should be maintained. It can be assumedthat this overall growth rate is the function P7i=1 xjbjT which is a weighted average ofthe growth rates of the various taxes. We would like to solve the problem treating �as a nonnegative parameter. Of particular interest are values � = 9 % and 13 %.The other constraints are lower and upper bounds on tax revenues xj , these areof the form 0 <= xj <= uj for each j; where uj is twice the 1983 revenue from tax j. Thevector u = (uj) is (2216, 490, 195, 168, 95, 2074, 504) in millions of dollars.Formulate this problem as an LCP and solve it using the complementary pivot al-gorithm discussed in Chapter 2. Using the tax base information given above, determinethe optimal tax rates for 1984 for each tax.(F. C. White [1.40], my thanks to H. Bunch for bringing this paper to my attention.)



1.7. Exercises 551.36 Consider the equality constrained nonlinear programminimize �(x)subject to hi(x) = 0; i = 1 to m:The quadratic merit function for this problem is S(x) = �(x) + (�=2)Pmi=1(hi(x))2where � is a positive penalty parameter. Let x 2 Rn be an initial point and � =(�1; : : : ; �m) 2 Rm be a given Lagrange multiplier vector. Consider the equalityconstrained quadratic program in variables d = (d1; : : : ; dn)Tminimize r�(x)d+ 12dTBdsubject to (h(x))T + (rh(x))d = �=�where B is a symmetric PD matrix of order n. If d 6= 0 is an optimum solution of thisquadratic program, and � = (�1; : : : ; �m) the associated Lagrange multiplier vector,prove that d is a descent direction for S(x) at x.1.37 Let A = (aij) be a given square matrix of order n. Consider the usual assignmentproblem minimize z(x) = nXi=1 nXj=1 aijxijsubject to nXi=1 xij = 1; j = 1 to nsubject to nXj=1 xij = 1; i = 1 to nsubject to xij >= 0; i; j = 1 to n :i) Prove that if A is PD and symmetric, x = In = unit matrix of order n, is anoptimum solution for this problem. Is the symmetry of A important for thisresult to be valid?ii) Using the above, prove that if A is PD and symmetric, there exists a vectoru = (u1; : : : ; un) satisfyingui � uj >= aij � ajj; i; j = 1 to n :1.38 Consider the problem of an investor having one dollar to invest in assets i =1; : : : ; n. If xi is invested in asset i, then �ixi is returned at the end of the investmentperiod, where (�1; : : : ; �n) are random variables independent of the choice of xis, withthe row-vector of means � = (�1; : : : ; �n) (� > 0) and a positive de�nite symmetricvariance-covariance matrix D. In portfolio theory, under certain assumptions, it isshown that optimal investment proportions, x = (x1; : : : ; xn)T , may be obtained bymaximizing the fractional objective functiong(x) = �x(xTDx)1=2 :



56 Chapter 1. Linear Complementarity Problem, Its Geometry, and Applicationsi) A real valued function f(x) de�ned on a convex set K � Rn is said to be pseudo-concave on K if it is di�erentiable on K and for every x1, x2 2 K, rf(x2)(x1 �x2) <= 0 implies f(x1) <= f(x2).Prove that g(x) is pseudo-concave in fx : x > 0g, even though it is not in generalconcave on this set.For the problem of maximizing a pseudo-concave function on a convex set, provethat every local maximum is a global maximum.Consider the problem maximize g(x)subject to nXj=1 xj = 1xj >= 0; for all j :Show that this problem has a unique optimum solution. Also, show that an optimumsolution of this problem can be obtained from the solution of the LCP (��;D).(W. T. Ziemba, C. Parkan and R. Brooks-Hill [3.80])1.39 In Section 1.3.5, the computational problems associated with the Hilbert matrixwere mentioned brie
y. Consider the following linear programmaximize cxsubject to Ax <= bwhere A = 8>>>>>>>>>>>>: 12 13 : : : 1n+113 14 : : : 1n+2... ... ...1n+1 1n+2 : : : 12n
9>>>>>>>>>>>>;b = (bi : i = 1 to n)T = � nXj=1 1i+ j �c = (cj : j = 1 to n) = � 2j + 1 + nXi=2 1j + i�Clearly, this problem has the unique optimum solution x = (1; 1; : : : ; 1)T and the dualproblem has the unique optimum solution � = (2; 1; 1; : : : ; 1). The coe�cient matrixA is related to the Hilbert matrix of order n. Verify that when this problem is solvedby pivotal algorithms such as the simplex algorithm, or by the complementary pivotalgorithm through an LCP formulation, using �nite precision arithmetic, the resultsobtained are very bad, if n exceeds 10, say.(E. Bernarczuk, \On the results of solving some linear programming problems usingprogram packages of IBM and Robotron computers")



1.8. References 571.40 Consider the LCP (q;M). De�nef(z) = nXi=1[minimum f0;Mi.z + qi � zig+ zi]:Show that the LCP (q;M) is equivalent to the following concave minimization problemminimize f(z)subject to Mz+q>= 0z >= 0:(O. L. Mangasarian [8.15])1.41 Let n be a positive integer. Consider a square matrix x = (xij) of order n.Order the entries xij in the matrix in the form of a vector in Rn2 , in some order. LetK � Rn2 denote the set of all such vectors corresponding to PSD matrices x. Provethat K is a convex cone, but not polyhedral, and has a nonempty interior.1.42 Consider the LCP (q;M) (1.6) to (1.8), of order n. Now consider the followingmixed 0-1 integer programming problem (MIP)maximize yn+1subject to 0 <=My + qyn+1 <= e� x0 <= y <= x; 0 <= yn+1 <= 1xi = 0 or 1 for all i = 1 to n (1:49)where y = (y1; : : : ; yn)T , x = (x1; : : : ; xn)T and e is the vector of all 1s in Rn. Supposethe optimum objective value in the MIP (1.49) is y�n+1.If y�n+1 = 0, prove that the LCP (q;M) has no solution.If y�n+1 > 0 and (y�; x�; y�n+1) is any optimum solution of the MIP (1.49), provethat (w�; z�) is a solution of the LCP (q;M), wherez� = (1=y�n+1)y�w� =Mz� + q(J. Ben Rosen, \Solution of general LCP by 0-1 Mixed integer programming",Computer Science Tech. Report 86-23, University of Minnesota, Minneapolis, May,1986).1.8 References1.1 R. Chandrasekaran, \The Weighted Euclidean 1-Center Problem", O. R. Letters,1 (1982) 111{112.
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Chapter 2
THE COMPLEMENTARY PIVOTALGORITHM AND ITS EXTENSIONTO FIXED POINT COMPUTING

LCPs of order 2 can be solved by drawing all the complementary cones in the q1; q2-plane as discussed in Chapter 1.Example 2.1Let q = 8>: 4�19>;, M = 8>:�2 11 �29>; and consider the LCP (q;M). The class ofcomplementary cones corresponding to this problem is shown in Figure 1.5.w1 w2 z1 z2 q1 0 2 �1 40 1 �1 2 �1w1; w2; z1; z2 >= 0, w1z1 = w2z2 = 0q lies in two complementary cones Pos (�M.1; I.2) and Pos (�M.1;�M.2). This impliesthat the sets of usable variables (z1; w2) and (z1; z2) lead to solutions of the LCP.Putting w1 = z2 = 0 and solving the remaining system for the values of theusable variables (z1; w2) lead to the solution (z1; w2) = (2; 1). Here (w1; w2; z1; z2) =(0; 1; 2; 0) is a solution of this LCP. Similarly putting w1 = w2 = 0 and solving it forthe value of the usable variables (z1; z2) leads to the second solution (w1; w2; z1; z2) =(0; 0; 73 ; 23) of this LCP.



2.1. Bases and Basic Feasible Solutions 63Example 2.2Let q = 8>:�1�19>; and M = 8>:�2 11 �29>; and consider the LCP (q;M). The class ofcomplementary cones corresponding to this problem is in Figure 1.5. Verify that q isnot contained in any complementary cone. Hence this LCP has no solution.This graphic method can be conveniently used only for LCPs of order 2. InLCPs of higher order, in contrast to the graphic method where all the complementarycones were generated, we seek only one complementary cone in which q lies. In thischapter we discuss the complementary pivot algorithm (which is also called thecomplementary pivot method) for solving the LCP. In the LCP (1.1) if q >= 0,(w; z) = (q; 0) is a solution and we are done. So we assume q 6>= 0. First we will brie
yreview some concepts from linear programming. See [2.26] for complete details.2.1 BASES AND BASIC FEASIBLE SOLUTIONSConsider the following system of linear equality constraints in nonnegative variablesAx = bx >= 0 (2:1)where A is a given matrix of order m � n. Without any loss of generality we assumethat the rank of A is m (otherwise either (2.1) is inconsistent, or redundant equalityconstraints in (2.1) can be eliminated one by one until the remaining system satis�esthis property. See [2.26]). In this system, the variable xj is associated with the columnA.j , j = 1 to n. A basis B for (2.1) is a square matrix consisting of m columns ofA which is nonsingular; and the column vector of variables xB associated with thecolumns in B, arranged in the same order, is the basic vector corresponding to it.Let D be the matrix consisting of the n � m columns of A not in B, and let xD bethe vector of variables associated with these columns. When considering the basis Bfor (2.1), columns in B, D, are called the basic, nonbasic columns respectively;and the variables in xB, xD are called the basic, nonbasic variables respectively.Rearranging the variables, (2.1) can be written in partitioned form asBxB + DxD = bxB >= 0; xD >= 0 :The basic solution of (2.1) corresponding to the basis B is obtained by setting xD = 0and then solving the remaining system for the values of the basic variables. Clearly itis (xB = B�1b, xD = 0). This solution is feasible to (2.1) i� B�1b >= 0, and in thiscase B is said to be a feasible basis for (2.1) and the solution (xB = B�1b, xD = 0)



64 Chapter 2. The Complementary Pivot Algorithmis called the basic feasible solution (abbreviated as BFS) of (2.1) corresponding toit. A basis B which is not feasible (i. e., if at least one component of B�1b is strictlynegative) is said to be an infeasible basis for (2.1). Thus each feasible basis B for(2.1) determines a unique BFS for it.When referring to systems of type (2.1), the word solution refers to a vector xsatisfying the equality constraints `Ax = b', that may or may not satisfy the nonneg-ativity restrictions `x >= 0'. A solution x of (2.1) is a feasible solution if it satis�esx >= 0.De�nition: Degeneracy, Nondegeneracy of Basic Solutions for (2.1); of (2.1)itself: and of the b-Vector in (2.1) The basic solution associated with a givenbasis B for (2.1), whether it is feasible or not, is said to be degenerate if at least onecomponent in the vector B�1b is zero, nondegenerate otherwise.A system of constraints of the form (2.1) is said to be nondegenerate if it has nodegenerate basic solutions (i. e., i� in every solution of (2.1), at least m variables arenonzero, when the rank of A is m), degenerate otherwise. When A has full row rank,the system (2.1) is therefore degenerate i� the column vector b can be expressed as alinear combination of r columns of A, where r < m, nondegenerate otherwise. Thuswhether the system of constraints (2.1) is degenerate or nondegenerate depends on theposition of the right hand side constants vector b in Rm in relation to the columns ofA; and if the system is degenerate, it can be made into a nondegenerate system by justperturbing the b-vector alone.The right hand side constants vector b in the system of constraints (2.1) is said tobe degenerate or nondegenerate in (2.1) depending on whether (2.1) is degenerate ornondegenerate. See Chapter 10 in [2.26].The de�nitions given here are standard de�nitions of degeneracy, nondegeneracythat apply to either a system of constraints of the form (2.1) or the right hand con-stants vector b in such a system, or a particular basic solution of such a system. Thisshould not be confused with the concepts of (principal) degeneracy or (principal) non-degeneracy of square matrices de�ned later on in Section 2.3, or the degeneracy ofcomplementary cones de�ned in Chapter 1.As an example, consider the system of constraints given in Example 2.4 in Section2.2.2. The BFS of this system associated with the basic vector (x1; x2; x3; x4) is �x =(3; 0; 6; 5; 0; 0; 0; 0)T and it is degenerate since the basic variable x2 is zero in thissolution. The BFS of this system associated with the basic vector (x8; x2; x3; x4) canbe veri�ed to be x = (0; 1; 2; 3; 0; 0; 0; 1)T which is a nondegenerate BFS. Since thesystem has a degenerate basic solution, this system itself is degenerate, also the b-vector is degenerate in this system.De�nition: Lexico Positive A vector a = (a1; : : : ; ar) 2 Rr, is said to be lexicopositive, denoted by a � 0, if a 6= 0 and the �rst nonzero component in a is strictlypositive. A vector a is lexico negative, denoted by a � 0, if �a � 0. Given twovectors x; y 2 Rr, x � y i� x � y � 0; x � y i� x � y � 0. Given a set of vectors



2.1. Bases and Basic Feasible Solutions 65f a1; : : : ; ak g � Rr, a lexico minimum in this set is a vector aj satisfying the propertythat ai �= aj for each i = 1 to k. To �nd the lexico minimum in a given set ofvectors from Rr, compare the �rst component in each vector and discard all vectorsnot corresponding to the minimum �rst component, from the set. Compare the secondcomponent in each remaining vector and again discard all vectors not corresponding tothe minimum in this position. Repeat in the same manner with the third component,and so on. At any stage if there is a single vector left, it is the lexico minimum. Thisprocedure terminates after at most r steps. At the end, if two or more vectors are left,they are all equal to each other, and each of them is a lexico minimum in the set.Example 2.3The vector (0; 0; 0:001;�1000) is lexico positive. The vector (0;�1; 20000; 5000) islexico negative. In the set of vectors f (�2; 0;�1; 0); (�2; 0;�1; 1); (�2; 1;�20;�30);(0;�10;�40;�50) g, the vector (�2; 0;�1; 0) is the lexico minimum.Perturbation of the Right Hand Side Constants Vectorin (2.1) to make it Nondegenerate.If (2.1) is degenerate, it is possible to perturb the right hand side constants vector bslightly, to make it nondegenerate. For example, let " be a parameter, positive andsu�ciently small. Let b(") = b+ ("; "2; : : : ; "m)T . It can be shown that if b in (2.1) isreplaced by b("), it becomes nondegenerate, for all " positive and su�ciently small(this really means that there exists a positive number "1 > 0 such that whenever0 < " < "1, the stated property holds). This leads to the perturbed problemAx = b(")x >= 0 (2:2)which is nondegenerate for all " positive and su�ciently small. See Chapter 10 in[2.26] for a proof of this fact. A basis B and the associated basic vector xB for (2.1)are said to be lexico feasible if they are feasible to (2.2) whenever " is positive andsu�ciently small, which can be veri�ed to hold i� each row vector of the m� (m+ 1)matrix (B�1b ... B�1) is lexico positive. Thus lexico feasibility of a given basis for (2.1)can be determined by just checking the lexico positivity of each row of (B�1b ... B�1)without giving a speci�c value to ". For example, if b >= 0, and A has the unit matrixof order m as a submatrix, that unit matrix forms a lexico feasible basis for (2.1).Canonical TableausGiven a basis B, the canonical tableau of (2.1) with respect to it is obtained by mul-tiplying the system of equality constraints in (2.1) on the left by B�1. It is



66 Chapter 2. The Complementary Pivot AlgorithmTableau 2.1 : Canonical Tableau of (2.1) withRespect to the Basis Bbasic variables xxB B�1A B�1bLet D be the matrix consisting of the n � m columns of A not in B, and let xD bethe vector of variables associated with these columns. When the basic and nonbasiccolumns are rearranged in proper order, the canonical Tableau 2.1 becomesTableau 2.2basic variables xB xDxB I B�1D B�1b = �b�b is known as the updated right hand side constants vector in the canonicaltableau. The column of xj in the canonical tableau, B�1A.j = �A.j is called theupdate column of xj in the canonical tableau. The inverse tableau correspondingto the basis B is Tableau 2.3 : Inverse Tableaubasic variables Inverse basic valuesxB B�1 B�1bIt just provides the basis inverse and the updated right-hand-side constants column.From the information available in the inverse tableau, the update column correspondingto any nonbasic variable in the canonical tableau can be computed using the formulasgiven above.
2.2 THE COMPLEMENTARY PIVOTALGORITHMWe will now discuss a pivotal algorithm for the LCP introduced by C. E. Lemke,known as the Complementary Pivot Algorithm (because it chooses the enteringvariable by a complementary pivot rule, the entering variable in a step is alwaysthe complement of the dropping variable in the previous step), and also referred to asLemke's Algorithm in the literature.



2.2. The Complementary Pivot Algorithm 672.2.1 The Original TableauAn arti�cial variable z0 associated with the column vector �en (en is the columnvector of all 1's in Rn) is introduced into (1.6) to get a feasible basis for starting thealgorithm. In detached coe�cient tableau form, (1.6) then becomesw z z0I �M �en qw >= 0, z >= 0, z0 >= 0 (2:3)
2.2.2 Pivot StepsThe complementary pivot algorithm moves among feasible basic vectors for (2.3). Theprimary computational step used in this algorithm is the pivot step (or the Gauss-Jordan pivot step, or the Gauss-Jordan elimination pivot step), which is also themain step in the simplex algorithm for linear programs. In each stage of the algorithm,the basis is changed by bringing into the basic vector exactly one nonbasic variableknown as the entering variable. Its updated column vector is the pivot columnfor this basis change. The dropping variable has to be determined according to theminimum ratio test to guarantee that the new basis obtained after the pivot stepwill also be a feasible basis.For example, assume that the present feasible basic vector is (y1; : : : ; yn) with yras the rth basic variable, and let the entering variable be xs. (The variables in (2.3) arew1; : : : ; wn; z1; : : : ; zn, z0. Exactly n of these variables are present basic variables. Forconvenience in reference, we assume that these basic variables are called y1; : : : ; yn).After we rearrange the variables in (2.3), if necessary, the canonical form of (2.3), withrespect to the present basis is of the form :Basic y1; : : : ; yn xs Other Right-handvariable variables constant vectory1 1 : : : 0 �a1s � � � �q1:: :: :: :: :: ::yn 0 : : : 1 �ans � � � �qnKeeping all the nonbasic variables other than xs, equal to zero, and giving thevalue � to the entering variable, xs, leads to the new solutions :xs = �yi = �qi � ��ais; i = 1; : : : ; nAll other variables = 0 (2:4)



68 Chapter 2. The Complementary Pivot AlgorithmThere are two possibilities here.1. The pivot column may be nonpositive, that is, �ais <= 0 for all 1 <= i <= n. Inthis case, the solution in (2.4) remains nonnegative for all � >= 0. As � variesfrom 0 to 1, this solution traces an extreme half-line (or an unboundededge) of the set of feasible solutions of (2.3). In this case the minimum ratio,�, in this pivot step is +1. See Example 2.4.2. There is at least one positive entry in the pivot column. In this case, if thesolution in (2.4) should remain nonnegative, the maximum value that � cantake is � = �qr�ars = minimum� �qi�ais : i such that �ais > 0	. This � is known asthe minimum ratio in this pivot step. For any i that attains the minimumhere, the present ith basic variable yi is eligible to be the dropping variablefrom the basic vector in this pivot step. The dropping basic variable can bechosen arbitrarily among those eligible, suppose it is yr. yr drops from thebasic vector and xs becomes the rth basic variable in its place. The rth rowis the pivot row for this pivot step. The pivot step leads to the canonicaltableau with respect to the new basis.If the pivot column (�a1s; : : : ; �ams)T is placed by the side of the present inversetableau and a pivot step performed with the element �ars in it in the pivot row as thepivot element, the inverse tableau of the present basis gets transformed into the inversetableau for the new basis.The purpose of choosing the pivot row, or the dropping variable, by the minimumratio test, is to guarantee that the basic vector obtained after this pivot step remainsfeasible.In this case (when there is at least one positive entry in the pivot column) thepivot step is said to be a nondegenerate pivot step if the minimum ratio computedabove is > 0, degenerate pivot step if it is 0. See Examples 2.5, 2.6.Let B be the basis for (2.3) corresponding to the basic vector (y1; : : : ; yn). Asdiscussed above, the basic vector (y1; : : : ; yn) is lexico feasible for (2.3) if each rowvector of (�q ... B�1) is lexico positive. If the initial basic vector (y1; : : : ; yn) is lexicofeasible, lexico feasibility can be maintained by choosing the pivot row according to thelexico minimum ratio test. Here the pivot row is chosen as the rth row where r isthe i that attains the lexico minimum in � (�qi;�i1;:::;�in)�ais : i such that �ais > 0	, where� = (�ij) = B�1. The lexico minimum ratio test identi�es the pivot row (and hencethe dropping basic variable) unambiguously, and guarantees that lexico feasibility ismaintained after this pivot step. In the simplex algorithm for linear programming,the lexico minimum ratio test is used to guarantee that cycling will not occur underdegeneracy (see Chapter 10 of [2.26]). The lexico minimum ratio test is one of the rulesthat can be used to resolve degeneracy in the simplex algorithm, and thus guaranteethat it terminates in a �nite number of pivot steps.



2.2. The Complementary Pivot Algorithm 69Example 2.4 Extreme Half-lineConsider the following canonical tableau with respect to the basic vector (x1; x2; x3;x4). basic x1 x2 x3 x4 x5 x6 x7 x8 bvariablesx1 1 0 0 0 1 �1 2 3 3x2 0 1 0 0 1 �2 1 �1 0x3 0 0 1 0 �1 0 5 4 6x4 0 0 0 1 �1 �3 8 2 5xj >= 0 for all j.Suppose x6 is the entering variable. The present BFS is �x = (3; 0; 6; 5; 0; 0; 0; 0)T .The pivot column (�1;�2; 0;�3)T has no positive entry. Make the entering variableequal to �, retain all other nonbasic variables equal to 0, this leads to the solutionx(�) = (3+�; 2�; 6; 5+3�; 0; �; 0; 0)T = �x+�xh, where xh = (1; 2; 0; 3; 0; 1; 0; 0)T . xh,the coe�cient vector of � in x(�), is obtained by making the entering variable equalto 1, all other nonbasic variables equal to zero, and each basic variable equal to thenegative of the entry in the pivot column in its basic row. Since the pivot column isnonpositive here, xh >= 0. it can be veri�ed that xh satis�es the homogeneous systemobtained by replacing the right hand side constants vector by 0. Hence xh is known asa homogeneous solution corresponding to the original system. Since xh >= 0 here,x(�) remains >= 0 for all � >= 0. The half-line f �x + �xh : � >= 0 g is known as anextreme half-line of the set of feasible solutions of the original system.A half-line is said to be a feasible half-line to a system of linear constraints, ifevery point on the half-line is feasible to the system.Example 2.5 Nondegenerate Pivot StepSee Tableau 2.4 in Example 2.8 of Section 2.2.6 a few pages ahead. This is the canonicaltableau with respect to the basic vector (w1; w2; z0; w4) and z3 is the entering variable.The minimum ratio occurs uniquely in row 4, which is the pivot row in this step, and w4is the dropping variable. Performing the pivot step leads to the canonical tableau withrespect to the new basic vector (w1; w2; z0; z3) in Tableau 2.5. This is a nondegeneratepivot step since the minimum ratio in it was (42 ) > 0. As a result of this pivot stepthe BFS has changed from (w1; w2; w3; w4; z1; z2; z3; z4; z0) = (12; 14; 0; 4; 0; 0; 0; 0; 9)to (6; 8; 0; 0; 0; 0; 2; 0; 5).



70 Chapter 2. The Complementary Pivot AlgorithmExample 2.6 Degenerate Pivot StepConsider the following canonical tableau :Basic x1 x2 x3 x4 x5 x6 �b Ratiovariablex1 1 0 0 1 2 �3 3 31x2 0 1 0 1 �2 1 0 01 Min.x3 0 0 1 �1 1 2 0xj >= 0 for all j.Here the BFS is �x = (3; 0; 0; 0; 0; 0)T . It is degenerate. If x4 is chosen as the enteringvariable, it can be veri�ed that the minimum ratio of 0 occurs in row 2. Hence row 2is the pivot row for this step, and x2 is the dropping variable. Performing the pivotstep leads to the canonical tableau with respect to the new basic vector (x1; x4; x3).basic x1 x2 x3 x4 x5 x6variablex1 1 �1 0 0 4 �4 3x4 0 1 0 1 �2 1 0x3 0 1 1 0 �1 3 0Eventhough the basic vector has changed, the BFS has remained unchanged throughthis pivot step. A pivot step like this is called a degenerate pivot step.A pivot step is degenerate, if the minimum ratio � in it is 0, nondegenerateif the minimum ratio is positive and �nite. In every pivot step the basic vector changesby one variable. In a degenerate pivot step there is no change in the correpondingBFS (the entering variable replaces a zero valued basic variable in the solution). In anondegenerate pivot step the BFS changes.Example 2.7 Ties for Minimum Ratio lead to Degenerate SolutionConsider the following canonical tableau.basic x1 x2 x3 x4 x5 x6 �b Ratiovariablex1 1 0 0 1 �2 1 3 31x2 0 1 0 2 1 1 6 62x3 0 0 1 2 1 �2 16 162



2.2. The Complementary Pivot Algorithm 71The present BFS is �x = (3; 6; 16; 0; 0; 0)T . Suppose x4 is chosen as the entering variable.There is a tie for the minimum ratio. Both x1, x2 are eligible to be dropping variables.Irrespective of which of them is chosen as the dropping variable, it can be veri�edthat the other remains a basic variable with a value of 0 in the next BFS. So the BFSobtained after this pivot step is degenerate.In the same way it can be veri�ed that the BFS obtained after a pivot step isalways degenerate, if there is a tie for the minimum ratio in that step. Thus, if weknow that the right hand side constants vector q is nondegenerate in (2.3), in everypivot step performed on (2.3), the minimum ratio test identi�es the dropping variableuniquely and unambiguously.2.2.3 InitializationThe arti�cial variable z0 has been introduced into (2.3) for the sole purpose of obtaininga feasible basis to start the algorithm.Identify row t such that qt = minimum f qi : 1 <= i <= n g. Break ties for t inthis equation arbitrarily. Since we assumed q 6>= 0, qt < 0. When a pivot is made in(2.3) with the column vector of z0 as the pivot column and the tth row as the pivotrow, the right-hand side constants vector becomes a nonnegative vector. The result isthe canonical tableau with respect to the basic vector (w1; : : : ; wt�1; z0; wt+1; : : : ; wn).This is the initial basic vector for starting the algorithm.2.2.4 Almost Complementary Feasible Basic VectorsThe initial basic vector satis�es the following properties :(i) There is at most one basic variable from each complementary pair of variables(wj ; zj).(ii) It constains exactly one basic variable from each of (n � 1) complementarypairs of variables, and both the variables in the remaining complementarypair are nonbasic.(iii) z0 is a basic variable in it.A feasible basic vector for (2.3) in which there is exactly one basic variable fromeach complementary pair (wj ; zj) is known as a complementary feasible basicvector. A feasible basic vector for (2.3) satisfying properties (i), (ii), and (iii) aboveis known as an almost complementary feasible basic vector. Given an almostcomplementary feasible basic vector for (2.3), the complementary pair both of whosevariables are nonbasic, is known as the left-out complementary pair of variablesin it. All the basic vectors obtained in the algorithm with the possible exception of the



72 Chapter 2. The Complementary Pivot Algorithm�nal basic vector are almost complementary feasible basic vectors. If at some stageof the algorithm, a complementary feasible basic vector is obtained, it is a �nal basicvector and the algorithm terminates.Adjacent Almost Complementary Feasible Basic VectorsLet (y1; : : : ; yj�1; z0; yj+1; : : : ; yn) be an almost complementary feasible basic vectorfor (2.3), where yi 2 fwi; zig for each i 6= j. Both the variables in the complementarypair (wj ; zj) are not in this basic vector. Adjacent almost complementary feasible basicvectors can only be obtained by picking as the entering variable either wj or zj . Thusfrom each almost complementary feasible basic vector there are exactly two possibleways of generating adjcent almost complementary feasible basic vectors.In the initial almost complementary feasible basic vector, both wt and zt arenonbasic variables. In the canonical tableau with respect to the initial basis, theupdated column vector of wt can be veri�ed to be �en, which is negative. Hence, ifwt is picked as the entering variable into the initial basic vector, an extreme half-lineis generated. Hence, the initial almost complementary BFS is at the end of an almostcomplementary ray.So there is a unique way of obtaining an adjacent almost complementary feasiblebasic vector from the initial basic vector, and that is to pick zt as the entering variable.2.2.5 Complementary Pivot RuleIn the subsequent stages of the algorithm there is a unique way to continue the algo-rithm, which is to pick as the entering variable, the complement of the variable thatjust dropped from the basic vector. This is known as the complementary pivotrule.The main property of the path generated by the algorithm is the following. EachBFS obtained in the algorithm has two almost complementary edges containing it. Wearrive at this solution along one of these edges. And we leave it by the other edge. Sothe algorithm continues in a unique manner. It is also clear that a basic vector thatwas obtained in some stage of the algorithm can never reappear.The path taken by the complementary pivot algorithm is illustrated in Figure 2.1.The initial BFS is that corresponding to the basic vector (w1; : : : ; wt�1; z0; wt+1; : : : ;wn) for (2.3). In Figure 2.1, each BFS obtained during the algorithm is indicated bya point, with the basic vector corresponding to it entered by its side; and consecutiveBFSs are joined by an edge. If wt is choosen as the entering variable into the initialbasic vector we get an extreme half-line (discussed above) and the initial BFS is at endof this extreme half-line. When zt is choosen as the entering variable into the initialbasic vector, suppose wi is the dropping variable. Then its complement zi will be theentering variable into the next basic vector (this is the complementary pivot rule).
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Figure 2.1 Path taken by the complementary pivot method. The " in-dicates entering variable, # indicates dropping variable. The basic vectorcorresponding to each point (BFS) is entered by its side. Finally if z0 dropsfrom the basic vector, we get a complementary feasible basic vector.The path continues in this unique manner. It can never return to a basic vectorvisited earlier, since each BFS obtained in the algorithm has exactly two edges of thepath incident at it, through one of which we arrive at that BFS and through the otherwe leave (if the path returns to a basic vector visited earlier, the BFS correspondingto it has three edges in the path incident at it, a contradiction). So the path mustterminate after a �nite number of steps either by going o� along another extreme half-line at the end (ray termination, this happens when in some step, the pivot column,the updated column of the entering variable, has no positive entries in it), or by reachinga complementary feasible basic vector of the LCP (which happens when z0 becomesthe dropping variable). If ray termination occurs the extreme half-line obtained at theend, cannot be the same as the initial extreme half-line at the beginning of the path(this follows from the properties of the path discussed above, namely, that it neverreturns to a basic vector visited earlier).



74 Chapter 2. The Complementary Pivot Algorithm2.2.6 TerminationThere are exactly two possible ways in which the algorithm can terminate.1. At some stage of the algorithm, z0 may drop out of the basic vector, or becomeequal to zero in the BFS of (2.3). If ( �w; �z; �z0 = 0) is the BFS of (2.3) at thatstage, then ( �w; �z) is a solution of the LCP (1.6) to (1.8).2. At some stage of the algorithm, z0 may be strictly positive in the BFS of (2.3),and the pivot column in that stage may turn out to be nonpositive, and in thiscase the algorithm terminates with another almost complementary extremehalf-line, referred to in some publications as the secondary ray (distinctfrom the initial almost complementary extreme half-line or initial ray at thebeginning of the algorithm). This is called ray termination.When ray termination occurs, the algorithm is unable to solve the LCP. It ispossible that the LCP (1.6) to (1.8) may not have a solution, but if it does have asolution, the algorithm is unable to �nd it. If ray termination occurs the algorithmis also unable to determine whether a solution to the LCP exists in the general case.However, when M satis�es some conditions, it can be proved that ray termination inthe algorithm will only occur, when the LCP has no solution. See Section 2.3.Problems Posed by Degeneracy of (2.3).De�nition: Nondegeneracy, or Degeneracy of q in the LCP (q;M) As de�nedearlier, the LCP (q;M) is the problem of �nding w, z satisfyingw zI �M qw; z >= 0, wT z = 0This LCP is said to be nondegenerate (in this case q is said to be nondegenrate inthe LCP (q;M)) if in every solution (w; z) of the system of linear equations \w�Mz =q", at least n variables are non-zero. This condition holds i� q cannot be expressed asa linear combination of (n� 1) or less column vectors of (I ... �M).The LCP (q;M) is said to be degenerate (in this case q is said to be degeneratein the LCP (q;M)) if q can be expressed as a linear combination of a set consisting of(n� 1) or less column vectors of (I ... �M).De�nition: Nondegeneracy, Degeneracy of q in the Complementary PivotAlgorithm The system of contraints on which pivot operations are performed in thecomplementary pivot algorithm is (2.3). This system is said to be degenerate (and qis said to be degenerate in it) if q can be expressed as a linear combination of a setof (n � 1) or less column vectors of (I ... �M ... �e); nondegenerate otherwise. If



2.2. The Complementary Pivot Algorithm 75(2.3) is nondegenerate, in every BFS of (2.3) obtained during the complementary pivotalgorithm, all basic variables are strictly positive, and the minimum ratio test identi�esthe dropping basic variable in each pivot step uniquely and unambiguously.The argument that each almost complementary feasible basis has at most twoadjacent almost complementary feasible bases is used in developing the algorithm. Thisguarantees that the path taken by the algorithm continues unambiguously in a uniquemanner till termination occurs in one of the two possibilities. This property that eachalmost complementary feasible basis has at most two adjacent almost complementaryfeasible bases holds when (2.3) is nondegenerate. If (2.3) is degenerate, the droppingvariable during some pivots may not be uniquely determined. In such a pivot step, bypicking di�erent dropping variables, di�erent adjacent almost complementary feasiblebases may be generated. If this happens, the almost complementary feasible basisin this step may have more than two adjacent almost complementary feasible bases.The algorithm can still be continued unambiguously according to the complementarypivot rule, but the path taken by the algorithm may depend on the dropping variablesselected during the pivots in which these variables are not uniquely identi�ed by theminimum ratio test. All the arguments mentioned in earlier sections are still valid, butin this case termination may not occur in a �nite number of steps if the algorithm keepscycling along a �nite sequence of degenerate pivot steps. This can be avoided by usingthe concept of lexico feasibility of the solution. In this case the algorithm deals withalmost complementary lexico feasible bases throughout. In each pivot step thelexico minimum ratio test determines the dropping variable unambiguously and, hence,each almost complementary lexico feasible basis can have at most two adjacent almostcomplementary lexico feasible bases. With this, the path taken by the algorithm isagain unique and unambiguous, no cycling can occur and termination occurs after a�nite number of pivot steps. See Section 2.2.8.Interpretation of the Path Taken by the ComplementaryPivot AlgorithmB. C. Eaves has given a simple haunted house interpretation of the path taken by thecomplementary pivot algorithm. A man who is afraid of ghosts has entered a hauntedhouse from the outside through a door in one of its rooms. The house has the followingproperties :(i) It has a �nite number of rooms.(ii) Each door is on a boundary wall between two rooms or on a boundary wallof a room on the outside.(iii) Each room may have a ghost in it or may not. However, every room whichhas a ghost has exactly two doors.All the doors in the house are open initially. The man's walk proceeds according tothe following property.(iv) When the man walks through a door, it is instantly sealed permanently andhe can never walk back through it.



76 Chapter 2. The Complementary Pivot AlgorithmThe man �nds a ghost in the room he has entered initially, by properties (iii) and(iv) this room has exactly one open door when the man is inside it. In great fear heruns out of the room through that door. If the next room that he has entered has aghost again, it also satis�es the property that it has exactly one open door when theman is inside it, and he runs out through that as fast as he can. In his walk, everyroom with a ghost satis�es the same property. He enters that room through one ofits doors and leaves through the other. A sanctuary is de�ned to be either a roomthat has no ghost, or the outside of the house. The man keeps running until he �ndsa sanctuary. Property (i) guarantees that the man �nds a sanctuary after runningthrough at most a �nite number of rooms. The sanctuary that he �nds may be eithera room without a ghost or the outside of the house.We leave it to the reader to construct parallels between the ghost story and thecomplementary pivot algorithm and to �nd the walk of the man through the hauntedhouse in Figure 2.2. The man walks into the house initially from the outside throughthe door marked with an arrow.

Figure 2.2 Haunted houseGeometric Interpretation of a Pivot Step in theComplementary Pivot MethodIn a pivot step of the complementary pivot method, the current point moves betweentwo facets of a complementary cone in the direction of �e. This geometric interpreta-



2.2. The Complementary Pivot Algorithm 77tion of a pivot step in the complementary pivot method as a walk between two facetsof a complementary cone is given in Section 6.2.Example 2.8Consider the following LCP. (This is not an LCP corresponding to an LP.)w1 w2 w3 w4 z1 z2 z3 z4 q1 0 0 0 �1 1 1 1 30 1 0 0 1 �1 1 1 50 0 1 0 �1 �1 �2 0 �90 0 0 1 �1 �1 0 �2 �5wi >= 0, zi >= 0, wizi = 0 for all iWhen we introduce the arti�cial variable z0 the tableau becomes :w1 w2 w3 w4 z1 z2 z3 z4 z0 q1 0 0 0 �1 1 1 1 �1 30 1 0 0 1 �1 1 1 �1 50 0 1 0 �1 �1 �2 0 �1 �90 0 0 1 �1 �1 0 �2 �1 �5The most negative qi is q3. Therefore pivot in the column vector of z0 with the thirdrow as the pivot row. The pivot element is inside a box.Tableau 2.4Basic w1 w2 w3 w4 z1 z2 z3 z4 z0 q Ratiosvariablesw1 1 0 �1 0 0 2 3 1 0 12 123w2 0 1 �1 0 2 0 3 1 0 14 143z0 0 0 �1 0 1 1 2 0 1 9 92w4 0 0 �1 1 0 0 2 �2 0 4 42 Min.By the complementary pivot rule we have to pick z3 as the entering variable. Thecolumn vector of z3 is the pivot column, w4 drops from the basic vector.



78 Chapter 2. The Complementary Pivot AlgorithmTableau 2.5Basic w1 w2 w3 w4 z1 z2 z3 z4 z0 q Ratiosvariablesw1 1 0 12 �32 0 2 0 4 0 6 64 Min.w2 0 1 12 �32 2 0 0 4 0 8 84z0 0 0 0 �1 1 1 0 2 1 5 52z3 0 0 �12 12 0 0 1 �1 0 2Since w4 has dropped from the basic vector, its complement, z4 is the entering variablefor the next step. w1 drops from the basic vector.Basic w1 w2 w3 w4 z1 z2 z3 z4 z0 q Ratiosvariablesz4 14 0 18 �38 0 12 0 1 0 64w2 �1 1 0 0 2 �2 0 0 0 2 22 Min.z0 �12 0 �14 �14 1 0 0 0 1 2 21z3 14 0 �38 18 0 12 1 0 0 144Since w1 has dropped from the basic vector, its complement, z1 is the new enteringvariable. Now w2 drops from the basic vector.Basic w1 w2 w3 w4 z1 z2 z3 z4 z0 q Ratiosvariablesz4 14 0 18 �38 0 12 0 1 0 64 3z1 �12 12 0 0 1 �1 0 0 0 1z0 0 �12 �14 �14 0 1 0 0 1 1 1 Min.z3 14 0 �38 18 0 12 1 0 0 144 7Since w2 has dropped from the basic vector, its complement, z2 is the entering variable.Now z0 drops from the basic vector.



2.2. The Complementary Pivot Algorithm 79Basic w1 w2 w3 w4 z1 z2 z3 z4 z0 qvariablesz4 14 14 14 �14 0 0 0 1 �12 1z1 �12 0 �14 �14 1 0 0 0 1 2z2 0 �12 �14 �14 0 1 0 0 1 1z3 14 14 �14 14 0 0 1 0 �12 3Since the present basis is a complementary feasible basis, the algorithm terminates.The correponding solution of the LCP is w = 0, (z1; z2; z3; z4) = (2; 1; 3; 1).Example 2.9 w1 w2 w3 z1 z2 z3 q1 0 0 1 0 3 �30 1 0 �1 2 5 �20 0 1 2 1 2 �1wi >= 0, zi >= 0, wizi = 0 for all iThe tableau with the arti�cial variable z0 is :w1 w2 w3 z1 z2 z3 z0 q1 0 0 1 0 3 �1 �30 1 0 �1 2 5 �1 �20 0 1 2 1 2 �1 �1The initial canonical tableau is :Basic w1 w2 w3 z1 z2 z3 z0 q Ratiosvariablesz0 �1 0 0 �1 0 �3 1 3w2 �1 1 0 �2 2 2 0 1w3 �1 0 1 1 1 �1 0 2 21



80 Chapter 2. The Complementary Pivot AlgorithmThe next tableau is :Basic w1 w2 w3 z1 z2 z3 z0 qvariablesz0 �2 0 1 0 1 �4 1 5w2 �3 1 2 0 4 0 0 5z1 �1 0 1 1 1 �1 0 2The entering variable here is z3. The pivot column is nonpositive. Hence, the algorithmstops here with ray termination. The algorithm has been unable to solve this LCP.
2.2.7 IMPLEMENTATION OF THECOMPLEMENTARY PIVOT METHODUSING THE INVERSE OF THE BASISLet (2.3) be the original tableau for the LCP being solved by the complementary pivotmethod. Let t be determined as in Section 2.2.3. After performing the pivot withrow t as the pivot row and the column vector of z0 as the pivot column, we get theinitial tableau for this algorithm. Let P0 be the pivot matrix of order n obtained byreplacing the tth column in I (the unit matrix of order n) by �en (the column vectorin Rn all of whose entires are �1). Let M 0 = P0M , q0 = P0q. Then the initial tableauin this algorithm is Tableau 2.6 : Initial Tableauw z z0P0 �M 0 I.t q0The initial basic vector is (w1; : : : ; wt�1; z0; wt+1; : : : ; wn) and the basis correspondingto it in Tableau 2.6 is I. By choice of t, q0 � 0. So each row of (q0 ... I) is lexico-positive, and hence the initial basic vector in this algorithm is lexico-feasible for theproblem in Tableau 2.6.At some stage of the algorithm, let B be the basis from Tableau 2.6, correspondingto the present basic vector. Let � = (�ij) = B�1 and �q = B�1q0. Then the inversetableau at this stage is Basic vector Inverse� = B�1 �q



2.2. The Complementary Pivot Algorithm 81If the entering variable in this step, determined by the complementary pivotrule, is ys 2 fws; zs g, then the pivot column, the updated column of ys, is �P0I.sif ys = ws, or �P0(�M.s) if ys = zs. Suppose this pivot column is (�a1s; : : : ; �ans)T . If(�a1s; : : : ; �ans)T � 0, we have ray termination and the method has been unable to solvethis LCP. If (�a1s; : : : ; �ans)T 6� 0, the minimum ratio in this step is � = minimum � �qi�ais :i such that �ais > 0	. If the i that attains this minimum is unique, it determines thepivot row uniquely. The present basic variable in the pivot row is the dropping vari-able. If the minimum ratio does not identify the dropping variable uniquely, checkwhether z0 is eligible to drop, and if so choose it as the dropping variable. If z0 is noteligible to drop, one of those eligible to drop can be choosen as the dropping variablearbitrarily, but this can lead to cycling under degeneracy. To avoid cycling, we canuse the lexico-minimum ratio rule, which chooses the dropping basic variable so thatthe pivot row is the row corresponding to the lexico-minimum among � (�qi;�i1;:::;�in)�ais :i such that �ais > 0	. This lexico minimum ratio rule determines the dropping vari-able uniquely and unambiguously. If the lexico-minimum ratio rule is used in all stepsbeginning with the initial step, the dropping variable is identi�ed uniquely in everystep, each of the updated vectors (�qi; �i1; : : : ; �in), i = 1 to n, remain lexico-positivethrought, and cycling cannot occur by the properties of the almost complementarypath generated by this method, discussed above (see Section 2.2.8). Once the drop-ping variable is identi�ed, performing the pivot leads to the next basis inverse, and theentering variable in the next step is the complement of the dropping variable, and themethod is continued in the same way.Clearly it is not necessary to maintain the basis inverse explicitly. The comple-mentary pivot algorithm can also be implemented with the basis inverse maintainedin product form (PFI) or in elimination form (EFI) just as the simplex algorithm forlinear programming (see Chapters 5, 7 of [2.26]).Example 2.10Consider the LCP (q;M) whereM = 8>>>>>: 1 0 02 1 02 2 19>>>>>; q = 8>>>>>: �8�12�149>>>>>;To solve this LCP by the complementary pivot algorithm, we introduce the arti�cialvariable z0 and construct the original tableau as in (2.3). When z0 replaces w3 in thebasic vector (w1; w2; w3), we get a feasible basic vector for the original tableau. So theinitial tableau for this problem is :



82 Chapter 2. The Complementary Pivot AlgorithmInitialBasic w1 w2 w3 z1 z2 z3 z0 qVectorw1 1 0 �1 1 2 1 0 6w2 0 1 �1 0 1 1 0 2z0 0 0 �1 2 2 1 1 14The various basis inverses obtained when this LCP is solved by the complementarypivot algorithm are given below.Basic Inverse �q Pivot RatiosVector Columnz3w1 1 0 0 6 1 6w2 0 1 0 2 1 2 Min.z0 0 0 1 14 1 14z2w1 1 �1 0 4 1 4z3 0 1 0 2 1 2 Min.z0 0 �1 1 12 1 12w3w1 1 �2 0 2 1 2 Min.z2 0 1 0 2 �1z0 0 �2 1 10 1 10z1w3 1 �2 0 2 1 2 Min.z2 1 �1 0 4 1 4z0 �1 0 1 8 1 8



2.2. The Complementary Pivot Algorithm 83Basic Inverse �q Pivot RatiosVector Columnz3z1 1 �2 0 2 �1z2 0 1 0 2 1 2 Min.z0 �2 2 1 6 1 6w2z1 1 �1 0 4 �1z3 0 1 0 2 1 2 Min.z0 �2 1 1 4 1 4w3z1 1 0 0 6 �1w2 0 1 0 2 �1z0 �2 0 1 2 1 2 Min.z1 �1 0 1 8w2 �2 1 1 4w3 �2 0 1 2So the solution of this LCP is (w1; w2; w3; z1; z2; z3) = (0; 4; 2; 8; 0; 0).
2.2.8 Cycling Under Degeneracy in theComplementary Pivot MethodWhenever there is a tie for the pivot row in any step of the complementary pivotmethod, suppose we adopt the rule that the pivot row will be chosen to be the topmostamong those eligible for it in that step. Under this rule it is possible that cycling occursunder degeneracy. Here we provide an example of cycling under this rule, constructedby M. M. Kostreva [2.20]. LetM = 8>>>>>: 1 2 00 1 22 0 19>>>>>; q = 8>>>>>:�1�1�19>>>>>;



84 Chapter 2. The Complementary Pivot Algorithmand solve the LCP (q;M) by the complementary pivot method using the above pivotrow choice rule in each pivot step. It can be veri�ed that we get the following al-most complementary feasible basic vectors: initial basic vector (z0; w2; w3) followed by(z0; z1; w3), (z0; z2; w3), (z0; z2; w1), (z0; z3; w1), (z0; z3; w2), (z0; z1; w2), (z0; z1; w3), inthis order. After the initial basic vector (z0; w2; w3) is obtained, all pivots made aredegenerate pivot steps, and at the end the method has returned to the basic vector(z0; z1; w3) and so the method has cycled on this problem. The matrix M is a P -matrix, it will be proved later on the LCP (q;M) has a unique solution, and that thecomplementary pivot method always terminates in a �nite number of pivot steps withthat solution, if it is carried out in such a way that cycling does not occur under degen-eracy. Actually, for the LCP (q;M) considered here, it can be veri�ed that (z1; z2; z3)is the complementary feasible basic vector.As discussed above, after obtaining the initial basic vector, if the complementarypivot method is carried out using the lexico-minimum ratio rule for choosing the pivotrow in each pivot step, cycling cannot occur, and the method must terminate either byobtaining a complementary feasible vector, or in ray termination, after a �nite numberof pivot steps, because of the following arguments. If q is nondegenerate in (2.3),the dropping basic variable is identi�ed uniquely by the usual minimum ratio test, inevery step of the complementary pivot algorithm applied on it. Using the propertiesof the path traced by this algorithm we verify that in this case, the algorithm mustterminate after a �nite number of pivot steps either with a complementary feasiblebasic vector or in ray termination. Suppose q is degenerate in (2.3). Perturb (2.3) byreplacing q by q(") = q+("; "2; : : : ; "n)T , as in (2.2). When " is positive but su�cientlysmall, the perturbed problem is nondegenerate. So when the perturbed problem issolved by the complementary pivot algorithm treating " > 0 to be su�ciently small,it must terminate in a �nite number of pivot steps. If a complementary feasible basicvector is obtained at the end for the perturbed problem, that basic vector is also acomplementary basic vector for the original LCP (unperturbed original problem, with" = 0). If ray termination occurs at the end on the perturbed problem, the �nal almostcomplementary feasible basic vector is also feasible to the original LCP and satis�esthe condition for ray termination in it. The sequence of basic vectors obtained whenthe complementary pivot algorithm is applied on the original problem (2.3) using thelexico-minimum ratio rule for chosing the dropping variable in every pivot step, isexactly the same as the sequence of basic vectors obtained when the complementarypivot algorithm is applied on the perturbed problem got by replacing q in (2.3) byq(") with " > 0 and su�ciently small. These facts show that the complementary pivotalgorithm must terminate in a �nite number of pivot steps (i. e., can not cycle) whenoperated with the lexico minimum ratio test for chosing the dropping variable in everypivot step.



2.3. Condition under which the Complementary Pivot Alg. works 852.3 CONDITIONS UNDER WHICH THECOMPLEMENTARY PIVOT ALGORITHMWORKSWe de�ne several classes of matrices that are useful in the study of the LCP. LetM = (mij) be a square matrix of order n. It is said to be aCopositive matrix if yTMy >= 0 for all y >= 0.Strict copositive matrix if yTMy > 0 for all y � 0.Copositive plus matrix if it is a copositive matrix and whenever y >= 0,and satis�es yTMy = 0, we have yT (M +MT ) = 0.P -matrix if all its principal subdeterminantes are positive.Q-matrix if the LCP (q;M) has a solution for every q 2 Rn.Negative de�nite matrix if yTMy < 0 for all y 6= 0.Negative semide�nite matrix if yTMy <= 0 for all y 2 Rn.Z-matrix if mij <= 0 for all i 6= jPrincipally nondegenerate matrix if all its principal subdeterminantsare non-zero.Principally degenerate matrix if at least one of its principal subdeter-minants is zero.L1-matrix if for every y � 0, y 2 Rn, there is an i such that yi > 0 andMi.y >= 0. If M is an L1-matrix, an i like it is called a de�ning index forM and y. These matrices are also called semimonotone matrices.L2-matrix if for every y � 0, y 2 Rn, such that My >= 0 and yTMy =0, there are diagonal matrices, � >= 0, 
 >= 0 such that 
y 6= 0 and (�M +MT
)y = 0. An equivalent de�nition is that for each z � 0, satisfying w =Mz >= 0 and wT z = 0; there exists a ẑ � 0 satisfying ŵ = �(ẑTM)T , w >=ŵ >= 0, z >= ẑ >= 0.L-matrix if it is both an L1-matrix and an L2-matrix.L?-matrix if for every y � 0, y 2 Rn, there is an i such that yi > 0 andMi.y > 0. If M is an L?-matrix, an i like it is called a de�ning index forM and y.P0-matrix if all its principal subdeterminants are >= 0.Row adequate matrix if it is a P0-matrix and whenever the principalsubdeterminant corresponding to some subset J � f 1; : : : ; n g is zero, thenthe set of row vectors of M corresponding to J, fMi. : i 2 J g is linearlydependent.Column adequate matrix if it is a P0-matrix and whenever the principalsubdeterminant corresponding to some subset J � f 1; : : : ; n g is zero, then



86 Chapter 2. The Complementary Pivot Algorithmthe set of column vectors of M corresponding to J, fM.j : j 2 J g is linearlydependent.Adequate matrix if it is both row and column adequate.In this book the only type of degeneracy, nondegeneracy of square matrices thatwe discuss is principal degeneracy or principal nondegeneracy de�ned above. So, fornotational convenience we omit the term \principally" and refer to these matricesas being degenerate or nondegenerate matrices. Examples of degenerate matricesare 8>: 0 43 �109>;, 8>: 1 11 19>;. Examples of nondegenerate matrices are 8>:�1 00 �19>;,8>: 3 10 �29>;. The notation C0-matrix is used to denote copositive matrices, and thenotation C+-matrix is used to denote copositive plus matrices.Theorem 1.11 implies that every PSD matrix is also a copositive plus matrix.Also, the square matrixM is negative de�nite or negative semi-de�nite, i� �M is PDor PSD respectively.2.3.1 Results on LCPs Associated withCopositive Plus MatricesTheorem 2.1 If M is a copositive plus matrix and the system of constraints (1.6)and (1.7) of Section 1.1.3 has a feasible solution, then the LCP (1.6) | (1.8) has a so-lution and the complementary pivot algorithm will terminate with the complementaryfeasible basis. Conversely, when M is a copositive plus matrix, if the complementarypivot algorithm applied on (1.6) | (1.8) terminates in ray termination, the system ofconstraints (1.6), (1.7) must be infeasible.Proof. Assume that either (2.3) is nondegenerate, or that the lexico-minimum ratiorule is used throughout the algorithm to determine the dropping basic variable ineach step of the algorithm. This implies that each almost complementary feasible (orlexico feasible) basis obtained during the algorithm has exactly two adjacent almostcomplementary feasible (or lexico feasible) bases, excepting the initial and terminalbases, which have exactly one such adjacent basis only. The complementary pivotalgorithm operates on the system (2.3).The initial basic vector is (w1; : : : ; wt�1; z0; wt+1; : : : ; wn) (as in Section 2.2.3).The corresponding BFS is z = 0, wt = 0, z0 = �qt, and wi = qi� qt for all i 6= t. If wtis taken as the entering variable into this basic vector, it generates the half-line (calledthe initial extreme half-line)wi = qi � qt + � for all i 6= twt = �z = 0z0 = �qt + �



2.3. Condition under which the Complementary Pivot Alg. works 87where � >= 0. (This can be seen by obtaining the canonical tableau corresponding tothe initial basic vector.) This initial extreme half-line contains the initial BFS of (2.3)as its end point. Among the basic vectors obtained during the algorithm, the only onethat can be adjacent to the initial basic vector is the one obtained by introducing ztinto it. Once the algorithm moves to this adjacent basic vector, the initial basic vectorwill never again appear during the algorithm. Hence, if the algorithm terminates withray termination, the extreme half-line obtained at termination cannot be the initialextreme half-line.At every point on the initial extreme half-line all the variables w, z0 are strictlypositive. It is clear that the only edge of (2.3) that contains a point in which all thevariables w, z0 are strictly positive is the initial extreme half-line.Suppose the algorithm terminates in ray termination without producing a solutionof the LCP. Let Bk be the terminal basis. When the complementary pivot algorithm iscontinued from this basis Bk, the updated column vector of the entering variable mustbe nonpositive resulting in the generation of an extreme half-line. Let the terminalextreme half-line be� (w; z; z0) = (wk + �wh; zk + �zh; zk0 + �zh0 ) : � >= 0	 (2:5)where (wk; zk; zk0 ) is the BFS of (2.3) with respect to the terminal basis Bk, and(wh; zh; zh0 ) is a homogeneous solution corresponding to (2.3) that is,wh �Mzh � enzh0 = 0wh >= 0; zh >= 0; zh0 >= 0 (2:6)(wh; zh; zh0 ) 6= 0. If zh = 0, (2.6) and the fact that (wh; zh; zh0 ) 6= 0 together implythat wh 6= 0 and hence zh0 > 0, and consequently wh > 0. Hence, if zh = 0, points onthis terminal extreme half-line have all the variables w, z0 strictly positive, which byearlier arguments would imply that the terminal extreme half-line is the initial extremehalf-line, a contradiction. So zh 6= 0.Since every solution obtained under the algorithm satis�es the complementarityconstraint, wT z = 0, we must have (wk + �wh)T (zk + �zh) = 0 for all � >= 0. Thisimplies that (wk)T zk = (wk)T zh = (wh)T zk = (wh)T zh = 0. From (2.6) (wh)T =(Mzh + enzh0 )T . Hence from (wh)T zh = 0, we can conclude that (zh)TMT zh =(zh)TMzh = �eTn zhzh0 <= 0. Since zh >= 0, and M is copositive plus by the hypothesis,(zh)TMzh cannot be < 0, and hence, by the above, we conclude that (zh)TMzh = 0.This implies that (zh)T (M + MT ) = 0, by the copositive plus property of M . So(zh)TM = �(zh)TMT . Also since �eTn zhzh0 = (zh)TMzh = 0, zh0 must be zero (sincezh � 0). Since (wk; zk; zk0 ) is the BFS of (2.3) with respect to the feasible basis Bk,wk =Mzk + q + enzk0 . Now



88 Chapter 2. The Complementary Pivot Algorithm0 = (wk)T zh = (Mzk + q + enzk0 )T zh= (zk)TMT zh + qT zh + zk0eTn zh= (zh)TMzk + (zh)T q + zk0 eTn zh= �(zh)TMT zk + (zh)T q + zk0eTn zh= �(zk)TMzh + (zh)T q + zk0 eTn zh= �(zk)Twh + (zh)T q + zk0eTn zh= (zh)T q + zk0eTn zhSo (zh)T q = �zk0 eTn zh. Since zh � 0 and zk0 > 0 [otherwise (wk; zk) would be a solutionof the LCP], zk0 eTn zh > 0. Hence, (zh)T q < 0. Hence, if � = (zh)T we have, �q < 0,� >= 0, �(�M) = �(zh)TM = (zh)TMT = (wh)T >= 0, that is,�q < 0�(I ... �M) >= 0By Farakas lemma (Theorem 3 of Appendix 1), this implies that the system :(I ... �M)8>>>>>: w: : :z 9>>>>>; = q ; 8>>>>>: w: : :z 9>>>>>; >= 0has no feasible solution. Hence, if the complementary pivot algorithm terminates inray termination, the system (1.6) and (1.7) has no feasible solutions in this case andthus there cannot be any solution to the LCP.This also implies that whenever (1.6) and (1.7) have a feasible solution, the LCP(1.6) to (1.8) has a solution in this case and the complementary pivot algorithm �ndsit. The following results can be derived as corollaries.Result 2.1 In the LCPs corresponding to LPs and convex quadratic programs,the matrix M is PSD and hence copositive plus. Hence, if the complementary pivotalgorithm applied to the LCP corresponding to an LP or a convex quadratic programterminates in ray termination, that LP or convex quadratic program must either beinfeasible, or if it is feasible, the objective function must be unbounded below on theset of feasible solutions of that problem.Hence the complementary pivot algorithm works when used to solve LPs or convexquadratic programs.Result 2.2 If M is strict copositive the complementary pivot algorithm applied on(1.6) to (1.8) terminates with a solution of the LCP.



2.3. Condition under which the Complementary Pivot Alg. works 89Proof. If the complementary pivot algorithm terminates in ray termination, as seenin the proof of the above theorem there exists a zh � 0 such that (zh)TMzh = 0,contradicting the hypothesis that M is strict copositive.Thus all strict copositive matrices are Q-matrices. Also, if M = (mij) >= 0 andmii > 0 for all i, M is strict copositive and hence a Q-matrix.Exercise2.1 Suppose M >= 0 and m11 = 0. Prove that if q = (�1; 1; : : : ; 1)T , the LCP (1.6) to(1.8) cannot have a solution. Thus prove that a square nonegative matrix is a Q-matrixi� all its diagonal entries are strictly positive.Later on we prove that if M is a P -matrix, the complementary pivot algorithmterminates with a complementary feasible solution when applied on the LCP (q;M).When the complementary pivot algorithm is applied on a LCP in which the matrixM is not a copositive plus matrix or a P -matrix, it is still possible that the algorithmterminates with a complementary feasible basis for the problem. However, in thisgeneral case it is also possible that the algorithm stops with ray termination even if asolution to the LCP exists.To Process an LCP (q;M)An algorithm for solving LCPs is said to process a particular LCP (q;M) for given qand M , if the algorithm is guaranteed to either determine that the LCP (q;M) has nosolution, or �nd a solution for it, after a �nite amount of computational e�ort.Suppose M is a copositive plus matrix, and consider the LCP (q;M), for givenq. When the complementary pivot algorithm is applied on this LCP (q;M), either it�nds a solution; or ends up in ray termination which implies that this LCP has nosolution by the above theorem. Hence, the complementary pivot algorithm processesthe LCP (q;M) whenever M is a copositive plus matrix.2.3.2 Results on LCPs Associated withL- and L?-MatricesHere we show that the complementary pivot algorithm will process the LCP (q;M)whenever M is an L- or L?-matrix. The results in this section are from B. C. Eaves[2.8, 2.9], they extend the results proved in Section 2.3.1 considerably. Later on, inSection 2.9.2 we derive some results on the general nonconvex programming problemusing those proved in this section.



90 Chapter 2. The Complementary Pivot AlgorithmLemma 2.1 If M is an L1-matrix, the LCP (q;M) has a unique solution for allq > 0, and conversely.Proof. When q > 0, one solution of the LCP (q;M) is (w = q; z = 0). So if ( �w; �z) isan alternate solution, we must have �z � 0. But �w �M �z = q. Let M be an L1-matrixand let i be the de�ning index for M and �z. We have�wi = (M �z)i + qi > 0So �wi�zi > 0, contradiction to complementarity.Now suppose M is not an L1-matrix. So, there must exist a �y = (�yi) � 0 suchthat for all i such that �yi > 0, Mi. �y < 0. Let J = f i : �yi > 0 g. Select a positivenumber � such that � > � jMi.�yj : i 62 J	. De�ne the vector q = (qj) 2 Rn byqj = ��Mj.�y; for all j 2 J�; for all j 62 J.Then q > 0 and the LCP (q;M) has two distinct solutions namely (w; z) = (q; 0) and� �w = ( �wj); �z = �y�, where �wj = � 0; for all j 2 J�+Mj.�y; for all j 62 J.This establishes the converse.Lemma 2.2 If M is an L?-matrix, the LCP (q;M) has a unique solution for everyq >= 0, and conversely.Proof. Similar to Lemma 2.1.Lemma 2.3 If M is an L2-matrix and the complementary pivot method appliedon the LCP (q;M) terminates with the secondary ray f ( �wk; zk; zk0 ) + �(wh; zh; zh0 ) :� >= 0 g as in (2.5), where (wk; zk; zk0 ) is the terminal BFS of (2.3) and (wh; zh; zh0 ) is ahomogeneous solution corresponding to (2.3) satisfying (2.6); and zk0 > 0 and zh0 = 0;then the LCP (q;M) is infeasible, that is, the system \w�Mz = q, w >= 0, z >= 0" hasno feasible solution.Proof. As in the proof of Theorem 2.1 we assume that either (2.3) is nondegenerateor that the lexico minimum ratio rule is used throughout the algorithm to determinethe dropping basic variable in each step of the algorithm. Using the hypothesis thatzh0 = 0 in (2.6), we have wh �Mzh = 0(zh)Twh = 0Since (wh; zh; zh0 ) 6= 0, this implies that zh � 0. Therefore 0 = (zh)Twh = (zh)TMzh= 0, and zh � 0. So, using the hypothesis that M is an L2-matrix, we have diagonal



2.3. Condition under which the Complementary Pivot Alg. works 91matrices 
 >= 0, � >= 0 such that 
zh 6= 0 and (�M +MT
)zh = 0. Since �Mzh >=0 (since Mzh = wh >= 0 and � >= 0 is a diagonal matrix) this implies that MT
zh =(zh)T
M <= 0. Now 0 = (zk)Twh = (zk)T�wh (since � is a diagonal matrix withnonnegative entries and wh >= 0, zk >= 0) = (zk)T�Mzh = (zk)T (�MT
zh). So(zh)T
Mzk = 0. Now (zh)T
(wk �Mzk � ezk0 ) = (zh)T
qSince 
 is a nonnegative diagonal matrix and (zh)Twk = 0 and (zh)T >= 0, wk >=0, we have (zh)T
wk = 0. Also (zh)T
Mzk = (zk)TMT
zh = �(zk)T�Mzh =�(zk)T�wh = 0 (since zk >= 0, wh >= 0, � is a diagonal matrix which is >= 0, (zk)Twh =0 implies (zk)T�wh = 0). Using these in the above equation, we get�(zh)T
ezk0 = (zh)T
qsince (zh)T � 0, 
 >= 0, 
zh 6= 0, we have 
zh = (zh)T
 � 0, this implies that(zh)T
e > 0. Also, by hypothesis zk0 > 0. So from the above equation (zh)T
q < 0.So if � = (zh)T
, we have� � 0��M = �(zh)T
M = �MT
zh = �Mzh = �wh >= 0�q < 0which implies that q 62 Pos(I;�M) by Farakas0 theorem (Theorem 3 of Appendix 1).So the system w �Mz = qw; z >= 0is itself infeasible.Theorem 2.2 The complementary pivot algorithm processes the LCP (q;M) if Mis an L-matrix.Proof. When we apply the complementary pivot algorithm on the LCP (q;M), sup-pose the secondary ray f (wk + �wh; zk + �zh; zk0 + �zh0 ) : � >= 0 g is generated. So wehave (wk + �wh)�M(zk + �zh) = q + e(zk0 + �zh0 ) :If zh0 > 0, and in the above equation if �� is a large positive value such that q + e(zk0 +�zh0 ) > 0, then (wk+��wh; zk+��zh) is a complementary solution for the LCP �q+e(zk0+��zh);M� which by Lemma 2.1 implies that zk + ��zh = 0, which means that zk =zh = 0, a contradiction to the fact that this is the secondary ray. So zh0 cannot be> 0, that is zh0 = 0, and in this case (q;M) has no solution by Lemma 2.3. So thecomplementary pivot algorithm processes the LCP (q;M).



92 Chapter 2. The Complementary Pivot AlgorithmTheorem 2.3 If M is an L?-matrix, when the complementary pivot algorithm isapplied on the LCP (q;M), it terminates with a complementary feasible solution.Proof. In this case we show that there can be no secondary ray. Suppose f (wk+�wh;zk+�zh; zk0+�zh0 ) : � >= 0 g is a secondary ray. As in the proof of Theorem 2.1, zh � 0(otherwise this ray will be the same as the initial ray, a contradiction). Let i be thede�ning index of M , zh. So we have zhi > 0 which implies whi = 0 by complementarityand 0 < (Mzh)i = �(ezh0 )i <= 0a contradiction. So a secondary ray cannot exist in this case, and the complementarypivot method must terminate with a complementary feasible solution.Theorem 2.2 and 2.3 make it possible for us to conclude that the complementarypivot algorithm processes that LCP (q;M) for a much larger class of matricesM thanthe copositive plus class proved in Theorem 2.1. We will now prove several resultsestablishing that a variety of matrices are in fact L- or L?-matrices. By virtue ofTheorem 2.2 and 2.3, this establishes that the complementary pivot method processesthe LCP (q;M) whenever M is a matrix of one of these types.All copositive plus matrices are L-matrices. This follows because when M iscopositive plus, y >= 0 implies yTMy >= 0, and if y is such that y >= 0, yTMy = 0then (M +MT )y = 0, hence M satis�es the de�nition of being an L-matrix by takingthe diagonal matrices � and 
 to be both I. A strictly copositive matrix is clearly anL?-matrix. From the de�nitions, it can be veri�ed that PMPT (obtained by principalrearrangement ofM), �M
 (obtained by positive row and column scaling ofM) are L-matrices if M is, whenever P is a permutation matrix and �, 
 are diagonal matriceswith positive diagonal elements. Copositive plus matrices M satisfy the propertythat PMPT is also copositive plus whenever P is a permutation matrix, but if M iscopositive plus, �M
 may not be copositive when �, 
 are diagonal matrices withpositive diagonal entries. Also if M , N are L-matrices, so is 8>:M 00 N 9>;. Again, fromTheorem 3.11 of Section 3.3, it follows that all P -matrices are L? matrices.Lemma 2.4 M is row adequate i� for any y, (yTM.i)yi <= 0 for i = 1 to n impliesthat yTM = 0.Proof. Suppose M is row adequate, and there exists a y >= 0 such that (yTM.i)yi <= 0for i = 1 to n. By a standard reduction technique used in linear programming (seeSection 3.4.2 in [2.26]) we can get a solution x ofxTM = yTMx >= 0such that fMi. : xi > 0 g � fMi. : yi > 0 g and fMi. : xi > 0 g is linearly independent.So we also have (xTM.i)xi <= 0 for all i = 1 to n. Let J = f i : xi > 0 g. Since Mis a P0-matrix, so is its principal submatrix MJJ = (mij : i 2 J; j 2 J). By linear



2.3. Condition under which the Complementary Pivot Alg. works 93independence of the set of row vectors fMi. : i 2 J g, since M is row adequate, weknow that the determinant of MTT 6= 0 for all T � J, and therefore that MJJ is aP -matrix. The facts J = f i : xi > 0 g, xi = 0 if i 62 J, and (xTM.i)xi <= 0 for alli = 1 to n, together imply that MJJxJ <= 0 where xJ = (xj : j 2 J), which implies byTheorem 3.11 of Section 3.3 that xJ = 0 since MJJ is a P -matrix, a contradiction. SoJ must be empty and x = 0, and hence yTM = 0. Now if y 2 Rn, y not necessarily>= 0, satis�es (yTM.i)yi <= 0 for all i = 1 to n, let �i = 1 if yi >= 0, or �1 if yi < 0;and let � be the diagonal matrix with diagonal entries �1; : : : ; �n. Then yT� >= 0 and�yT�(�M).i��2i yi = �(yT�)(�M�).i�(�iyi) <= 0 for all i. But �M� is row adequatesince M is, and by the above we therefore have yT�(�M�) = 0 or yTM = 0.Conversely, if M is a square matrix such that for any y, (yTM.i)yi <= 0 for alli = 1 to n implies that yTM = 0, it follows that M is a P0-matrix by the result inExercise 3.5 and that M is row adequate.Lemma 2.5 Let M be a P0-matrix. IfMy = 0y > 0has a solution y, then the system xTM = 0x � 0has a solution.Proof. Let y satisfy My = 0, y > 0. By the result in Exercise 3.6 we know thatsince M is a P0-matrix, there is a x satisfying xTM >= 0, x � 0. If xTM 6= 0, then(xTM)y > 0 but xT (My) = 0, a contradiction. So this x must satisfy xTM = 0.Theorem 2.4 If M is row adequate, then M is an L-matrix.Proof. By the result in Exercise 3.5 M is a P0-matrix i� for all y 6= 0, there exists ani such that yi 6= 0 and yi(Mi.y) >= 0. This implies that all P0-matrices are L1-matrices.Suppose y satis�es y � 0, My >= 0, yTMy = 0. Let J = f i : yi > 0 g. Thesefacts imply MJJyJ = 0 where MJJ is the principal submatrix (mij : i 2 J; j 2 J), andyJ = (yj : j 2 J) > 0. By Lemma 2.5, there exists an xJ = (xj : j 2 J) satisfyingxJ � 0, xTJMJJ = 0. From Lemma 2.4, these facts imply that xTJMJ. = 0, where MJ.is the matrix with rowsMi. for i 2 J. Select the diagonal matrix 
 so that xJ = (
y)J(possible because yJ > 0) and 0 = (
y)�J where �J = f 1; : : : ; n g n J. Then yT
M = 0and (�M + MT
)y = 0 with � = 0. So M is an L2-matrix too. Thus M is anL-matrix.



94 Chapter 2. The Complementary Pivot AlgorithmLemma 2.6 If R, S are L-matrices and P > 0, N < 0 are matrices of appropriateorders, then A = 8>: R PN S 9>; and B = 8>: S NP R9>;are also L-matrices.Proof. Consider the product A� where� = 8>:xy9>; � 0Case 1 : Let x � 0, y � 0. Select a de�ning index for R and x, suppose it is i. Thenxi(Rx+ Py)i > 0; since P > 0 and y � 0 :This veri�es that in this case the same i will serve as a de�ning index for A to satisfythe condition for being an L1-matrix with this vector �. Also verify that in this case,A satis�es the condition for being an L2-matrix, with this vector �, trivially.Case 2 : Let x � 0, y = 0. The select i as in case 1 and it will serve as a de�ning indexfor A to satisfy the conditions for being an L1-matrix, with this vector �. Also verifythat in this case A satis�es the condition for being an L2-matrix, with this vector �,trivially, since A� >= 0 would imply in this case x = 0, a contradiction.Case 3 : Let x = 0, y � 0. Select a de�ning index for S and y, suppose it is i. Verifythat the same i will serve as a de�ning index for A to satisfy the condition for beingan L1-matrix. If y is such that A� >= 0 and �TA� = 0, then Sy >= 0, yTSy = 0. SinceS is an L2-matrix, there must exist diagonal matrices �2, 
2 >= 0 such that 
2y 6= 0and (�2S + ST
2)y = 0. Now, it can be veri�ed easily that there is an appropriatechoice of diagonal matrices �1, 
1 such that (since x = 0 in this case)8>:�1P +NT
2�2S + ST
2 9>; y == �8>:�1 �29>;8>: R PN S 9>;+8>:RT NTPT ST 9>;8>:
1 
29>;�8>:xy9>;= 0So A satis�es the condition for being an L2-matrix, with this vector �.These facts establish that A is an L-matrix. The proof that B is an L-matrix issimilar.Lemma 2.7 If R, S are L?-matrices and P >= 0, Q arbitrary, are matrices ofappropriate orders, thenA = 8>:R PQ S 9>; and B = 8>: S QP R9>;are also L?-matrices.



2.3. Condition under which the Complementary Pivot Alg. works 95Proof. Let � = 8>:xy9>;Consider the product A�. If x � 0, select i to be a de�ning index for R and x. SinceP >= 0, the same i serves as a de�ning index for A and � in the condition for A to bean L?-matrix with this �. If x = 0, then select i to be a de�ning index for S and y, thesame i serves as a de�ning index for A and � in the condition for A to be an L?-matrix,with this �. So A is an L?-matrix. The proof that B is an L?-matrix is similar.Lemma 2.8 If P > 0 is of order n�m and N < 0 is of order m�n, then 8>: 0 PN 0 9>;is an L-matrix.Proof. Since 0 is an L-matrix, this results follows from Lemma 2.6.In Exercise 2.24 we ask the reader to prove that one formulation of the bimatrixgame problem as an LCP can be solved directly by the complementary pivot algorithm,to yield a solution, using this lemma.Lemma 2.9 Let T (n � n), R (n �m), � (n � 1), S (m � n), � (1 � n) be givenmatrices with � > 0, � < 0; where n >= 0, m >= 0. If for each x = (x1; : : : ; xm)T , � realsatisfying (x1; : : : ; xm; �) � 0, Rx+ �� >= 0; there exist diagonal matrices � >= 0, � >= 0of orders n� n and (m+ 1)� (m+ 1) respectively such that�8>:x�9>; 6= 0 and ��(R; �) + (ST ; �T )��8>:x�9>; = 0then the following matrix M is an L2-matrixM = 8>>>>>:T R �S 0 0� 0 09>>>>>;Proof. Follows from the de�nition of L2-matrices.Notice that in Lemma 2.9, m could be zero, this will correspond to R, S beingvacuous.Theorem 2.5 Let T (n � n), R (n � m), � (n � 1), S (m � n), � (1 � n) begiven matrices satisfying � > 0, � < 0. Let N = n + m + 1. Let J1 = f 1; : : : ; n g,J2 = fn + 1; : : : ; n +m g, J3 = fn +m + 1 g. For vectors w; z; q 2 RN , let wJt etc.be de�ned to be the vectors wJt = (wj : j 2 Jt), etc. Assume that q 2 RN is a givencolumn vector satisfying qJ3 = (qn+m+1) > 0. LetM = 8>>>>>:T R �S 0 0� 0 09>>>>>;



96 Chapter 2. The Complementary Pivot AlgorithmIf M is an L2-matrix, when the complementary pivot method is applied on the LCP(q;M) with the original column vector of the arti�cial variable z0 taken to be (�1; : : : ;�1; 0)T 2 RN , either we get a complementary feasible solution of the problem, or thesystem �8>:S�9>;x <= 8>: qJ2qJ3 9>;x >= 0must be infeasible.Proof. Suppose the complementary pivot algorithm is applied on the LCP (q;M) withthe original column vector of the arti�cial variable z0 taken to be (�1; : : : ;�1; 0)T 2RN , and it terminates with the secondary ray � (wk+�wh; zk+�zh; zk0 +�zh0 ) : � >=0	. Then 8>>>>>:whJ1whJ2whJ39>>>>>;�8>>>>>:T R �S 0 0� 0 09>>>>>;8>>>>>: zhJ1zhJ2zhJ39>>>>>;�8>>>>>: enem0 9>>>>>; zh0 = 0So whJ3 = �zhJ1 and since zhJ1 >= 0, whJ3 >= 0 and � < 0, we have zhJ1 = 0, whJ3 = 0.If zh0 > 0, then whJ2 = SzhJ1+emzh0 = emzh0 > 0, which by complementarity impliesthat zhJ2 = zkJ2 = 0. So whJ1 = RzhJ2 + �zhJ3 + enzh0 = �zhJ3 + enzh0 > 0 (since � > 0). Bycomplementarity zkJ1 = 0, and so wkJ3 = �zkJ1 + qJ3 = qJ3 > 0. So by complementarity,zkJ3 = zhJ3 = 0. Thus zh = zk = 0, contradiction to the fact that this is a secondaryray. Therefore zh0 must be zero. SinceM is an L2-matrix, by Lemma 2.3, the existenceof this secondary ray with zh0 = 0 implies thatw �Mz = qw; z >= 0has no feasible solution, which, by Faraka0s theorem (Theorem 3 of Appendix 1) impliesthat there exists a row vector � 2 RN such that�M <= 0�q < 0� � 0�M <= 0 includes the constraints �J1 <= 0 and since �J1 >= 0, � > 0, this implies that�J1 = 0. So the above system of constraints becomes(�J2 ; �J3)8>:S�9>; <= 0(�J2 ; �J3)8>: qJ2qJ39>; < 0(�J2 ; �J3) >= 0



2.3. Condition under which the Complementary Pivot Alg. works 97By Faraka0s theorem (Theorem 3 of Appendix 1) this implies that the system�8>:S�9>;x <= 8>: qJ2qJ3 9>;x >= 0is infeasible.In Section 2.9.2, Lemma 2.9 and Theorem 2.5 are applied to show that KKTpoints for general quadratic programs can be computed, when they exist, using thecomplementary pivot algorithm.2.3.3 A Variant of the Complementary Pivot AlgorithmIn the version of complementary pivot algorithm discussed so far, we have choosen theoriginal column vector associated with the arti�cial variable z0 to be �en. Given acolumn vector d 2 Rn satisfying d > 0, clearly we can choose the original column vectorassociated with z0 to be �d instead of �en in the complementary pivot algorithm. Ifthis is done, the original tableau turns out to be :w z z0I �M �d qw >= 0, z >= 0, z0 >= 0 (2:7)If q >= 0, (w = q; z = 0) is a solution of the LCP (q;M) and we are done. So assumeq 6>= 0. Determine t to satisfy � qtdt � = minimum � � qidi � : i = 1 to n	. Ties for t can bebroken arbitrarily. It can be veri�ed that if a pivot step is performed in (2.7), with thecolumn vector of z0 as the pivot column, and the tth row as the pivot row; the right handside constants vector becomes nonnegative after this pivot step. So (w1; : : : ; wt�1; z0;wt+1; : : : ; wn) is a feasible basic vector for (2.7). It is an almost complementary feasiblebasic vector as de�ned earlier. Choose zt as the entering variable into this initial almostcomplementary feasible basic vector (w1; : : : ; wt�1; z0; wt+1; : : : ; wn), and continue bychoosing entering variables using the complementary pivot rule as before.We will now illustrate this variant of the complementary pivot algorithm using anumerical example by M. M. Kostreva [4.11].Example 2.11Consider the LCP (q;M), whereM = 8>:�1:5 2�4 49>; q = 8>:�517 9>;



98 Chapter 2. The Complementary Pivot AlgorithmLet d = (5; 16)T . We will apply the complementary pivot algorithm on this LCP, using�d as the original column of the arti�cial variable z0.Basic w1 w2 z1 z2 z0 qvariables 1 0 1:5 �2 �5 �5 t = 10 1 4 �4 �16 17z0 �15 0 � 310 25 1 1w2 �165 1 � 810 125 0 33The entering variable is z1. The updated column vector of z1 in the canonical tableauwith respect to the basic vector (z0; w2) is nonpositive. So the algorithm ends up inray termination.Example 2.12Consider the LCP (q;M) discussed in Example 2.11. Let d = e2 = (1; 1)T . We willapply the complementary pivot algorithm on this LCP with �e2 as the original columnof the arti�cial variable z0.Basic w1 w2 z1 z2 z0variables 1 0 1:5 �2 �1 �5 t = 10 1 4 �4 �1 17z0 �1 0 �32 2 1 5w2 �1 1 52 �2 0 22z0 �85 35 0 45 1 915z1 �25 25 1 �45 0 445z2 �2 34 0 1 54 914z1 �2 1 1 0 1 27Now we have terminated with a complementary feasible basic vector, and the corre-sponding solution of the LCP is w = 0, z = (z1; z2) = (27; 914 ).These examples taken from M. M. Kostreva [4.11] illustrate the fact that, givena general LCP (q;M), the complementary pivot algorithm applied on it with a given



2.3. Condition under which the Complementary Pivot Alg. works 99positive vector d may end up in ray termination; and yet when it is run with a di�erentpositive d vector it may terminate with a solution of the LCP. The question of howto �nd a good d vector seems to be a hard problem, for which no answer is known.There are LCPs which are known to have solutions, and yet when the complementarypivot algorithm is applied on them with any positive d vector, it always ends up in raytermination. See Exercise 2.11.If M is a copositive plus matrix, and if the complementary pivot algorithm withany positive d vector ends up in ray termination when applied on the LCP (q;M), thenit can be proved that the LCP (q;M) has no solution (in fact it can be proved that\w �Mz = q" does not even have a nonnegative solution), using arguments exactlysimilar to those in the proof of Theorem 2.1. Thus any LCP (q;M) where M is acopositive plus matrix, will be processed by the complementary pivot algorithm withany positive d vector.Exercise2.2 Prove that whenM is an L-matrix or an L?-matrix, the variant of the complemen-tary pivot algorithm discussed in this section, with any vector d > 0 of appropriatedimension, will process the LCP (q;M). (Proofs are similar to those in Section 2.3.2.)2.3.4 Lexicographic Lemke AlgorithmThis variant of the complementary pivot algorithm is known as the LexicographicLemke Algorithm if the original column vector of the arti�cial variable z0 is taken tobe �d = �(�n; �n{1; : : : ; �)T where � is a su�ciently small positive number. It is notnecessary to give � a speci�c numerical value, but the algorithm can be executed leaving� as a small positive parameter and remembering that �r+1 < �r for any nonnegativer, and that � is smaller than any positive constant not involving �. In this case, if Dis any square matrix of order n, Dd = D(�n; �n{1; : : : ; �)T = �nD.1 + �n{1D.2 + : : :+�D.n. Using this, it is possible to execute this algorithm without giving the smallpositive parameter � any speci�c value, but using the equivalent lexicographic rules,hence the name.2.3.5 Another Su�cient Condition for theComplementary Pivot Method to Process the LCP (q;M)We will now discuss some results due to J. M. Evers [2.11] on another set of su�cientconditions under which the complementary pivot algorithm can be guaranteed to pro-cess the LCP (q;M). First, we discuss some lemmas. These lemmas are used lateron in Theorem 2.6 to derive some conditions under which the complementary pivotalgorithm can be guaranteed to solve the LCP (q;M) when M is a matrix of the formE +N where E is a symmetric PSD matrix, and N is copositive.



100 Chapter 2. The Complementary Pivot AlgorithmLemma 2.10 Let M = E + N where E is a symmetric PSD matrix and N iscopositive. If the system (E +N)z >= 0cz > 0zT (E +N)z = 0z >= 0 (2:8)has a solution z, then the system Ex�NT y >= cTy >= 0 (2:9)has no solution (x; y).Proof. Let �z be a feasible solution for (2.8). Since E is PSD and N is copositive,�zT (E +N)�z = 0 implies that �zTE�z = �zTN �z = 0. Since E is symmetric, by Theorem1.11, �zTE�z = 0 implies that E�z = 0. So by (2.8), N �z >= 0. Let (�x; �y) be feasible to(2.9). So 0 <= �yTN �z = ��xTE�z + �yTN �z (since E�z = 0) = �zT (�E�x+NT �y) <= �c�z < 0,a contradiction.Lemma 2.11 If the variant of the complementary pivot algorithm starting with anarbitrary positive vector d for the column of the arti�cial variable z0 in the originaltableau ends up in ray termination when applied on the LCP (q;M) in which M iscopositive, there exists a �z satisfying M �z >= 0qT �z < 0�zTM �z = 0�z >= 0 (2:10)
Proof. Let the terminal extreme half-line obtained in the algorithm be � (w; z; z0) =(wk + �wh; zk + �zh; zk0 + �zh0 ) : � >= 0	 where (wk; zk; zk0 ) is the BFS of (2.7) and(wh; zh; zh0 ) is a homogeneous solution corresponding to (2.7), that iswh �Mzh � dzh0 = 0wh; zh; zh0 >= 0(wh; zh; zh0 ) 6= 0 (2:11)and every point on the terminal extreme half-line satis�es the complementarity con-straint, that is (wk + �wh)T (zk + �zh) = 0 for all � >= 0 : (2:12)Clearly zh 6= 0 (otherwise the terminal extreme half-line is the intial one, a contradic-tion), so zh � 0. By complementarity, we have (wh)T zh = 0, from (2.11) this implies



2.3. Condition under which the Complementary Pivot Alg. works 101that (zh)TMzh = �dT zhzh0 <= 0, (since d > 0, zh � 0 implies that dT zh > 0) whichimplies by the copositivity of M , that (zh)TMzh = 0 and zh0 = 0. Using this in (2.11)we conclude that Mzh = wh >= 0 : (2:13)Since (wk; zk; zk0 ) is a BFS of (2.7) we have wk =Mzk+dzk0+q. Using this and (2.13) in(2.12) we get, for all � >= 0, (zk+�zh)T dzk0+(zk+�zh)T q = �(zk+�zh)TM(zk+�zh) <=0 (since M is copositive and zk + �zh >= 0). Make � > 0, divide this inequality by �and take the limit as � tends to +1. This leads to(zh)T dzk0 + (zh)T q <= 0 : (2:14)But zk0 > 0 (otherwise (wk; zk) will be a solution to the LCP (q;M), contradictingthe hypothesis that the algorithm terminated with ray termination without leading toa solution of the LCP), d > 0, zh � 0. Using these facts in (2.14) we conclude thatqT zh < 0. All these facts imply that zh = �z satis�es (2.10).Theorem 2.6 Let M = E + N where E is a symmetric PSD matrix and N iscopositive. If the system (2.9) with cT = �q has a solution (x; y) there exists nosecondary ray, and the complementary pivot algorithm terminates with a solution ofthe LCP (q;M).Proof. Follows from Lemma 2.10 and 2.11.Corollary 2.1 Putting E = 0 in Theorem 2.6, we conclude that if N is copositive,for every u >= 0, v >= 0 in Rn, there exists w; z 2 Rn satisfyingNz � w = �NTu� vz; w >= 0; zTw = 0 :
2.3.6 Unboundedness of the Objective FunctionConsider a mathematical program in which an objective function f(x) is required tobe minimized subject to constraints on the decision variables x = (x1; : : : ; xn)T . Thisproblem is said to be unbounded below if the set of feasible solutions of the problemis nonempty and f(x) is not bounded below on it, that is, i� there exists an in�nitesequence of feasible solutions fx1; : : : ; xr; : : :g such that f(xr) diverges to �1 as rgoes to +1.It is well known that if a linear program is unbounded below, there exists afeasible half-line (in fact an extreme half-line of the set of feasible solutions, see [2.26])along which the objective function diverges to �1. This half-line is of the form



102 Chapter 2. The Complementary Pivot Algorithmfx0 + �x1 : � >= 0 g satisfying the property that x0 + �x1 is a feasible solution for all� >= 0, and the objective value at x0 + �x1 diverges to �1 as � goes to +1. Thisproperty may not hold in general convex programming problems, that is, problems inwhich a convex function is required to be minimized over a closed convex set. Considerthe following example due to R. Smith and K. G. Murty.Minimize � x1Subject to x2 � x21 >= 0 :x1; x2 >= 0 (2:15)The set of feasible solutions of this problem is drawn in Figure 2.3.
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Figure 2.3 The feasible region for (2.15) is the area between the x2 axisand the parabola. For every � > 0, the straight line x2 � �x1 = 0 intersectsthe parabola at exactly two points.The equation x2�x21 = 0 represents a parabola in the x1; x2-Cartesian plane. Forevery � > 0, the straight line x2 � �x1 = 0 intersects this parabola at the two points(0; 0) and (�; �2). These facts clearly imply that even though �x1 is unbounded belowin (2.15), there exists no half-line in the feasible region along which �x1 diverges to�1.



2.3. Condition under which the Complementary Pivot Alg. works 103However, for convex quadratic programs (i.e., problems of the form (1.11) in whichthe matrix D is PSD) we have the following theorem.Theorem 2.7 Consider the quadratic program (1.11) in which D is PSD and sym-metric. Suppose (1.11) is feasible and that Q(x) is unbounded below in it. Thenthere exists a feasible half-line for (1.11) along which Q(x) diverges to �1. Such ahalf-line can be constructed from the data in the terminal tableau obtained when thecomplementary pivot algorithm is applied to solve the corresponding LCP (1.19).Proof. For any positive integer r, let er denote the column vector in Rr, all of whoseentries are 1. By Theorem 2.1, when the complementary pivot algorithm is applied tosolve (1.19) it must end in ray termination. When this happens, by the results estab-lished in the proof of Theorem 2.1, we get vectors (uk; vk; xk; yk) and (uh; vh; xh; yh)satisfying 8>:ukvk9>;�8>:D �ATA 0 9>;8>:xkyk9>;�8>: enem9>; zk0 = 8>: cT�b9>; (2:16)uk; vk; xk; yk >= 0; (uk)Txk = (vk)T yk = 0; zk0 > 0 :8>:uhvh9>;�8>:D �ATA 0 9>;8>:xhyh9>; = 0 (2:17)uh; vh; xh; yh >= 0; (uh)Txh = (vh)T yh = 0; (xh; yh) � 0 :(uk)Txh = (vk)T yh = (uh)Txk = (vh)T yk = 0 : (2:18)�(xh)T ; (yh)T �8>: cT�b9>; < 0 : (2:19)So we have vh = Axh and 0 = (yh)T vh = (yh)TAxh. We also have uh �Dxh + AT yh= 0, and hence 0 = (xh)Tuh = (xh)TDxh � (xh)TAT yh = (xh)TDxh. Since D is PSDand symmetric by Theorem 1.11, this implies that Dxh = 0. So AT yh = �uh <= 0,that is (yh)TA <= 0. From (2.16), �b = vk � Axk � emzk0 , zk0 > 0. So (�bT yh) =(vk)T yh�(xk)TAT yh�zk0 eTmyh = �(xk)TAT yh�zk0 eTmyh = �(xk)T (�uh)�zk0 eTmyh =�zk0 (eTmyh) <= 0 since zk0 > 0 and yh >= 0. So bT yh = zk0 (eTmyh) >= 0.If bT yh > 0, (1.11) must be infeasible. To see this, suppose x̂ is a feasible solutionof (1.11). Then Ax̂ >= b, x̂ >= 0. So (yh)TAx̂ >= (yh)T b. But it has been establishedearlier that (yh)TA = �(uh)T <= 0. Using this in the above, we have, (yh)T b <=(yh)TAx̂ = �(uh)T x̂ <= 0 (since both uh and x̂ are >= 0), and this contradicts the factthat (yh)T b > 0.So, under the hypothesis that (1.11) is feasible, we must have bT yh = 0. Inthis case, from (2.19) we have cxh < 0. From earlier facts we also have Axh =vh >= 0, xh >= 0 and Dxh = 0. Let ~x be any feasible solution to (1.11). These factstogether imply that ~x+ �xh is also feasible to (1.11) for any � >= 0 and Q(~x+ �xh) =Q(~x) + �(cxh) (this equation follows from the fact that Dxh = 0) diverges to �1 as



104 Chapter 2. The Complementary Pivot Algorithm� tends to +1. Thus in this case, f ~x + �xh : � >= 0 g is a feasible half-line alongwhich Q(x) diverges to �1.Since D is assumed to be PSD, we have xTDx >= 0 for all x 2 Rn. So, in thiscase, if Q(x) is unbounded below in (1.11), the linear function cx must be unboundedbelow on the set of feasible solutions of (1.11), and this is exactly what happens onthe half-line constructed above.If ray termination occurs in the complementary pivot algorithm applied on (1.19)when D is PSD, we get the vectors satisfying (2.16), (2.17), (2.18) and (2.19) from theterminal tableau. If bT yh > 0, we have shown above that (1.11) must be infeasible.On the other hand, if bT yh = 0, Q(x) is unbounded below in (1.11) if (1.11) is feasible.At this stage, whether (1.11) is feasible or not can be determined by using Phase I ofthe Simplex Method or some other algorithm to �nd a feasible solution of the systemAx >= b, x >= 0.With a slight modi�cation in the formulation of a convex quadratic program asan LCP, we can make sure that at termination of the complementary pivot algorithmapplied to this LCP, if ray termination has occurred, then either a proof of infeasibilityor a feasible extreme half-line along which the objective function is unbounded, arereadily available, without having to do any additional work. See Section 2.9.2 for thisversion.
2.3.7 Some Results on Complementary BFSsTheorem 2.8 If the LCP (q;M) has a complementary feasible solution, then it hasa complementary feasible solution which is a BFS ofw �Mz = qw >= 0; z >= 0 : (2:20)Proof. Let ( �w; �z) be a complementary feasible solution for the LCP (q;M). So foreach j = 1 to n, we have �wj �zj = 0. If ( �w; �z) is a BFS of (2.20), we are done. Otherwise,using the algorithm discussed in Section 3.5.4 of [2.26], starting with ( �w; �z), we canobtain a BFS (ŵ; ẑ) of (2.20) satisfying the property that the set of variables whichhave positive values in (ŵ; ẑ), is a subset of the set of variables which have positivevalues in ( �w; �z). So ŵj ẑj = 0, for j = 1 to n. Hence (ŵ; ẑ) is a complementary feasiblesolution of the LCP (q;M) and it is also a BFS of (2.20).Note 2.1 The above theorem does not guarantee that whenever the LCP (q;M)has a complementary feasible solution, there exists a complementary feasible basis for(2.20). See Exercise 1.10.



2.4. A Method of Carrying out the Complementary Pivot Algorithm 105Theorem 2.9 Suppose M is nondegenerate. If ( �w; �z) is a complementary feasiblesolution for the LCP (q;M), the set of column vectors f I.j : j such that �wj > 0 g [f�M.j : j such that �zj > 0 g is linearly independent. Also, in this case, de�ne a vectorof variables y = (y1; : : : ; yn) byyj = 8<:wj ; if �wj > 0zj ; if �zj > 0either wj or zj choosen arbitrarily ; if both �wj and �zj are 0 .Then y is a complementary feasible basic vector for (2.20).Proof. From Corollary 3.1 of Chapter 3, when M is nondegenerate, every comple-mentary vector is basic. Since ( �w; �z) is a complementary feasible solution, this impliesthat the set f I.j : j such that �wj > 0 g [ f�M.j : j such that �zj > 0 g is linearlyindependent. Also from this result, y is a complementary basic vector, and the BFSof (2.20) with y, as the basic vector is ( �w; �z), and hence y is a complementary feasiblebasic vector.Theorem 2.10 If M is PSD or copositive plus, and (2.20) is feasible, then thereexists a complementary feasible basic vector for (2.20).Proof. When the complementary pivot algorithm is applied to solve the LCP (q;M),it terminates with a complementary feasible basic vector when M is copositive plusand (2.20) is feasible, by Theorem 2.1.
2.4 A METHOD OF CARRYING OUT THECOMPLEMENTARY PIVOT ALGORITHMWITHOUT INTRODUCING ANYARTIFICIAL VARIABLES,UNDER CERTAIN CONDITIONSConsider the LCP (q;M) of order n, suppose the matrix M satis�es the condition :there exists a column vector of M in which all the entries arestrictly positive. (2:21)Then a variant of the complementary pivot algorithm which uses no arti�cial variableat all, can be applied on the LCP (q;M). We discuss it here. The original tableau for



106 Chapter 2. The Complementary Pivot Algorithmthis version of the algorithm is : w zI �M qw >= 0, z >= 0 (2:22)As before, we assume that q 6>= 0. Let s be such that M.s > 0. So the column vectorassociated with zs is strictly negative in (2.22). Hence the variable zs can be made toplay the same role as that of the arti�cial variable z0 in versions of the complementarypivot algorithm discussed earlier, and thus there is no need to introduce the arti�cialvariable. Determine t to satisfy � qtmts � = minimum � � qimis � : i = 1 to n	. Ties for tcan be broken arbitrarily. When a pivot step is carried out in (2.22) with the columnof zs as the pivot column and row t as the pivot row, the right hand side constantsvector becomes nonnegative after this pivot step (this follows because �mis < 0 forall i and by the choice of t). Hence, (w1; : : : ; wt�1; zs; wt+1; : : : ; wn) is a feasible basicvector for (2.22), and if s = t, it is a complementary feasible basic vector and thesolution corresponding to it is a solution of the LCP (q;M), terminate. If s 6= t, thefeasible basic vector (w1; : : : ; wt�1; zs; wt+1; : : : ; wn) for (2.22) satis�es the followingproperties :i) It contains exactly one basic variable from the complementary pair (wi; zi)for n� 2 values of i (namely i 6= s, t here).ii) It contains both the variables from a �xed complementary pair (namely(ws; zs) here), as basic variables.iii) There exists exactly one complementary pair both the variables in which arenot contained in this basic vector (namely (wt; zt) here).The complementary pair of variables identi�ed by property (iii), both of which arenot contained in the basic vector, is known as the left out complementary pair ofvariables in the present basic vector.For carrying out this version of the complementary pivot algorithm, any feasiblebasic vector for (2.22) satisfying (i), (ii), (iii) is known as an almost complemen-tary feasible basic vector. All the basic vectors obtained during this version of thealgorithm, with the possible exception of the terminal one (which may be a comple-mentary basic vector), will be such almost complementary feasible basic vectors, andthe complementary pair in property (ii) both of whose variables are basic, will be thesame for all of them.In the canonical tableau of (2.22) with respect to the initial almost complementaryfeasible basic vector, the updated column vector of wt can be veri�ed to be strictlynegative (because the pivot column in the original tableau, �M.s, is strictly negative).Hence if wt is selected as the entering variable into the initial basic vector, an almostcomplementary extreme half-line is generated. Hence the initial almost complementaryBFS of (2.22) is at the end of an almost complementary ray.The algorithm chooses zt as the entering variable into the initial almost comple-mentary feasible basic vector (w1; : : : ; wt�1; zs; wt+1; : : : ; wn). In all subsequent steps,



2.4. A Method of Carrying out the Complementary Pivot Algorithm 107the entering variable is uniquely determined by the complementary pivot rule, thatis, the entering variable in a step is the complement of the dropping variable in theprevious step. The algorithm can terminate in two possible ways :1. At some stage one of the variables form the complementary pair (ws; zs) (thisis the pair speci�ed in property (ii) of the almost complementary feasiblebasic vectors obtained during the algorithm) drops out of the basic vector, orbecomes equal to zero in the BFS of (2.22). The BFS of (2.22) at that stageis a solution of the LCP (q;M).2. At some stage of the algorithm both the variables in the complementary pair(ws; zs) may be strictly positive in the BFS, and the pivot column in that stagemay turn out to be nonpositive, and in this case the algorithm terminates withanother almost complementary ray. This is ray termination.When ray termination occurs, the algorithm bas been unable to solve the LCP(q;M).Example 2.13Consider the LCP (q;M), whereM = 8>>>>>: 2 1 11 2 11 1 29>>>>>; q = 8>>>>>:�4�5�19>>>>>;All the column vectors of M are strictly positive here. We will illustrate the algorithmon this problem using s = 3. Original Tableauw1 w2 w3 z1 z2 z3 q1 0 0 �2 �1 �1 �40 1 0 �1 �2 �1 �50 0 1 �1 �1 �2 �1�M.3 < 0. The minimum f �41 ; �51 ; �12 g = �5, and hence t = 2 here. So the pivotrow is row 2, and the pivot element for the pivot operation to get the initial almostcomplementary feasible basic vector is inside a box in the original tableau. Applyingthe algorithm we get the following canonical tableaus:



108 Chapter 2. The Complementary Pivot AlgorithmBasic w1 w2 w3 z1 z2 z3 q Ratiosvariablesw1 1 �1 0 �1 1 0 1 11 Min.z3 0 �1 0 1 2 1 5 52w3 0 �2 1 1 3 0 9 93z2 1 �1 0 �1 1 0 1z3 �2 1 0 3 0 1 3 33Min.w3 �3 1 1 4 0 0 6 64z2 13 �23 0 0 1 13 2z1 �23 13 0 1 0 13 1w3 �43 �13 1 0 0 �43 2So the solution of this LCP is w = (w1; w2; w3) = (0; 0; 2); z = (z1; z2; z3) = (1; 2; 0).Exercise2.3 Show that the version of the complementary pivot algorithm discussed in thissection can be used to process all LCPs (q;M) in which M is copositive plus and atleast one of its columns is strictly positive. In this case, prove that ray terminationcannot occur, and that the algorithm will terminate with a complementary feasiblebasic vector for the problem.
2.5 TO FIND AN EQUILIBRIUM PAIR OFSTRATEGIES FOR A BIMATRIX GAMEUSING THE COMPLEMENTARY PIVOTALGORITHMThe LCP corresponding to the problem of �nding an equilibrium pair of strategies ina bimatrix game is (1.42), where A, BT are positive matrices. The original tableau forthis problem is :



2.5. To find an Equilibrium Pair of Strategies for a Bimatrix Game 109u v � �Im 0 0 �A �em0 IN �BT 0 �eNu >= 0, v >= 0, � >= 0, � >= 0 (2:23)
where for any r, Ir denotes the identity matrix of order r. The complementary pairsof variables in this problem are (ui; �i), i = 1 to m, and (vj ; �j), j = 1 to N .We leave it to the reader to verify that when the complementary pivot algorithmdiscussed in Section 2.2 is applied on this problem, it ends up in ray termination rightafter obtaining the initial almost complementary feasible basic vector. However, itturns out that the variant of the complementary pivot algorithm discussed in Section2.4 can be applied to this problem, and when it is applied it works. We discuss theapplication of this version of the algorithm here.So, here, an almost complementary feasible basic vector for (2.23), is de-�ned to be a feasible basic vector that contains exactly one basic variable from eachcomplementary pair excepting two pairs. Both variables of one of these pairs are basicvariables, and both variables in the other pair are nonbasic variables. These are theconditions for almost complementarity (i), (ii), (iii), discussed in Section 2.4.The column vectors of the variables �i, �j , in (2.23) are all nonpositive, but noneof them is strictly negative. But, because of their special structure, an almost com-plementary feasible basic vector for (2.23) can be constructed by the following specialprocedure.Initially make the variable �1 a basic variable and the variables �2; : : : ; �m nonbasicvariables. Make �1 equal to �01 , the smallest positive number such that v0 = �eN +(BT ).1�01 � 0. At least one of the components in v0, say, v0r is zero. Make vr a nonbasicvariable too. The complement of vr is �r. Make the value of �r to be the smallestpositive value, �0r , such that u0 = A.r�0r � em � 0. At least one of the components inu0, say u0s is 0. If s = 1, the basic vector (u2; : : : ; um; v1; : : : ; vr�1; vr+1; : : : ; vN ; �1; �r)is a complementary feasible basic vector, and the feasible solution corresponding to itis a solution of the LCP (1.42), terminate.If s 6= 1, the basic vector, (u1; : : : ; us�1; us+1; : : : ; um; v1; : : : ; vr�1; vr+1; : : : ; vN ;�1; �r) is a feasible basic vector. Both the variables in the complementary pair (u1; �1)are basic variables in it. Both variables in the complementary pair (us; �s) are nonbasicvariables. And this basic vector contains exactly one basic variable from every comple-mentary pair in (2.23), excepting (u1; �1), (us; �s). Hence this initial basic vector is analmost complementary feasible basic vector. All the basic vectors obtained during thealgorithm (excepting the terminal complementary feasible basic vector) will be almostcomplementary feasible basic vectors containing both the variables in the pair (u1; �1)as basic variables.When us is made as the entering variable into the initial basic vector, an almostcomplementary extreme half-line is generated. Hence the BFS of (2.23) with respect



110 Chapter 2. The Complementary Pivot Algorithmto the initial basic vector is an almost complementary BFS at the end of an almostcomplementary extreme half-line.The algorithm begins by taking �s as the entering variable into the initial basicvector. In all subsequent steps, the entering variable is picked by the complementarypivot rule. The algorithm terminates when one of the variables in the pair (u1; �1)drops from the basic vector. It can be proved that temination occurs after at mosta �nite number of pivots. The terminal basis is a complementary feasible basis. Inthis algorithm if degeneracy is encountered, its should be resolved using the lexicominimum ratio rule (see Section 2.2.8).Example 2.14We will solve the LCP (1.43) corresponding to the 2 person game in Example 1.9. Intableau form it isu1 u2 v1 v2 v3 �1 �2 �1 �2 �3 q1 0 0 0 0 0 0 �2 �2 �1 �10 1 0 0 0 0 0 �1 �2 �2 �10 0 1 0 0 �1 �2 0 0 0 �10 0 0 1 0 �3 �1 0 0 0 �10 0 0 0 1 �2 �3 0 0 0 �1u; v; �; � >= 0 and u1�1 = u2�2 = v1�1 = v2�2 = v3�3 = 0Making �2 = 0, the smallest value of �1 that will yield nonnegative values to the v's is1. When �2 = 0, �1 = 1 the value of v1 is 0. Hence, v1 will be made a nonbasic variable.The complement of v1 is �1. So make �2 and �3 nonbasic variables. The smallest valueof �1 that will make the u's nonnegative is �1 = 1. When �1 = 1 with �2 = �3 = 0,u2 becomes equal to 0. So make u2 a nonbasic variable. The canonical tableau withrespect to the initial basic vector is therefore obtained as below by performing pivotsin the columns of �1 and �1, with the elements inside a box as pivot elements.Basic u1 u2 v1 v2 v3 �1 �2 �1 �2 �3 q Ratiosvariablesu1 1 �2 0 0 0 0 0 0 2 3 1�1 0 �1 0 0 0 0 0 1 2 2 1�1 0 0 �1 0 0 1 2 0 0 0 1 12v2 0 0 �3 1 0 0 5 0 0 0 2 25 Min.v3 0 0 �2 0 1 0 1 0 0 0 1 11



2.5. To find an Equilibrium Pair of Strategies for a Bimatrix Game 111The algorithm continues by selecting �2, the complement of u2, as the entering variable.v2 drops from the basic vector.Basic u1 u2 v1 v2 v3 �1 �2 �1 �2 �3 qvariablesu1 1 �2 0 0 0 0 0 0 2 3 1�1 0 �1 0 0 0 0 0 1 2 2 1�1 0 0 15 �25 0 1 0 0 0 0 15�2 0 0 �35 15 0 0 1 0 0 0 25v3 0 0 �75 �15 1 0 0 0 0 0 35Since v2 has dropped from the basic vector, its complement �2 is the next enteringvariable. There is a tie in the minimum ratio when �2 is the entering variable, since itcan replace either u1 or �1 from the basic vector. Such ties should be resolved by thelexico minimum ratio test, but in this case we will let u1 drop from the basic vector,since that leads to a complementary feasible basis to the problem.Basic u1 u2 v1 v2 v3 �1 �2 �1 �2 �3 qvariables�2 12 �1 0 0 0 0 0 0 1 32 12�1 �1 1 0 0 0 0 0 1 0 �1 0�1 0 0 15 �25 0 1 0 0 0 0 15�2 0 0 �35 15 0 0 1 0 0 0 25v3 0 0 �75 �15 1 0 0 0 0 0 35The present basic vector is a complementary feasible basic vector. The solution (u1; u2;v1; v2; v3; �1; �2; �1; �2; �3) = (0; 0; 0; 0; 35 ; 15 ; 25 ; 0; 12 ; 0) is a solution of the LCP. In thissolution �1 + �2 = 35 and �1 + �2 + �3 = 12 . Hence the probability vector x = �(P �i) =� 13 ; 23�T and y = �(P �j) = (0; 1; 0)T constitute an equilibrium pair of strategies for thisgame.Theorem 2.11 If the lexicographic minimum ratio rule is used to determine thedropping variable in each pivot step (this is to prevent cycling under degeneracy) ofthe complementary pivot algorithm discussed above for solving (1.42), it terminates ina �nite number of pivot steps with a complementary feasible solution.Proof. The original tableau for this problem is (2.23), in which A > 0, BT > 0, bythe manner in which the problem is formulated. In the algorithm discussed above



112 Chapter 2. The Complementary Pivot Algorithmfor this problem, both variables from exactly one complementary pair are nonbasic inevery almost complementary feasible basic vector obtained, and this pair is known asthe left out complementary pair of variables. The left out complementary pairmay be di�erent in the various almost complementary feasible basic vectors obtainedduring the algorithm, but the complementary pair both of whose variables are basic,remains the same in all of them.Let (u1; : : : ; us�1; us+1; : : : ; um; v1; : : : ; vr�1; vr+1; : : : ; vN ; �1; �r) be the initial al-most complementary feasible basic vector obtained in the algorithm, by the specialprocedure discussed above. Let the initial tableau be the canonical tableau of (2.23)with respect to the initial almost complementary feasible basic vector. In this, the leftout complementary pair is (us; �s) both of which are nonbasic at present. Letu1 = (u1i ); u1i = �1 + � airasr �; for i 6= s; u1s = 0 :v1 = (v1j ); v1j = �1 + �b1jb1r �; for j 6= r; v1r = 0 :�1 = � 1b1r ; 0; : : : ; 0��1 = (�1j ); �1j = 0; for j 6= r; �1r = 1asr :�uh = (�uhi ); �uhi = �aisair �; for i 6= s; �uhs = 1 :�vh = 0; ��h = 0��h = (��hj ); ��hj = 0; for j 6= r; ��hr = � 1asr � :The present BFS can be veri�ed to be (u1; v1; �1; �1). It can also be veri�ed that (�uh;�vh; ��h; ��h) is a homogeneous solution corresponding to the initial tableau, and that theinitial almost complementary extreme half-line generated when us is brought into thebasic vector in the initial tableau is � (u1; v1; �1; �1) + �(�uh; �vh; ��h; ��h) : � >= 0	.The algorithm begins by bringing the nonbasic variable �s into the basic vector inthe initial tableau, and continues by using the complementary pivot rule to choose theentering variable and the lexico-minimum ratio rule to choose the dropping variable ineach step.Let B be the basis consisting of the columns of the basic variables in the initialtableau (not the original tableau), in a step of this procedure and let � = (�ij) = B�1.Let �q be the updated right hand side constants vector in this step. If u1 or �1, iseligible to be a dropping variable in this step by the usual minimum ratio test, itis choosen as the dropping variable, and the pivot step is carried out, leading to acomplementary feasible basic vector for the problem. If both u1 and �1 are ineligible tobe dropping variables in this step, the lexico minimum ratio rule chooses the droppingvariable so that the pivot row corresponds to the row which is the lexico minimum� (�qi;�i.)pit : i such that pit > 0	 where p = (p1t; : : : ; pm+N;t)T is the pivot column(updated column of the entering variable) in this step. This lexico minimum ratio ruledetermines the dropping variable uniquely and unambiguously in each pivot step.



2.5. To find an Equilibrium Pair of Strategies for a Bimatrix Game 113In each almost complementary feasible basic vector, obtained during the algo-rithm, there is exactly one left out complementary pair of variables; and hence it canhave at most two adjacent almost complementary feasible basic vectors, that can beobtained by bringing one variable from the left out complementary pair into it.The left out complementary pair in the initial almost complementary feasiblebasic vector is (us; �s), and when us is brought into the initial almost complementaryfeasible basic vector, we obtain the initial almost complementary extreme half-line. Sothe only manner in which the almost complementary path can be continued from theinitial almost complementary BFS is by bringing �s into the basic vector. The updatedcolumn of �s in the initial tableau can be veri�ed to contain at least one positive entry.Hence when �s is brought into the initial basic vector, we get an adjacent almostcomplementary feasible basic vector, and the almost complementary path continuesuniquely and unambiguously from there. Each almost complementary feasible basicvector has at most two adjacent ones, from one of them we arrive at this basic vector;we move to the other when we leave this basic vector. These facts, and the perturbationinterpretation of the lexico minimum ratio rule imply that an almost complementaryfeasible basic vector obtained in the algorithm can never reappear later on. Sincethere are at most a �nite number of almost complementary feasible basic vectors, thealgorithmmust terminate in a �nite number of pivot steps. If it terminates by obtaininga complementary feasible basic vector, the BFS corresponding to it is a solution of theLCP (1.42) and we are done. The only other possibility in which the algorithm canterminate is if the updated column vector of the entering variable in some step has nopositive entries in it, in which case we get a terminal almost complementary extremehalf-line (this is the ray termination discussed earlier). We will now show that thissecond possibility (ray termination) cannot occur in this algorithm.Suppose ray termination occurs in pivot step k. Let the almost complementaryBFS in this step be (uk; vk; �k; �k) and let the terminal extreme half-line be: f (uk; vk;�k; �k) + �(uh; vh; �h; �h) : � >= 0 g. From this and from the almost compelementaryproperty being maintained in the algorithm, we have :8>:uk + �uhvk + �vh9>;�8>: 0 ABT 0 9>;8>: �k + ��h�k + ��h9>; = 8>:�em�eN 9>; (2:24)(uki + �uhi )(�ki + ��hi ) = 0 for all i 6= 1 (2:25)(vkj + �vhj )(�kj + ��hj ) = 0 for all j (2:26)uk; vk; �k; �k; uh; vh; �h; �h >= 0 (2:27)for all � >= 0. (uh; vh; �h; �h) is a homogeneous solution satisfying the nonnegativityrestrictions and 8>:uhvh9>;�8>: 0 ABT 0 9>;8>: �h�h9>; = 0 :That is : uh = A�hvh = BT �h : (2:28)



114 Chapter 2. The Complementary Pivot AlgorithmWe also have (uh; vh; �h; �h) 6= 0, which implies by (2.27) and (2.28) that (�h; �h) � 0.Now suppose �h 6= 0. So �h � 0. Since B > 0, this implies by (2.28) that vh = BT �h >0. From (2.26) this implies that �kj + ��hj = 0 for all j and for all � >= 0. From (2.24)this implies that (uk + �uh) = �em < 0, a contradiction.Suppose we have �h = 0 but �h 6= 0. So �h � 0 and since A > 0, uh = A�h > 0.Sofrom (2.25), we must have �ki = 0 for all i 6= 1. Since �h = 0, by (2.28) vh = 0. Sofrom (2.24) vk = �eN +BT �k (2:29)and since �ki = 0 for all i 6= 1, vk is obtained by the same procedure as v1, the value ofv in the initial BFS (since �k1 must be the smallest value that makes vk nonnegative in(2.29) in order to get an extreme point solution). So vk is the same as v1 in the initialBFS in (2.23). By our discussion earlier, this implies that vkj > 0 for all j 6= r, andvkr = 0. By (2.26) this implies that �kj + ��hj = 0 for all � >= 0 and j 6= r. These factsclearly imply that (uk; vk; �k; �k) is the same as the initial BFS obtained for (2.23).This is a contradiction, since a BFS obtained in a step of the algorithm cannot reappearlater on, along the almost complementary path.These facts imply that ray termination cannot occur. So the algorithm mustterminate in a �nite number of steps by obtaining a complementary feasible basicvector, and the terminal BFS is therefore a solution of the LCP (1.42).Comments 2.1 The complementary pivot algorithm for computing equilibrium stra-tegies in bimatrix games is due to C. E. Lemke and J. T. Howson [1.18]. C. E. Lemke[2.21] extended this into the complementary pivot algorithm for LCPs discussed in Sec-tion 2.2. The proof of Theorem 2.1 is from the paper of R. W. Cottle and G. B. Dantzig[1.3] which also discusses various applications of the LCP and some principal pivotingmethods for solving it. C. E. Lemke was awarded the ORSA/TIMS John Von NeumannTheory Prize in 1978 for his contributions to this area. The citation of the award says\Nash's equilibrium proofs were nonconstrutive, and for many years it seemed thatthe nonlinearity of the problem would prevent the actual numerical solution of anybut the simplest noncooperative games. The breakthrough came in 1964 with an inge-nious algorithm for the bimatrix case devised by Carlton Lemke and L. T. Howson Jr.It provided both a constructive existence proof and a practical means of calculation.The underlying logic, involving motions on the edges of an appropriate polyhedron,was simple and elegant yet conceptually daring in an epoch when such motions weretypically contemplated in the context of linear programming. Lemke took the leadin exploiting the many rami�cations and applications of this procedure, which rangefrom the very basic linear complementary problem of mathematical programming tothe problem of calculating �xed points of continuous, nonlinear mappings arising invarious contexts. A new chapter in the theory and practice of mathematical program-ming was thereby opened which quickly became a very active and well-populated areaof research...".



2.6. A Variable Dimension Algorithm 115The geometric interpretation of the LCP using complementary cones was initiatedin K. G. Murty [3.47, 1.26].2.6 A VARIABLE DIMENSION ALGORITHMWe consider the LCP (q;M) which is to �nd w; z 2 Rn satisfyingw �Mz = q (2:30)w; z >= 0 (2:31)and wT z = 0 (2:32)De�nition : Principal SubproblemLet J � f1; : : : ; ng. Denote wJ = (wj : j 2 J), zJ = (zj : j 2 J), qJ = (qj : j 2J), and the principal submatrix of M corresponding to J, MJJ = (mij : i; j 2 J).The principal subproblem of the LCP (2.30){(2.32) in the variables wJ, zJ (or theprincipal subproblem of the LCP (2.30){(2.32) associated with the subset J) is theLCP (qJ;MJJ) of order jJj, the complementary pairs of variables in it are fwj ; zjg forj 2 J and it is: �nd wJ, zJ satisfyingwJ �MJJzJ = qJwJ; zJ >= 0wTJ zJ = 0 :This principal subproblem is therefore obtained from (2.30){(2.32) by striking o� thecolumns of all the variables wj , zj for j 62 J and the equation in (2.30) correspondingto j 62 J.Let J = f1; : : : ; ng n fig, ! = (w1; : : : ; wi�1; wi+1; : : : ; wn)T , � = (z1; : : : ; zi�1;zi+1; : : : ; zn)T . The following results follow by direct veri�cation.Results 2.2 If (ŵ = (ŵ1; : : : ; ŵn)T ; ẑ = (ẑ1; : : : ; ẑn)T ) is a solution of the LCP (q;M)and ẑi = 0, then (!̂ = (ŵ1; : : : ; ŵi�1; ŵi+1; : : : ; ŵn)T ; �̂ = (ẑ1; : : : ; ẑi�1; ẑi+1; : : : ; ẑn)T )is a solution of its principal subproblem in the variables !, �.Results 2.3 Suppose that (~! = ( ~w1; : : : ; ~wi�1; ~wi+1; : : : ; ~wn)T ; ~� = (~z1; : : : ; ~zi�1;~zi+1; : : : ; ~zn)T ) is a solution of the principal subproblem of the LCP (q;M) in thevariables !, �. De�ne ~zi = 0 and let ~z = (~z1; : : : ; ~zi�1; ~zi; ~zi+1; : : : ; ~zn)T . If qi+Mi.~z >=0, de�ne ~wi = qi +Mi.~z, and let ~w = ( ~w1; : : : ; ~wi�1; ~wi; ~wi+1; : : : ; ~wn)T , then ( ~w; ~z) isa solution of the original LCP (q;M).



116 Chapter 2. The Complementary Pivot AlgorithmExample 2.15Consider the following LCP (q;M)w1 w2 w3 z1 z2 z3 q1 0 0 2 0 �3 40 1 0 �1 �4 �3 �140 0 1 1 2 �2 13wj >= 0, zj >= 0, wjzj = 0 for all j = 1 to 3Let ! = (w1; w2)T , � = (z1; z2)T . Then the principal subproblem of this LCP in thevariable !, � is w1 w2 z1 z2 
1 0 2 0 40 1 �1 �4 �14wj >= 0, zj >= 0, wjzj = 0 for j = 1; 2(ŵ = (0; 0; 5)T ; ẑ = (2; 3; 0)T ) is a solution of the original LCP and ẑ3 is equal tozero in this solution. This implies that (!̂ = (0; 0); �̂ = (2; 3)) is a solution of thisprincipal subproblem which can easily be veri�ed. Also, (~! = (4; 0)T ; ~� = (0; 144 )T )is another solution of the principal subproblem. De�ning ~z3 = 0, ~z = (0; 144 ; 0)T , weverify that q3 +M3.~z = 13 + (�1;�2; 2)(0; 144 ; 0)T = 6 > 0. Hence, de�ne ~w3 = 6,and ~w = (4; 0; 6)T . It can be veri�ed that ( ~w = (4; 0; 6)T ; ~z = (0; 144 ; 0)T ) is anothersolution of the original LCP.We now discuss a variable dimension algorithm for the LCP (q;M) due to L. Vander Heyden [2.38]. If q >= 0, (w = q; z = 0) is a readily available solution. So we assumethat q 6>= 0. The method proceeds by solving a sequence of principal subproblems of(2.30), (2.31), (2.32) always associated with subsets of the form J = f1; : : : ; kg (thisproblem is called the k-problem), for some k satisfying 1 <= k <= n. When the method isworking on the k-problem, the bottom n�k constraints in (2.30) as well as the columnsof variables wj , zj for j > k can be ignored, hence the reason for the name. All theintermediate solutions for (2.30) obtained during the method (with the exception of theterminal solution which is a complementary feasible solution satisfying (2.30), (2.31),(2.32)) are of two types called position 1 and position 2 solutions de�ned below.Position 1 Solution : This is a solution ( ~w; ~z) for (2.30) satisfying the followingproperties :i) there exists an index k such that ~zk = 0 and ~wk < 0.



2.6. A Variable Dimension Algorithm 117ii) ~zj = 0 for j > k.iii) if k > 1, ~w(k�1) = ( ~w1; : : : ; ~wk�1), ~z(k�1) = (~z1; : : : ; ~zk�1) is a solution forthe principal subproblem of (2.30), (2.31), (2.32) determined by the subsetf1; : : : ; k � 1g, that is, ~w(k�1) >= 0, ~z(k�1) >= 0 and ( ~w(k�1))T ~z(k�1) = 0.From the de�nition, a position 1 solution ( �w; �z) always satis�es �wT �z = 0, it iscomplementary (but infeasible) and it will be a complementary basic solution associ-ated with a complementary (but infeasible in the same sense that the solution violates(2.31)) basic vector for (2.30).Position 2 Solution : This is a solution (ŵ; ẑ) for (2.30) satisfying the followingproperties :a) there exists an index k such that ẑk > 0, ŵk < 0.b) ẑj = 0 for j > k.c) there is a u < k such that both ẑu and ŵu are zero.d) ŵ(k�1) = (ŵ1; : : : ; ŵk�1)T >= 0, ẑ(k�1) = (ẑ1; : : : ; ẑk�1)T >= 0 and(ŵ(k�1))T ẑ(k�1) = 0.From the de�nition, a position 2 solution discussed above is an almost complemen-tary solution (not feasible, since some of the variables are < 0) of the type discussedin Section 2.4, it satis�es ŵT ẑ = ŵk ẑk. It will be an almost complementary basicsolution associated with an almost complementary basic vector for (2.30) which hasboth wk, zk as basic variables, and contains exactly one basic variable from the com-plementary pair (wj ; zj) for each j 6= k or u (both variables wu, zu are out of thisalmost complementary basic vector, so the complementary pair (wu; zu) is the left outcomplementary pair in this basic vector). This almost complementary basic vectorhas wj as a basic variable for all j > k. All intermediate (i. e., except the initial andterminal) solutions obtained by the method when it is working on the k-problem wiilbe position 2 solutions of (2.30) as de�ned above.Note 2.1 As mentioned above, all the solutions obtained during the algorithm willbe basic solutions of (2.30).The de�nitions given above for positions 1, 2 solutions areunder the assumption that q is nondegenerate in the LCP (q;M) (i. e., that everysolution to (2.30) has at least n nonzero variables). In the general case when q may bedegenerate, the algorithm perturbs q by adding the vector ("; "2; : : : ; "n)T to it, where" is treated as a su�ciently small positive number without giving any speci�c value toit (see Section 2.1, 2.2.2, 2.2.8), and all the inequalities for the signs of the variablesshould be understood in the usual lexico sense.The AlgorithmThe algorithm takes a path among basic vectors for (2.30) using pivot steps. All basicvectors obtained will be almost complementary basic vectors as de�ned in Section 2.4,or complementary basic vectors.



118 Chapter 2. The Complementary Pivot AlgorithmInitial Step: STEP 0 : The initial basic vector is w = (w1; : : : ; wn). Theinitial solution is the Position 1 basic solution of (2.30) corresponding to it, de�ne k =minimum fi : qi < 0g. Begin with the k-problem, by making a type 1 pivot step toincrease the value of the nonbasic variable zk from 0, as described below.STEP 1 : Type 1 Pivot Step, to increase the Value of a Nonbasic Vari-able from Zero. Let (y1; : : : ; yk; wk+1; : : : ; wn) be the basic vector in some stage ofworking for the k-problem. If this is the initial basic vector, (y1; : : : ; yk) will be a com-plementary basic vector for the principal subproblem of (2.30), (2.31), (2.32) de�nedby the subset f1; : : : ; kg. Except possibly at termination of work on the k-problem, ykwill always be wk; y1; : : : ; yk�1 will all be wj or zj for j <= k � 1. This type of pivotstep occurs when the value of a nonbasic variable, say v, selected by the rules speci�edin the algorithm, is to be increased from its present value of zero. The variable v willbe either wj or zj for some j <= k. Let the canonical tableau for (2.30) with respect tothe present basic vector be Tableau 2.7 Canonical Tableauy1 : : : yk wk+1 : : : wn : : : v : : :a1 �q1I : : : :: : : : ::an �qnWhile working on the k-problem, in all the canonical tableaus, we will have �q1; : : : ;�qk�1 >= 0 and �qk < 0 (and yk = wk). Let � = B�1 be the inverse of the present basis.The algorithm always maintains (�qi; �i.) � 0 for i = 1 to k � 1. Let � denote thenonnegative value given to the nonbasic variable v. The new solution as a function of� is all nonbasic variables other than v are 0v = �yi = �qi � �ai, i = 1 to kwj = �qj � �aj , j = k + 1 to n (2:33)We will increase the value of � from 0 until one of the variables yi for i = 1 to k,changes its value from its present to zero in (2.33), and will change sign if � increasesany further. This will not happen if the updated column of the entering variable vsatis�es ai <= 0; i = 1; : : : ; k � 1 and ak >= 0 (2:34)If condition (2.34) is satis�ed, the method is unable to proceed further and terminationoccurs with the conclusion that the method is unable to process this LCP. If condition(2.34) is not satis�ed, de�ne� = Max� �qiai : Over 1 <= i <= k � 1 such that ai > 0 ; and �qkak ; if ak < 0	 (2:35)



2.6. A Variable Dimension Algorithm 119Let ��� be the set of all i between 1 to k which tie for the maximum in (2.35). If ��� isa singleton set, let r be the element in it. Otherwise let r be the element which at-tains the lexicomaximum in lexicomaximum � � (�qi;�i.)ai � : i 2 ���	. If r = k, v replacesyk(= wk) from the basic vector. After this pivot step we are lead to the basic vector(y1; : : : ; yk�1; v; wk+1; : : : ; wn) which will be a complementary basic vector for (2.30)(except that the variables y1; : : : ; yk�1; v may have to be rearranged so that the jthvariable here is from the jth complementary pair), and (y1; : : : ; yk�1; v) is a comple-mentary lexico feasible basic vector for the k-problem (except for the rearrangementof the basic variables as mentioned above). If (y1; : : : ; yk+1; v; wk+1; : : : ; wn) is feasibleto (2.30) (this happens if the updated right hand side constants vector is >= 0 afterthe pivot step of replacing yk by v), it is a complementary feasible basic vector for(2.30), the method terminates with the basic solution corresponding to it as being asolution for (2.30), (2.31), (2.32). On the other hand, if (y1; : : : ; yk�1; v; wk+1; : : : ; wn)is not a feasible basic vector for (2.30), the k-problem has just been solved and themethod moves to another principal subproblem with index greater than k (this is calleda forward move), go to Step 3.If r < k, v replaces yr from the basic vector, leading to the new basic vector(y1; : : : ; yr�1; v; yr+1; : : : ; yk; wk+1; : : : ; wn). Two things can happen now. If yr =zk, then this new basic vector is a complementary basic vector for (2.30) (except forrearrangement of the variables as mentioned above), but (y1; : : : ; yr�1; v; yr+1; : : : ; yk)is not lexico feasible for the k-problem. In this case the method moves to make a type2 pivot step (discussed next) leading to a principal subproblem with index less than k(this is called a regressive move, moving to a smaller principal subproblem alreadysolved earlier). The next steps of the algorithm will be concerned with �nding yetanother solution for this smaller principal subproblem. Go to Step 2.The second possibility is that yr 6= zk. In this case the basic vector (y1; : : : ; yr�1;v; yr+1; : : : ; yk; wk+1; : : : ; wn) is another almost complementary basic vector, the basicsolution of (2.30) associated with which is another position 2 solution. In this case,the method continues the work on the k-problem by making a type 1 pivot step next,to increase the value of the complement of yr from zero.STEP 2 : Type 2 Pivot Step to Decrease the Value of a Nonbasic Variablewg from Zero. This pivot step will be made whenever we obtain a complementarybasic vector (y1; : : : ; yk; wk+1; : : : ; wn) after doing some work on the k-problem, withyk = wk. Let Tableau 2.7 be the canonical tableau with respect to this complementarybasic vector. We will have �qi >= 0, i = 1 to k � 1 and (�qk; �k.) � 0 at this stage (�k. isthe kth row of the present basis inverse). Let g be the maximum j such that yj = zj .Now the algorithm decreases the value of the nonbasic variable wg from zero. Lettingv = wg, and giving this variable a value � (we want to make � <= 0), the new solutionobtained is of the same form as in (2.33). We will decrease the value of � from 0 untilone of the variables yi for i = 1 to g, changes its value from its present to zero in (2.33),and will change sign if � decreases any further. This will not happen if the updatedcolumn of the entering variable v satis�es



120 Chapter 2. The Complementary Pivot Algorithmai >= 0; i = 1 to g (2:36)in which case termination occurs with the conclusion that the method is unable toprocess this LCP. If (2.36) is not satis�ed, de�ne� = Minimum ��� �qiai � : 1 <= i <= g; i such that ai < 0	 : (2:37)Let ��� be the set of all i between 1 to g which tie for the minimum in (2.37). If ��� is asingleton set let r be the element in it. Otherwise let r be the element which attainsthe lexicominimum in lexico minimum �� (�qi;�i.)ai : i 2 ���	. Replace yr in the presentbasic vector by v (= wg here) and move over to the g-problem after this pivot step, bygoing to Step 1 to increase the value of the complement of yr from 0.STEP 3 : We move to this step when we have solved a k-problem after performing atype 1 pivot step on it in Step 1. Let (y1; : : : ; yk; wk+1; : : : ; wn) be the complementarybasic vector at this stage with yj 2 fwj ; zjg for j = 1 to k. Let �q = (�q1; : : : ; �qn)T be thecurrent updated right hand side constants vector. Since (y1; : : : ; yk) is a complementaryfeasible basic vector for the k-problem, we have �qi >= 0 for i = 1 to k. If �qi >= 0 fori = k+1 to n also, this basic vector is complementary feasible to the original problem(2.30), (2.31), (2.32), and we would have terminated. So �qi < 0 for at least one ibetween k + 1 to n. Let u be the smallest i for which �qi < 0, replace k by u and goback to Step 1 to increase the value of zk from zero.Numerical Example 2.16We provide here a numerical example for this algorithm from the paper [2.38] of L. Vander Heyden. Consider the LCP (q;M) whereq = 8>>>>>: �1�2�109>>>>>; ; M = 8>>>>>: 1 1 13 1 12 2 19>>>>>;Since q1 < 0, the algorithm begins with k = 1, on the 1-problem. Pivot elements areinside a box.Basic w1 w2 w3 z1 z2 z3Vectorw1 1 0 0 �1 �1 �1 �1 k = 1. Increase z1. In thisw2 0 1 0 �3 �1 �1 �2 type 1 pivot step, w1w3 0 0 1 �2 �2 �1 �10 drops from basic vector.z1 �1 0 0 1 1 1 1 k = 3.w2 �3 1 0 0 2 2 1 Increase z3.w3 �2 0 1 0 0 1 �8 w2 drops.



2.6. A Variable Dimension Algorithm 121Basic w1 w2 w3 z1 z2 z3Vectorz1 12 �12 0 1 0 0 12 k = 3. Increase z2z3 �32 12 0 0 1 1 12 (complement of w2).w3 �12 �12 1 0 �1 0 � 172 z3 drops.z1 12 �12 0 1 0 0 12 Need a type 2 pivot step.z2 �32 12 0 0 1 1 12 Decrease w2.w3 �2 0 1 0 0 1 �8 z1 drops.w2 �1 1 0 �2 0 0 �1 k = 1. Increase w1 (compl.z2 �1 0 0 1 1 1 1 of z1 that just dropped)w3 �2 0 1 0 0 1 �8 w2 drops.w1 1 �1 0 2 0 0 1 k = 3.z2 0 �1 0 3 1 1 2 Increase z3.w3 0 �2 1 4 0 1 �6 z2 drops.w1 1 �1 0 2 0 0 1 Increase w2 (complementz3 0 �1 0 3 1 1 2 of z2 that just dropped).w3 0 �1 1 1 �1 0 �8 w3 drops.w1 1 0 �1 1 1 1 9 Complementaryz3 0 0 �1 2 2 1 10 feasiblew2 0 1 �1 �1 1 0 8 basic vectorThus (w1; w2; w3; z1; z2; z3) = (9; 8; 0; 0; 0; 10) is a complementary feasible solution ofthis problem.Conditions Under Which the Algorithm is Guaranteed to WorkTheorem 2.12 For every J � f1; : : : ; ng, if the principal submatrix MJJ of Massociated with J satis�es the property that there exists no positive vector zJ such thatthe last component of MJJzJ is nonpositive and the other components are zero, thetermination criteria (2.34) or (2.36) will never be satis�ed and the algorithm terminates



122 Chapter 2. The Complementary Pivot Algorithmwith a complementary feasible basic vector for the LCP (q;M) after a �nite numberof steps.Proof. When (2.34) or (2.36) is satis�ed, we have a solution of the type given inequation (2.33), which we denote by (w(�); z(�)) = ( �w + �wh; �z + �zh) satisfying theproperty that for � > 0, there exists a k such that wk(�) < 0, zk(�) > 0, zj(�) = 0for j > k, and if k > 1 the vectors w(k�1)(�) = (w1(�); : : : ; wk�1(�)), z(k�1)(�) =(z1(�); : : : ; zk�1(�)) are nonnegative and complementary. Let J = f1; : : : ; kg, whJ =(wh1 ; : : : ; whk )T , zhJ = (zh1 ; : : : ; zhk )T . ThenwhJ �MJJzhJ = 0zhJ >= 0whk <= 0 (2:38)and if k > 1, (wh1 ; : : : ; whk�1) >= 0, and whj zhj = 0 for j = 1 to k � 1. Let P = f j :1 <= j <= k, and zhj > 0 g. Clearly P 6= ;, otherwise (whJ; zhJ) = 0. Letting zhP =(zhj : j 2 P), all the components of MPPzhP are zero except possibly the last onebecause of (2.38) and the fact that whj zhj = 0 for j = 1 to k � 1. Also, the lastcomponent of MPPzhP is <= 0 because of (2.38). And since zhP > 0, this contradicts thehypothesis in the theorem.The �niteness of the algorithm follows from the path argument used in Sections2.2, 2.3, the argument says that the algorithm never returns to a previous positionas this situation implies the existence of a position with three adjacent positions, acontradiction. Since there are only a �nite number of positions we must terminatewith a solution for the original LCP.Corollary 2.2 IfM has the property that for every J � f1; : : : ; ng, the correspondingsubmatrix MJJ of M satis�es the property that the systemMJJzJ <= 0zJ >= 0has the unique solution zJ = 0, then the variable dimension algorithm discussed abovewill terminate with a solution of the LCP (q;M) for any q 2 Rn.Proof. Follows from Theorem 2.12.R. W. Cottle [3.9] has shown that the class of matricesM satisfying the hypothesisin Theorem 2.12 or Corollary 2.2, is the strictly semi-monotone matrices de�ned lateron in Section 3.4, which is the same as �Q (completely Q-matrices, that is, matrices allof whose principal submatrices are Q-matrices). This class includes all P -matrices andpositive or strictly copositive matrices.By the results discussed in Chapter 3, the LCP (q;M) has a unique solution whenM is a P -matrix. So if M is s P -matrix and the LCP (q;M) is solved by the variabledimension algorithm, type 2 pivot steps will never have to be performed.



2.7. Extensions to Fixed Point Computing 123M. J. Todd [2.35, 2.36] has shown that when q is nondegenerate in (2.30) and Mis a P -matrix, the variable dimension algorithm discussed above corresponds to thelexicographic Lemke algorithm discussed in Section 2.3.4.Now consider the LCP (q;M) of order n. Let en denote the column vector of all1's in Rn. Introduce the arti�cial variable z0 associated with the column vector �en,as in the complementary pivot algorithm (see equation (2.3)). Introduce an additionalarti�cial variable w0, which is the complement of z0, and the arti�cial constraint \w0�eTn z = q0", where q0 is treated as a large positive number, without giving it any speci�cvalue. This leads to an LCP of order n+1, in which the variables are (w0; w1; : : : ; wn),(z0; z1; : : : ; zn) and the data isM? = 8>: 0 �eTnen M 9>; ; q? = 8>: q0q 9>; :Since q0 is considered as a large positive parameter, w0 > 0 and z0 = 0 in any com-plementary solution of this larger dimensional LCP (q?;M?), and hence if (( �w0; �w),(�z0; �z)) is a solution of this LCP, then ( �w; �z) is a solution of the original LCP (q;M).Essentially by combining the arguments in Theorems 2.1 and 2.12, L. Van der Hey-den [2.39] has shown that if M is a copositive plus matrix and the system \w�Mz =q, w >= 0, z >= 0" has a feasible solution, when the variable dimension algorithm isapplied on the LCP (q?;M?), it will terminate with a complementary feasible solution(( �w0; �w), (�z0; �z)) in a �nite number of steps. This shows that the variable dimensionalgorithm will process LCP's associated with copositive plus matrices, by introduc-ing an arti�cial dimension and by applying the variable dimension algorithm to theenlarged LCP.
2.7 EXTENSIONS TO FIXED POINTCOMPUTING, PIECEWISE LINEARAND SIMPLICIAL METHODSIt has also been established that the arguments used in the complementary pivot al-gorithm can be generalized, and these generalizations have led to algorithms that cancompute approximate Brouwer and Kakutani �xed points! Until now, the greatestsingle contribuition of the complementarity problem is probably the insight that it hasprovided for the development of �xed point computing algorithms. In mathematics,�xed point theory is very higly developed, but the absence of e�cient algorithms forcomputing these �xed points has so far frustrated all attempts to apply this rich theoryto real life problems. With the development of these new algorithms, �xed point the-ory is �nding numerous applications in mathematical programming, in mathematicaleconomics, and in various other areas. We present one of these �xed point computing



124 Chapter 2. The Complementary Pivot Algorithmalgorithms, and some of its applications, in this section. We show that the problem ofcomputing a KKT point for an NLP can be posed as a �xed point problem and solvedby these methods.The algorithms that are discussed later in this section trace a path through thesimplices of a triangulation in Rn, that is why they are called simplicial methods.Since they use piecewise linear approximations of maps, these methods are also calledpiecewise linear methods. Since the path traced by these methods has exactly thesame features as that of the complementary pivot algorithm (see Sections 2.2.5, 2.2.6)these methods are also called complementary pivot methods.2.7.1 Some De�nitionsLet g(x) be a real valued function de�ned over a convex subset ��� � Rn. We assumethat the reader is familiar with the de�nition of continuity of g(x) at a point x0 2���, and the de�nition of the vector of partial derivatives of g(x) at x0, rg(x0) =�@g(x0)@x1 ; : : : ; @g(x0)@xn �, when it exists. The function g(x) is said to be di�erentiable at x0if rg(x0) exists, and for any y 2 Rn, 1� �g(x0 + �y)� g(x0)� ��rg(x0)�y� tends inthe limit to zero as � tends to zero. If g(x) is di�erentiable at x0, for any y 2 Rn,we can approximate g(x0 + �y) by g(x0) + ��rg(x0)�y for values of � for which j�jis small. This is the �rst order Taylor series expansion for g(x+ �y) at x = x0.If g(x) is di�erentiable at x0, the partial derivative vector rg(x0) is known as thegradient vector of g(x) at x0.When the second order partial derivatives of g(x) exist at x0, we denote the n�nmatrix of second order partial derivatives �@2g(x0)@xi @xj � by the symbol H(g(x0)). It iscalled the Hessian matrix of g(x) at x0.Let g1(x); : : : ; gm(x) be m real valued convex functions de�ned on the convex sub-set ���� Rn. For each x 2 ���, de�ne s(x) = Maximum f g1(x); : : : ; gm(x) g. The functions(x) is known as the pointwise supremum or maximum of fg1(x); : : : ; gm(x)g. Itis also convex on ���. See Figure 2.4 where we illustrate the pointwise supremum ofseveral a�ne functions de�ned on the real line.
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Figure 2.4 l1(x) to l5(x) are �ve a�ne functions de�ned on R1. Functionvalues are plotted on the vertical axis. Their pointwise maximum is thefunction marked with thick lines here.Subgradients and Subdi�erentials of Convex FunctionsLet g(x) be a real valued convex function de�ned on Rn. Let x0 2 Rn be a pointwhere g(x0) is �nite. The vector d = (d1; : : : ; dn)T is said to be a subgradient of g(x)at x0 if g(x) >= g(x0) + dT (x� x0); for all x 2 Rn : (2:39)Notice that the right hand side of (2.39) is l(x) = (g(x0) � dtx0) + dTx, is ana�ne function in x; and we have g(x0) = l(x0). One can verify that l(x) is the �rstorder Taylor expansion for g(x) around x0, constructed using the vector d in place ofthe gradient vector of g(x) at x0. So d is a subgradient of g(x) at x0, i� this modi�edTaylor approximation is always an underestimate for g(x) at every x.



126 Chapter 2. The Complementary Pivot AlgorithmExample 2.17Let x 2 R1, g(x) = x2. g(x) is convex. Consider the point x0 = 1, d = 2. It can beveri�ed that the inequality (2.39) holds in this case. So d = (2) is a subgradient forg(x) at x0 = 1 in this case. The a�ne function l(x) on the right hand side of (2.39) inthis case is 1 + 2(x � 1) = 2x� 1. See Figures 2.5, 2.6 where the inequality (2.39) isillustrated.
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Figure 2.5 A Convex Function, and the A�ne Function Below it Con-structed Using a Subgradient for it at the Point x0.
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Figure 2.6 The subdi�erential to �(x) at �x is the set of slope vectors of alllines in the cone marked by the angle sign.The set of all subgradients of g(x) at x0 is denoted by the symbol @g(x0), and calledthe subdi�erential set of g(x) at x0. It can be proved that if g(x) is di�erentiableat x0, then its gradient rg(x0) is the unique subgradient of g(x) at x0. Conversely if@g(x0) contains a single vector, then g(x) is di�erentiable at x0 and @g(x0) = frg(x0)g.See references [2.92{2.94] for these and other related results.Subgradients of Concave FunctionsLet h(x) be a concave function de�ned on a convex subset ��� � Rn. In de�ning asubgradient vector for h(x) at a point x0 2 ���, the inequality in (2.39) is just reversed;in other words, d is a subgradient for the concave function h(x) at x0 if h(x) <= h(x0)+dT (x � x0) for all x. With this de�nition, all the results stated above also hold forconcave functions.



128 Chapter 2. The Complementary Pivot AlgorithmComputing a SubgradientLet �(x) be a convex function de�ned on Rn. Let �x 2 Rn, if �(x) is di�erentiable at�x, then the gradient vector r�(�x) is the only subgradient of �(x) at �x. If �(x) is notdi�erentiable at �x, in general, the computation of a subgradient for �(x) at �x may behard. However, if �(x) is the pointwise supremum of a �nite set of di�erentiable convexfunctions, say �(x) = Maximum f g1(x); : : : ; gm(x) gwhere each gi(x) is di�erentiable and convex, then the subdi�erential of �(x) is easilyobtained. Let J(�x) = f i : �(�x) = gi(�x) gthe the subdi�erential of �(x) at �x,@�(�x) = convex hull of frgi(�x) : i 2 J(�x) g :See references [2.92{2.94].2.7.2 A Review of Some Fixed Point TheoremsLet ��� � Rn be a compact convex subset with a nonempty interior. Let f(x) : ���! ��� bea single valued map, that is, for each x = (x1; : : : ; xn)T 2 ���, f(x) = (f1(x); : : : ; fn(x))T2 ���, which is continuous. We have the following celebrated theorem.Theorem 2.13 : Brouwer's Fixed Point Theorem If f(x) : ���! ��� is continuous,it has a �xed point, that is, the systemf(x)� x = 0 (2:40)which is a system of n equations in n unknowns, has a solution x 2 ���.See references [2.48, 2.50, 2.68, 2.69, 2.72] for proofs of this theorem. We nowprovide an illustration of this theorem.Example 2.18Consider n = 1. Let ��� = fx : x 2 R1; 0 <= x <= 1 g denoted by [0; 1]. Consider thecontinuous function f(x) : [0; 1]! [0; 1]. We can draw a diagram for f(x) on the twodimensional Cartesian plane by plotting x on the horizontal axis, and the values off(x) along the vertical axis, as in Figure 2.7. Since f(x) is de�ned on [0; 1] the curveof f(x) begins somewhere on the thick vertical line x = 0, and goes all the way to thethick vertical line x = 1, in a continuous manner. Since f(x) 2 [0; 1], the curve forf(x) lies between the two thin horizontal lines f(x) = 0 and f(x) = 1. The dashed



2.7. Extensions to Fixed Point Computing 129diagonal line is f(x)� x = 0. It is intuitively clear that the curve of f(x) must crossthe diagonal of the unit square, giving a �xed point for f(x).
f(x)

0 1

1

x0

Figure 2.7 The curve of f(x) : [0; 1]! [0; 1]. Points of intersection of thecurve with the dashed diagonal line are the Brouwer �xed points of f(x).Example 2.19This example illustrates the need for convexity in Theorem 2.13. Let n = 2. Let Kdenote the dotted ring in Figure 2.8 between two concentric circles. Let f(x) denotethe continuous mapping K ! K obtained by rotating the ring through a speci�edangle � in the anti-clockwise direction. Clearly this f(x) has no �xed points in K.
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Figure 2.8 The need of convexity for the validity of Brouwer's �xed pointtheorem.The need for the boundedness of the set ��� for the validity of Theorem 2.13 followsfrom the fact that the mapping f(x) = x + a for each x 2 Rn, where a 6= 0 is aspeci�ed point in Rn, has no �xed points. The need for the closedness of the set ��� forthe validity of Theorem 2.13 follows from the fact that the mapping f(x) = 12(x + 1)from the set fx : 0 <= x < 1g into itself has no �xed point in the set.The system (2.40) is a system of n equality constraints in n unknowns. An e�ortcan be made to solve (2.40) using methods for solving nonlinear equations.A Monk's StoryThe following story of a monk provides a nice intuitive justi�cation for the concept andthe existence of a �xed point. A monk is going on a pilgrimage to worship in a templeat the top of a mountain. He begins his journey on Saturday morning at 6:00 AMpromptly. The path to the temple is steep and arduous and so narrow that trekkers onit have to go in a single �le. Our monk makes slow progress, he takes several breakson the way to rest, and at last reaches the temple by evening. He spends the nightworshipping at the temple. Next morning, he begins his return trip from the templeexactly at 6:00 AM, by the same path. On the return trip, since the path is downhill,he makes fast progress and reaches the point from where he started his hjourney onSaturday morning, well before the evening.



2.7. Extensions to Fixed Point Computing 131Suppose we call a point (or spot or location) on the path, a �xed point, if the monkwas exactly at that spot at precisely the same time of the day on both the forwardand return trips.The existence of a �xed point on the path can be proved using Brouwer's �xedpoint theorem, but there is a much simpler and intuitive proof for its existence (seeA. Koestler, The Act of Creation, Hutchinson, 1976, London). Imagine that on Satur-day morning exactly at 6:00 AM, a duplicate monk starts from the temple, down themountain, proceeding at every point of time at exactly the same rate that the originalmonk would on Sunday. So, at any point of time of the day on Saturday, the duplicatemonk will be at the same location on the path as the original monk will be at the timeon Sunday. Since the path is so narrow that both cannot pass without being in eachother's way, the two monks must meet at some time during the day, and the spot onthe path where they meet is a �xed point.Successive Substitution Method for Computing aBrouwer's Fixed PointOne commonly used method to compute a Brouwer's �xed point of the single valuedmap f(x) : ��� ! ��� is an iterative method that begins with an arbitrary point x0 2 ���,and obtains a sequence of points fxr : r = 0; 1; : : :g in ��� using the iterationxr+1 = f(xr) :The sequence so generated, converges to a Brouwer's �xed point of f(x) if f(x) satis�esthe contraction property, that is, if there exists a constant � satisfying 0 <= � < 1such that for every x; y 2 ���, we havekf(x)� f(y)k <= �kx� yk : (2:41)If the map f(x) satis�es the contraction proprety, this successsive substituitions methodis a very convenient method for computing a Brouwer's �xed point of f(x). Unfor-tunately, the contraction property is a strong property and does not usually hold inmany practical applications.Newton-Raphson Method for Solving a Systemof n Equations in n UnknownsThe system (2.40) is a system of n equations in n unknowns, and we can try to solve itusing approaches for solving nonlinear equations of this type, like Newton-Raphsonmethod, which we now present. The method is also called Newton's method often inthe literature, or Newton's method for solving equations. Consider the systemgi(x) = 0 i = 1 to n (2:42)



132 Chapter 2. The Complementary Pivot Algorithmwhere each gi(x) is a real valued function de�ned on Rn. Assume that each functiongi(x) is di�erentiable. Let rgi(x) be the row vector of partial derivatives and let theJacobian be rg(x) = 8>>>>>>>:rg1(x)...rgn(x)9>>>>>>>;in which the ith row vector is the partial derivative vector of gi(x) written as a row.To solve (2.42) the Newton-Raphson method begins with an arbitrary point x0and generates a sequence of points fx0; x1; x2; : : :g. Given xr in the sequence, themethod approximates (2.42) by its �rst order Taylor approximation around xr leadingto g(xr) +rg(xr)(x� xr) = 0whose solution is xr�(rg(xr))�1g(xr), which is taken as the next point in the sequence.This leads to the iteration xr+1 = xr � (rg(xr))�1g(xr) :If the Jacobian is nonsingular, the quantity y = (rg(xr))�1g(xr) can be computede�ciently by solving the system of linear equations(rg(xr))y = g(xr)If the Jacobian rg(xr) is singular, the inverse (rg(xr))�1 does not exist and themethod is unable to proceed further. Several modi�cations have been proposed toremedy this situation, see references [10.9, 10.13, 10.33]. Many of these modi�cationsare based on the applications of Newton's method for unconstrained minimization ora modi�ed version of it (see Sections 10.8.4, 10.8.5) to the least squares formulation of(2.42) leading to problem of �nding the unconstrained minimum ofnXi=1(gi(x))2 :As an example, consider the systemg1(x) = x21 + x22 � 1 = 0g2(x) = x21 � x2 = 0The Jacobian matrix is 8>: 2x1 2x22x1 �1 9>;Let x0 = (1; 0)T be the initial point. So g(x0) = (0; 1)T . The Jacobian matrix atx0 is 8>: 2 02 �19>;. This leads to the next point x1 = (1; 1)T . It can be veri�ed that



2.7. Extensions to Fixed Point Computing 133x2 = �56 ; 23�T , and so on. The actual solution in this example can be seen from Figure2.9.
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Figure 2.9 The circle here is the set of all points (x1; x2) satisfying x21 +x22 � 1 = 0. The parabola is the set of all points satisfying x21 � x2 = 0.The two intersect in two points (solutions of the system) one of which is �x.Beginning with x0, the Newton-Raphson method obtains the sequence x1;x2; : : : converging to �x.In order to solve (2.40) by Newton-Raphson method or some modi�ed versionsof it, the map f(x) must satisfy strong properties like being di�erentiable etc., whichdo not hold in may many practical applications. Thus, to use Brouwer's �xed pointtheorem in practical applications we should devise methods for solving (2.40) withoutrequiring the map f(x) to satisfy any conditions besides continuity. In 1967 H. Scarfin a pioneering paper [2.68] developed a method for �nding an approximate solu-tion of (2.40) using a triangulation of the space, that walks through the simplices ofthe triangulation along a path satisfying properties similar to the one traced by thecomplementary pivot algorithm for the LCP. This method has the advantage that itworks without requiring any conditions on the map f(x) other than those required byBrouwer's theorem for the existence of the �xed point (i. e., continuity). Subsequentlyvastly improved versions of these methods have been developed by many researches.We will discuss one of these methods in detail.



134 Chapter 2. The Complementary Pivot AlgorithmApproximate Brouwer Fixed PointsLet f(x) : ���! ��� be continuous as de�ned in Theorem 2.13. A true Brouwer �xed pointof f(x) is a solution of (2.40). However, in general, we may not be able to computean exact solution of (2.40) using �nite precision arithmetic. In practice, we attemptto compute an approximate Brouwer �xed point. There are two types of approximateBrouwer �xed points, we de�ne them below.Type 1: A point �x 2 ��� is said to be an approximate Brouwer �xed point of f(x) ofType 1 if jj�x� f(�x)jj < "for some user selected tolerance " (a small positive quantity).Type 2: A point x� 2 ��� is said to be an approximate Brouwer �xed point of Type2 if there exists an exact solution y of (2.40) such thatjjx� � yjj < " :In general, a Type 1 approximate Brouwer �xed point �x may not be a Type 2approximate Brouwer �xed point, that is, �x may be far away from any exact solutionof (2.40). If some strong conditions hold (such as: f(x) is continuously di�erentiablein the interior of ��� and all the derivatives are Lipschitz continuous, or f(x) is twicecontinuously di�erentiable in the interior of ���) a Type 1 approximate Brouwer �xedpoint can be shown to be also a Type 2 approximate Brouwer �xed point with amodi�ed tolerance. At any rate, the algorithms discussed in the following sections areonly able to compute approximate Brouwer �xed points of Type 1.Kakutani Fixed PointsIn many applications, the requirement that f(x) be a point-to-point map is itself toorestrictive. In 1941 S. Kakutani generalized Theorem 2.13 to point-to-set maps. Asbefore, let ��� be a compact convex subset of Rn. Let F(x) be a point-to-set map on ���,that is, for each x 2 ���, F(x) is itself a speci�ed subset of ���.Example 2.20Let n = 1. Let ��� = fx 2 R1 : 0 <= x <= 1 g. For each x 2 ���, suppose F(x) = f y :x <= y <= 1 g = [x; 1]. See Figure 2.10.
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Figure 2.10 For each x 2 ���, F(x) is the closed interval [x; 1].We consider only maps in which F(x) is a compact convex subset of ��� for eachx 2 ���. The point-to-set map F(x) is said to be an USC (Upper Semi-Continuous) mapif it satis�es the following properties. Let fxk : k = 1; 2; : : :g be any sequence of pointsin ��� converging to a point x? 2 ���. For each k, suppose yk is an arbitrary point selectedfrom F(xk), k = 1; 2; : : :. Suppose that the sequence f yk : k = 1; 2; : : :g converges tothe point y?. The requirement for the upper semi-continuity of the point-to-set mapF(x) is that these conditions imply that y? 2 F(x?).It can be veri�ed that the point-to-set map F(x) given in Figure 2.8 satis�es thisUSC property.Theorem 2.14 Kakutani's Fixed Point TheoremIf F(x) is a USC point-to-set map de�ned on the compact convex subset ��� � Rn,there exists a point x 2 ��� satisfying x 2 F(x) : (2:43)



136 Chapter 2. The Complementary Pivot AlgorithmAny point satisfying (2.43) is known as a Kakutani's �xed point of the point-to-set map F(x). To prove his theorem, Kakutani used the fundamental notion ofa piecewise linear approximation to the map F(x). The same picewise linearapproximation scheme is used in the method discussed later on for computing �xedpoints. See reference [2.50] for the proof of Kakutani's theorem.For each x 2 ���, if F(x) is a singleton set (i. e., a set containing only a single ele-ment) ff(x)g � ���, it can be veri�ed that this F(x) is USC i� f(x) is continuous. Thusthe USC property of point-to-set maps is a generalization of the continuity property ofpoint-to-point maps. Also, every Brouwer �xed point of the point-to-point map f(x)can be viewed as a Kakutani �xed point of F(x) = ff(x)g.Approximate Kakutani Fixed PointsGiven the USC point-to-set map F(x) as de�ned in Theorem 2.14, a Kakutani �xedpoint is a point x 2 ��� satisfying (2.43). As under the Brouwer �xed point case, using�nite precision arithmetic, we may not be able to �nd x 2 ��� satisfying (2.43) exactly.We therefore attempt to compute an approximate Kakutani �xed point. Again, thereare two types of approximate Kakutani �xed points, we de�ne them belowType 1: A point �x 2 ��� is said to be an approximate Kakutani �xed point of F(x) ofType 1 if there exists a z 2 F(�x) satisfyingjj�x� zjj < "for some user selected tolerance " (a small positive quantity).Type 2: A point x� 2 ��� is said to be an approximative Kakutani �xed point of F(x)of Type 2 if there exists a y satisfying (2.43) andjjx� � yjj < " :The algorithms discussed in the following sections are only able to compute Type1 approximate Kakutani �xed points.Use in Practical ApplicationsIn pratical applications we have to deal with either point-to-point or point-to-set mapsde�ned over the whole space Rn, not necessarily on only a compact convex subsetof Rn. Also, it is very hard, if not computationally impossible, to check whetherproperties like USC etc. hold for our maps. For such maps, the existence of a �xedpoint is not guaranteed. Because of this, the algorithms that we discuss for computing�xed points may not always work on these problems. Also, it is impossible for us tocontinue the computation inde�nitely, we have to terminate after a �nite number ofsteps. In practice, from the path traced by the algorithm, it will be clear whether itseems to be converging, or running away. If it seems to be converging, from the point



2.7. Extensions to Fixed Point Computing 137obtained at termination, an approximate solution of the problem can be obtained. Ifthe algorithm seems to be running away, either we can conclude that the algorithmhas failed to solve the problem, or an e�ort can be made to run the algorithm againwith di�erent initial conditions. Before discussing the algorithm, we will now discusssome standard applications of �xed point computing.
2.7.3 Applications in Unconstrained OptimizationLet �(x) be a real valued function de�ned on Rn and suppose it is required to solvethe problem minimize �(x)over x 2 Rn (2:44)If �(x) is di�erentiable, a necessary condition for a point x 2 Rn to be a local minimumfor (2.44) is r�(x) = 0 (2:45)which is a system of n equations in n unknowns. De�ne f(x) = x� (r�(x))T . Thenevery Brouwer �xed point of f(x) is a solution of (2.45) and vice versa. Hence every�xed point of f(x) satis�es the �rst order necessary optimality conditions for (2.44). If�(x) is convex, every solution of (2.45) is a global minimum for (2.44) and vice versa,and hence in this case (2.44) can be solved by computing a �xed point for f(x) de�nedabove. However, if �(x) is not convex, there is no guarantee that a solution of (2.45),(i.e., a �xed point of f(x) = x � (r�(x))T ) is even a local minimum for (2.44) (itcould in fact be a local maximum). So, after obtaining an approximate �xed point,�x, of f(x), one has to verify whether it is a local minimum or not. If �(x) is twicecontinuously di�erentiable, a su�cient condition for a solution of (2.45) to be a localminimum for (2.44) is that the Hessian matrix H(�(�x)) be positive de�nite.If �(x) is not di�erentiable at some points, but is convex, then the subdi�erentialset @�(x) exists for all x. In this case de�ne F(x) = fx� y : y 2 @�(x) g. Then everyKakutani �xed point of F(x) is a global minimum for (2.44) and vice versa.One strange feature of the �xed point formulation for solving (2.45) is worthmentioning. De�ne G(x) = fx+ y : y 2 @�(x) g. Clearly, every Kakutani �xed pointof G(x) also satis�es the necessary optimality conditions for (2.44). Mathematically,the problems of �nding a Kakutani �xed point of F(x) or G(x) are equivalent, butthe behavior of the �xed point computing algorithm discussed in Section 2.7.8 on thetwo problems could be very di�erent. This is discussed later on under the subsectionentitled, \Su�cient Conditions for Finite Termination" in Section 2.7.8. In practicalapplications, one might try computing the Kakutani �xed point of F(x) using thealgorithm discussed in Section 2.7.8, and if its performance is not satisfactory switchover and use the same algorithm on G(x) instead.



138 Chapter 2. The Complementary Pivot Algorithm2.7.4 Application to Solve a System ofNonlinear InequalitiesConsider the system gi(x) <= 0; for i = 1 to m (2:46)where each gi(x) is a real valued convex function de�ned on Rn. De�ne the pointwisesupremum function s(x) = Maximum f g1(x); : : : ; gm(x) g. As discussed earlier, s(x)is itself convex, and @s(x) � Si2J(x) @gi(x), where J(x) = f i : gi(x) = s(x) g. If eachgi(x) is di�erentiable, then @s(x) = convex hull of frgi(x) : i 2 J(x) g. If (2.46) has afeasible solution �x, then s(�x) <= 0, and conversely every point x satisfying s(x) <= 0 isfeasible to (2.46). So the problem of �nding a feasible solution of (2.46) can be tackledby �nding the unconstrained minimum of s(x), which is the same as the problem of�nding a Kakutani �xed point of F(x) = fx� y : y 2 @s(x) g as discussed in Section2.7.3. If �x is a Kakutani �xed point of this map and �s(x) > 0, (2.46) is infeasible. Onthe other hand if s(�x) <= 0, �x is a feasible solution of (2.46).2.7.5 Application to Solve a System ofNonlinear EquationsConsider the system of equationshi(x) = 0; i = 1 to r (2:47)where each hi(x) is a real valued function de�ned on Rn. Let h(x) = (h1(x); : : : ;hr(x))T . If r > n, (2.47) is said to be an overdetermined system. In this case theremay be no solution to (2.47), but we may be interested in �nding a point x 2 Rn thatsatis�es (2.47) as closely as possible. The least squares approach for �nding thisis to look for the unconstrained minimum of Pri=1(hi(x))2, which can be posed as a�xed point problem as in Section 2.7.3.If r < n, (2.47) is known as an underdetermined system, and it may havemany solutions. It may be possible to develop additional n � r equality constraintswhich when combined with (2.47) becomes a system of n equations in n unknowns. Orthe least squares method discussed above can be used here also.Assume that r = n. In this case de�ne f(x) = x � h(x). Then every Brouwer�xed point of f(x) solves (2.47) and vice versa. As mentioned in Section 2.7.3, it maybe worthwhile to also consider the equivalent problem of computing the �xed point ofd(x) = x+ h(x) in this case.



2.7. Extensions to Fixed Point Computing 1392.7.6 Application to Solve theNonlinear Programming ProblemConsider the nonlinear programMinimize �(x)subject to gi(x) <= 0; i = 1 to m (2:48)where �(x), gi(x) are real valued functions de�ned over Rn. We will assume that eachof these functions is convex, and continuously di�erentiable. We make an additionalassumption that if (2.48) is feasible (i. e., the set fx : gi(x) <= 0; i = 1 to m g 6= ;), thenthere exists an x 2 Rn satisfying gi(x) < 0, for each i = 1 to m. This assumption isknown as a constraint quali�cation. As before, let s(x) be the pointwise supremumfunction, maximum f g1(x); : : : ; gm(x) g. Then (2.48) is equivalent toMinimize �(x)s(x) <= 0 (2:49)By our assumption, and the results discussed earlier, s(x) is also convex and @s(x) =convex hull of frgi(x) : i 2 J(x) g, where J(x) = f i : s(x) = gi(x) g. Consider thefollowing point-to-set mapping de�ned on Rn.F(x) = 8<:�x� (r�(x))T 	; if s(x) < 0 ,�x� y : y 2 convex hull of fr�(x); @s(x)g	; if s(x) = 0 ,fx� y : y 2 @s(x) g; if s(x) > 0 . (2:50)Under our assumptions of convexity and di�erentiability, it can be veri�ed that F(x)de�ned in (2.50) is USC. Let �x be a Kakutani �xed point of F(x). If s(�x) < 0, then 0 =r�(�x), and thus �x is a global minimum for �(x) over Rn and is also feasible to (2.48),and therefore solves (2.48). If s(�x) > 0, then 0 2 @s(�x), thus 0 is a global minimum ofs(x), and since s(�x) > 0, (2.48) has no feasible solution. If s(�x) = 0, then 0 2 convexhull of fr�(�x); @s(�x) g = convex hull of fr�(�x);rgi(�x) for i 2 J(�x)g, so there existsnonnegative numbers �0, �i for i 2 J(�x) satisfying�0r�(�x) + Xi2J(�x)�irgi(�x) = 0�0 + Xi2J(�x)�i = 1 (2:51)�0; �i >= 0 for all i 2 J(�x)If �0 = 0, (2.51) implies that 0 2 @s(�x) and so s(�x) is a global minimizer of s(�x), �xis feasible to (2.48) since s(�x) = 0, and these facts lead to the conclusion that fx :gi(x) <= 0; for i = 1 to m g 6= ; and yet there exists no x satisfying gi(x) < 0 for alli = 1 to m, violating our constraint quali�cation assumption. So �0 > 0 in (2.51).



140 Chapter 2. The Complementary Pivot AlgorithmSo if we de�ne ��i = �i�0 if i 2 J(�x), = 0 otherwise, then from (2.51) we conclude that�x, �� together satisfy the Karush-Kuhn-Tucker necessary conditions for optimality for(2.48), and our convexity assumption imply that �x is the global minimum for (2.48).Thus solving (2.48) is reduced to the problem of �nding a Kakutani �xed point ofthe mapping F(x) de�ned in (2.50).Example 2.21Consider the problem :minimize �(x) = x21 + x22 � 2x1 � 3x2subject to g1(x) = x1 + x2 <= 1 (2:52)Clearlyr�(x) = (2x1�2; 2x2�3), rg1(x) = (1; 1). The mapping F(x) for this problemisF(x) = 8<:��x1 + 2;�x2 + 3)T 	; if x1 + x2 < 1 ,Convex hull of f(�x1 + 2;�x2 + 3)T ; (x1 � 1; x2 � 1)Tg; if x1 + x2 = 1 ,f (x1 � 1; x2 � 1)T g; if x1 + x2 > 1 .It can be veri�ed that �x = (14 ; 34 )T is a Kakutani �xed point of this mapping F(x), andthat �x is the global optimum solution of the nonlinear program (2.52).If �(x), gi(x) are all continuously di�erentiable, but not necessarily convex, we canstill de�ne the point-to-set mapping F(x) as in (2.50) treating @s(x) = convex hull offrgi(x) : i 2 J(x) g. In this general case, any Kakutani �xed point �x of F(x) satis�esthe �rst order necessary optimality conditions for (2.48), but these conditions are notsu�cient to guarantee that �x is a global or even a local minimum for (2.48), see Section10.2 for de�nitions of a global minimum, local minimum. One can then try to checkwhether �x satis�es some su�cient condition for being a local minimum for (2.48) (forexample, if all the functions are twice continuously di�erentiable, a su�cient conditionfor �x to be a local minimum for (2.48) is that the Hessian matrix of the Lagrangianwith respect to x is positive de�nite at �x. See references [10.2, 10.3, 10.13, 10.17, A8,A12]). If these su�cient optimality conditions are not satis�ed, it may be very hardto verify whether �x is even a local minimum for (2.48). As an example, consider theproblem: minimize xTDx, subject to x >= 0. The point 0 2 Rn is a global minimumfor this problem if D is PSD. If D is not PSD, 0 is a local minimum for this problem i�D is a copositive matrix. Unfortunately, there are as yet no e�cient methods knownfor checking whether a matrix which is not PSD, is copositive. See Section 2.9.3.Thus, in the general nonconvex case, the �xed point approach for (2.48) �nds apoint satisfying the �rst order necessary optimality conditions for (2.48), by computinga Kakutani �xed point of F(x) de�ned in (2.50). In this general case, many of the othersolution techniques of nonlinear programming for solving (2.48) (see Chapter 10) areusually based on descent methods. These techniques generate a sequence of points



2.7. Extensions to Fixed Point Computing 141fxr : r = 0; 1; : : :g. Given xr, they generate a yr 6= 0 such that the direction xr+�yr,� >= 0, is a descent direction, that is, it is either guaranteed to decrease the objectivevalue or a measure of the infeasibility of the current solution to the problem or somecriterion function which is a combination of both. The next point in the sequence xr+1is usually taken to be the point which minimizes the criterion function on the half linefxr + �yr : � >= 0 g obtained by using some one dimensional (� is the only variable tobe determined in this problem) line minimization algorithm. And the whole processis then repeated with the new point. On general problems, these methods su�er fromthe same di�culties, they cannot theoretically guarantee that the point obtained attermination is even a local minimum. However, these descent methods do seem tohave an edge over the �xed point method presented above in the general case. Inthe absence of convexity, one has more con�dence that a solution obtained througha descent process is likely to be a local minimum, than a solution obtained through�xed point computation which is based purely on �rst order necessary conditions foroptimality.The approach for solving the nonlinear program (2.48) using the �xed point trans-formation has been used quite extensively, and seems to perform satisfactorily. Seereferences [2.40, 2.58, 2.59].Many practical nonlinear programming models tend to be nonconvex. The �xedpoint approach outlined above, provides additional arsenal in the armory for tacklingsuch general problems.Now consider the general nonlinear programming problem in which there are bothequality and inequality constraints.minimize �(x)subject to gi(x) <= 0; i = 1 to mht(x) = 0; t = 1 to p (2:53)The usual approach for handling (2.53) is the penality function method whichincludes a term with a large positive coe�cient corresponding to a measure of violationof the equality constraints in the objective function. One such formulation leads to theproblem minimize �(x) + � pPt=1(ht(x))2subject to gi(x) <= 0; i = 1 to m (2:54)In (2.54), �, a large positive number, is the penalty parameter. If (2.53) has afeasible solution, every optimum solution of (2.54) would tend to satisfy ht(x) = 0,t = 1 to p as � becomes very large, and thus would also be optimal to (2.53). When� is �xed to be a large positive number, (2.54) is in the same form as (2.48), and canbe tackled through a �xed point formulation as discussed above.Advantages and Disadvantages of this ApproachIn the NLP (2.48) there may be several constraints (i, e., m may be large) and theproblem di�culty can be expected to increase with the number of constraints. The



142 Chapter 2. The Complementary Pivot Algorithm�xed point approach for solving (2.48), �rst transforms (2.48) into the equivalent (2.49),which is an NLP in which there is only a single constraint. The fact that (2.49) is asingle constraint problem is de�nitely advantageous.The original problem (2.48) is a smooth problem since the objective and constraintfunctions are all assumed to be continuously di�erentiable. Eventhough gi(x) are con-tinuously di�erentiable for all i, there may be points x where s(x) is not di�erentiable.However, s(x) is di�erentiable almost everywhere and so (2.49) is a nonsmooth NLP.That this approach transforms a nice smooth NLP into a nonsmooth NLP is a disad-vantage. But, because of the special nature of the function s(x), for any x, we are ableto compute a point in the subdi�erential set @s(x) e�ciently, as discussed above. Forcomputing a �xed point of the map F(x) de�ned in (2.50), the algorithms discussed inthe following sections need as inputs only subroutines to compute r�(x), or a pointfrom @s(x) for any given x, which are easy to provide. Thus, eventhough (2.49) isa nonsmooth NLP, the �xed point approach is able to handle it e�ciently. Practicalcomputational experience with this approach is quite encouraging.The �xed point approach solves NLPs using only the �rst order necessary con-ditions for optimality. The objective value is never computed at any point. This isa disadvantage in this approach. In nonconvex NLPs, a solution to the �rst ordernecessary conditions for optimality, may not even be a local minimum. Since the ob-jective value is not used or even computed in this approach, we lack the circumstantialevidence, or the neighborhood information about the behaviour of objective values, toconclude that the �nal solution obtained is at least likely to be a local minimum.
2.7.7 Application to Solve theNonlinear Complementarity ProblemAs discussed in Section 1.6, the nonlinear complementary problem (NLCP) is thefollowing. Given g(x) = (g1(x); : : : ; gn(x))T : Rn+ ! Rn, where Rn+ is the nonnegativeorthant of Rn, �nd x >= 0 satisfying g(x) >= 0, xT g(x) = 0.De�ne  (x) = Maximum f�x1; : : : ;�xng. So @ (x) = convex hull of f�I.j : jsuch that �xj >= �xi for all i = 1 to n in x g. De�ne the point-to-set map on Rn,F(x) = 8<: fx� y : y 2 @ (x) g; if  (x) > 0 ,�x� y : y 2 convex hull of fg(x); @ (x)g	; if  (x) = 0 ,fx� g(x)g; if  (x) < 0 . (2:55)It can be veri�ed that every Kakutani �xed point of F(x) de�ned here is a solution ofthe NLCP and vice versa. Thus the NLCP can be solved by computing a Kakutani�xed point of F(x).



2.7. Extensions to Fixed Point Computing 1432.7.8 Merrill's Algorithm for Computinga Kakutani Fixed PointLet F(x) be a point-to-set map de�ned on Rn. We describe in this section, Merrill'smethod for computing a Kakutani �xed point of F(x).Data Requirements of the AlgorithmIf the algorithm requires the storage of the complete set F(x) for any x, it will not bepractically useful. Fortunately, this algorithm does not require the whole set F(x) foreven one point x 2 Rn. It only needs a computational procedure (or a subroutine),which, for any given x 2 Rn, outputs one point from the set F(x). The algorithm willcall this subroutine a �nite number of times. Thus the data requirements of the algo-rithm are quite modest, considering the complexity of the problem being attempted,and it can be implemented for the computer very e�ciently. Also, the primary com-putational step in the algorithm is the pivot step, which is the same as that in thesimplex method for linear programs.n-Dimensional SimplexThe points v1; : : : ; vr in Rn are the vertices of an (r � 1) dimensional simplex if theset of column vectors �8>: 1v19>; ; : : : ;8>: 1vr9>;� in Rn+1 form a linearly independent set.The simplex itself is the convex hull of its vertices and will be denoted by the symbolhv1; : : : ; vri. Given the simplex with vertices v1; : : : ; vr, the convex hull of any subsetof its vertices is a face of the simplex. An n-dimensional simplex has (n+ 1) vertices.See Figure 2.11. Clearly a 1-dimensional simplex is a line segment of positive lengthjoining two distinct points, a 2-dimensional simplex is the triangle enclosed by threepoints which are not collinear, etc.



144 Chapter 2. The Complementary Pivot Algorithm
v1

v3

v4

v2

Figure 2.11 The tetrahedron which is the convex hull of vertices fv1; v2; v3;v4g is a 3-dimensional simplex. Its vertices v1, v2, v3, v4 are its 0-dimensionalfaces. Its 6 edges, of which the thick line segment joining v1 and v2 is one, areits 1-dimensional faces. The dashed 2-dimensional simplex which is the convexhull of fv1; v2; v3g is one of the four 2-dimensional faces of the tetrahedron.TriangulationsLet K be either Rn or a convex polyhedral subset of Rn of dimension n. A triangu-lation of K is a partition of K into simplexes satisfying the following propertiesi) the simplexes cover K,ii) if two simplexes meet, their intersection is a common face,iii) each point x 2 K has a neighborhood meeting only a �nite number of thesimplexes,iv) each (n�1) dimensional simplex in the triangulation is the face of either twon-dimensional simplexes (in which case, the (n � 1) dimensional simplex issaid to be an interior face in the triangulation) or exactly one n-dimensionalsimplex (in this case the (n�1) dimensional simplex is said to be a boundaryface in the triangulation),v) for every point x 2 K there exists a unique least dimension simplex, say �, inthe triangulation, containing x. If dimension of � is < n, � may be a face ofseveral simplexes in the triangulation of dimension > dimension of �, and xis of course contained on the boundary of each of them. There exists a uniqueexpression for x as a convex combination of vertices of �, and this is the sameexpression for x as the convex combination of the vertices of any simplex inthe triangulation containing x.



2.7. Extensions to Fixed Point Computing 145Example 2.22In Figure 2.12 we give a triangulation of the unit cube in R2. The two 2-dimensionalsimplexes in this triangulation are the convex hulls of fv0; v1; v2; g, fv0; v3; v2g. Thethick line segments in Figure 2.12 are the 1-dimensional simplexes in this triangulationwhich are the faces of exactly one two dimensional simplex. These 1-dimensionalsimplexes are the boundary faces in this triangulation. The thin diagonal line segmentjoining vertices v0 and v2 is the face of exactly two 2-dimensional simplexes, and henceis an interior face in this triangulation.
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1Figure 2.12 Triangulation K1 of the unit square in R2.Example 2.23Consider the partition of the unit square in R2 into simplexes in Figure 2.13. It is nota triangulation since the two simplexes hv1; v2; v3i and hv3; v4; v5i intersect in hv3; v5iwhich is a face of hv3; v4; v5i but not a face of hv1; v2; v3i (it is a proper subset of theface hv2; v3i of hv1; v2; v3i). So the partition of the unit square in R2 in Figure 2.13into simplexes violates property (ii) given above, and is therefore not a triangulation.
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Figure 2.13 A partition of the unit cube in R2 into simplexes which is nota triangulation.The triangulation for the unit cube inR2 given in Example 2.22 can be generalizedto a triangulation of the unit cube in Rn which we call triangulation K1, discussedby Freudenthal in 1942. The vertices of the simplexes in this triangulation are thesame as the vertices of the unit cube. There are n! n-dimensional simplexes in thistriangulation. Let v0 = 0 2 Rn. Let p = (p1; : : : ; pn) be any permutation of f1; : : : ; ng.Each of the n! permutations p leads to an n-dimensional simplex in this triangulation.The n-dimensional simplex associated with the permutation p, denoted by (v0; p), ishv0; v1; : : : ; vni where vi = vi�1 + I.pi ; i = 1 to n : (2:56)In (2.56), I is the unit matrix of order n. For example, for n = 2, p = (1; 2), we getthe simplex hv0 = (0; 0)T ; v1 = (1; 0)T ; v2 = (1; 1)T i. See Figure 2.12. See reference[2.72] for a proof that this does provide a triangulation of the unit cube of Rn.In this representation (v0; p) for the simplex discussed above, v0 is known as theinitial or the 0th vertex of this simplex. The other vertices of this simplex are obtainedrecursively as in (2.56). The vertex vi is called the ith vertex of this simplex for i = 1to n.This triangulation can be extended to provide a triangulation for the whole spaceRn itself, which we call triangulation K1 (it has been called by other symbols like K,I, etc., in other references) by �rst partitioning Rn into unit cubes using the integerpoints in Rn, and then triangulating each unit cube as above. The vertices in thistriangulation are all the points with integer coordinates in Rn. Let �v be any suchvertex, and let p = (p1; : : : ; pn) be any permutation of f1; : : : ; ng. De�ne v0 = �v,and obtain vi for i = 1 to n as in (2.56). Let (�v; p) denote the simplex hv0; v1; : : : ;



2.7. Extensions to Fixed Point Computing 147vni. The set of all such simplexes as �v ranges over all points with integer coordinatesin Rn, and p ranges over all the permutations of f1; : : : ; ng is the collection of all then-dimensional simplexes in this triangulation K1. Again see reference [2.72] for a proofthat this is indeed a triangulation of Rn. See Figure 2.14.
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Figure 2.14 A partition of the unit cube in R2 into simplexes which is nota triangulation.The mesh of a triangulation is de�ned to be the maximum Euclidean distancebetween any two points in a simplex in the triangulation. Clearly the mesh of trian-gulation K1 of Rn is pn.We can get versions of triangulation K1 with smaller mesh by scaling the variablesappropriately. Also the origin can be translated to any speci�ed point. Let x0 2 Rnbe any speci�ed point and � a positive number. Let J = fx : x = (xj) 2 Rn; xj � x0jis an integer multiple of � for all j = 1 to n g. For any v0 2 J, and p = (p1; : : : ; pn), apermutation of f1; : : : ; ng, de�nevi = vi�1 + �I.pi ; i = 1 to n : (2:57)Let (v0; p) denote the simplex hv0; v1; : : : ; vni. The set J are the vertices, and the setof all simplexes (v0; p) as v0 ranges over J and p ranges over all the permutations off1; 2; : : : ; ng are the n-dimensional simplexes, in the triangulation of Rn. We denotethis triangulation by the symbol �K1(x0). Its mesh is �pn.



148 Chapter 2. The Complementary Pivot AlgorithmHow is the Triangulation used by the Algorithm ?The algorithm traces a path. Each step in the path walks from one (n�1)-dimensionalface of an n-dimensional simplex in the triangulation, to another (n� 1)-dimensionalface of the same simplex, and continues this way. See Figure 2.15. The path tracedis unambiguous once it is started, and is similar to the one in the ghost story men-tioned earlier, or the path traced by the complementary pivot method for the LCP.Computationally, the algorithm associates a column vector in Rn to each vertex in thetriangulation. At each stage, the columns associated with the vertices of the current(n�1)-dimensional simplex form a basis, and the inverse of this basis is maintained. Astep in the algorithm corresponds to the pivot step of entering the column associatedwith a new entering vertex into the basis. The path never returns to a simplex it hasvisited earlier.To execute the path, one may consider it convenient to store all the simplexes inthe triangulation explicitly. If this is necessary, the algorithm will not be practicallyuseful. For practical e�ciency the algorithm stores the simplexes using the mathe-matical formulae given above, which are easily programmed for the computer. Thecurrent simplex is always maintained by storing its 0th vertex and the permutationcorresponding to it. To proceed along the path e�ciently, the algorithm provides verysimple rules for termination once a desirable (n� 1)-dimensional simplex in the trian-gulation is reached (this is clearly spelled out later on). If the termination condition isnot satis�ed, a mathematical formula provides the entering vertex. A minimum ratioprocedure is then carried out to determine the dropping vertex, and another mathe-matical formula then provides the 0th vertex and the permutation corresponding to thenew simplex. All these procedures make it very convenient to implement this algorithmfor the computer.
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Figure 2.15 A path traced by the algorithm through the simplexes in thetriangulation.Special Triangulations of Rn � [0; 1]For computing a Kakutani �xed point of F(x) de�ned on Rn, Merrill's algorithm usesa triangulation of Rn � [0; 1], which is a restriction of triangulation K1 for Rn+1 tothis region, known as the special triangulation eK1.We will use the symbolX = 8>: xxn+19>; with x 2 Rn, to denote points inRn�[0; 1].The set of vertices J in the special triangulationK1 of Rn�[0; 1] are all the points X =8>: xxn+19>; 2 Rn+1 with x an integer vector in Rn and xn+1 = 0 or 1. The set of thesevertices of the form 8>: v19>; is denoted by J1, and the set of vertices of the form 8>: v09>;is denoted by J0. J = J0[J1. The boundary of Rn� [0; 1] corresponding to xn+1 = 1is known as the top layer, and the boundary corresponding to xn+1 = 0 is called thebottom layer. So J1, J0 are respectively the points with integer coordinates in the topand bottom layers. The (n+ 1)-dimensional simplexes in the special triangulation eK1of Rn � [0; 1] are those of the form (V0; P ) where P = (p1; : : : ; pn+1) is a permutationof f1; : : : ; n+ 1g and V0 2 J0, and (V0; P ) = hV0; V1; : : : ; Vn+1i whereVi = Vi�1 + I.pi ; i = 1 to n+ 1 : (2:58)In (2.58), I is the unit matrix of order n + 1. It can be veri�ed that the set of allsimplexes of the form (V0; P ) as V0 ranges over J0, and P ranges over all permutations



150 Chapter 2. The Complementary Pivot Algorithmof f1; 2; : : : ; n + 1g forms a triangulation of Rn � [0; 1]. V0 is the 0th vertex andfor i = 1 to n + 1, the vertex Vi determined as in (2.58) in the ith vertex of the(n + 1)-dimensional simplex denoted by (V0; P ). The following properties should benoted.Property 1 : In the representation (V; P ) for an (n+1)-dimensional simplex in thespecial triangulation eK1 of Rn � [0; 1], the 0th vertex V is always an integer point inthe bottom layer, that is, belongs to J0.Property 2 : In the representation (V; P ) for an (n+1)-dimensional simplex in thespecial triangulation eK1 of Rn � [0; 1], there exists a positive integer r such that forall i <= r � 1, the ith vertex of (V; P ) belongs to the bottom layer; and for all i >= r,the ith vertex of (V; P ) belongs to the top layer. The i here is the index satisfying theproperty that if the permutation P = (p1; : : : ; pn+1), then pi = n + 1. This propertyfollows from the fact that the vertices of the simplex (V; P ) are obtained by lettingV0 = V , and using (2.58) recursively.Two (n + 1)-dimensional simplexes in the special triangulation eK1 are said tobe adjacent, if they have a common n-dimensional simplex as a face (i. e., if (n + 1)of their vertices are the same). Merrill's algorithm generates a sequence of (n + 1)-dimensional simplexes �1, �2, �3, : : : of eK1 in which every pair of consecutive simplexesare adjacent. So, given �j , �j+1 is obtained by dropping a selected vertex V � of �jand adding a new vertex V + in its place. The rules for obtaining �j+1 given �j andV � are called the entering vertex choice rules of the algorithm. These rules arevery simple, they permit the generation of vertices as they are needed. We providethese rules here.Let �j = (V; P ), where P = (p1; : : : ; pn+1) is a permutation of f1; : : : ; n + 1g.The vertices of �j are V0 = V; V1; : : : ; Vn+1, as determined by (2.58). Let V � be thedropping vertex. So V � is Vi for some i = 0 to n+ 1. There are several cases possiblewhich we consider separately.Case 1 : fV0; V1; : : : ; Vn+1g n fV �g � J1. By property 2, this can only happen ifV � = V0 and V1 2 J1, that is, p1 = n + 1. The face of �j obtained by dropping thevertex V �, is the n-dimensional simplex hV1; : : : ; Vn+1i in the top layer, and hence isa boundary face. hV1; : : : ; Vn+1i is the face of exactly one (n+ 1) dimensional simplexin the triangulation eK1, �j , and the algorithm terminates when this happens.Case 2 : fV0; V1; : : : ; Vn+1gnfV �g � J0. By property 2, this implies that V � = Vn+1and Vn 2 J0, that is pn+1 = n + 1. We will show that this case cannot occur in thealgorithm. So whenever V � = Vn+1, we will have pn+1 6= n+ 1 in the algorithm.Case 3 : fV0; V1; : : : ; Vn+1g n fV �g contains vertices on both the top and bottomlayers. So the convex hull of fV0; V1; : : : ; Vn+1g n fV �g is an n-dimensional simplexin the triangulation eK1 which is an interior face, and hence is a face of exactly two(n + 1) dimensional simplexes in the triangulation, one is the present �j. The other�j+1 is (bV ; bP ) as given below (V + given below is the new vertex in �j+1 not in �j , itis the entering vertex that replaces the dropping vertex V �).



2.7. Extensions to Fixed Point Computing 151V � V + (entering vertex) bV bPV � = V0p1 6= n+ 1 Vn+1 + I.p1 V0 + I.p1 (p2; : : : ; pn+1; p1)(see Case 1)yV � = Vi Vi�1 + I.pi+1 V0 (p1; : : : ; pi�1; pi+1;0 < i < n+ 1 pi; pi+2; : : : ; pn+1)V � = Vn+1pn+1 6= n+ 1 V0 � I.pn+1 V0 � I.pn+1 (pn+1; p1; : : : ; pn)(see Case 2)*It can be veri�ed that if (bV ; bP ) is de�ned as above, then bV 2 J0 (since V 2 J0where V is the 0th vertex of �j) and so (bV ; bP ) is an (n + 1)-dimensional simplex inthe special triangulation, and that (bV ; bP ) and (V; P ) share (n + 1) common vertices,so they are adjacent (n + 1) dimensional simplexes in this triangulation. See Figure2.16 for an illlustration of the special triangulation eK1 of R1 � [0; 1].The restriction of the special triangulation eK1 of Rn � [0; 1] to either the toplayer (given by xn+1 = 1) or the bottom layer (given by xn+1 = 0) in the same asthe triangulation K1 of Rn. The mesh of the special triangulation eK1 of Rn� [0; 1] isde�ned to be the mesh of the triangulation of Rn on either the top and bottom layer,and hence it is pn.We can get special triangulation of Rn � [0; 1] of smaller mesh by scaling thevariables in Rn appropriately. Also, the origin in the Rn part can be translated toany speci�ed point in Rn. Let x0 2 Rn be a speci�ed point and � a positive number.Let J(x0; �) = �8>: xxn+19>; : x = (xj) 2 Rn; xj � x0j is an integer multiple of � foreach j = 1 to n, xn+1 = 0 or 1�. Then the points is J(x0; �) are the vertices of thespecial triangulation of Rn� [0; 1] denoted by � eK1(x0). J0(x0; �) = �X = 8>: xxn+19>; :X 2 J(x0; �); xn+1 = 0�, J1(x0; �) = �8>: xxn+19>; : x 2 J(x0; �); xn+1 = 1�. For anyV 2 J0(x0; �), and P = (p1; : : : ; pn+1) a permutation of f1; : : : ; n+ 1g de�neV0 = VVi = Vi�1 + �I.pi ; i = 1 to n+ 1 (2:59)and let (V; P ) = hV0; V1; : : : ; Vn+1i. The set of all (n + 1) dimensional simplexes(V; P ) given by (2.59) with V 2 J0(x0; �) and P ranging over all the permutation ofy In this case, if p1 = n+1, as discussed in Case 1 above, the algorithm terminates.So the algorithm continues only if p1 6= n+ 1 when this case occurs.* In this case, we cannot have pn+1 = n + 1, as discussed in Case 2 above. So,whenever this case occurs in the algorithm, we will have pn+1 6= n+ 1.



152 Chapter 2. The Complementary Pivot Algorithmf1; : : : ; n+1g are the (n+1)-dimensional simplexes in the special triangulation � eK1(x0)of Rn � [0; 1]. Its mesh in �pn. In this triangulation, the vertex 8>:x00 9>; plays thesame role as the origin 8>: 009>; in the triangulation eK1.The Piecewise Linear Approximation anda Linear Approximate �xed Point of F (x)Consider the special triangulation eK1 of R� [0; 1] de�ned above, and let J0, J1 be thevertices in this triangulation on the bottom and top layers respectively. On the toplayer, we de�ne a a piecewise linear map f(X) known as a piecewise linear approxi-mation of F(x) relative to the present triangulation. For each V = 8>: v19>; 2 J1 de�nef(V ) = 8>: f(v)1 9>;, where f(v) 2 F(v). The point f(v) can be selected from the setF(v) arbitrarily, in fact it can be determined using the subroutine for �nding a pointfrom the set F(v), which was pointed out as a required input for this algorithm. Anynonvertex point X = 8>:x19>; on the top layer must lie in an n-dimensional simplex inthe triangulation on this layer. Suppose the vertices of this simplex are Vi = 8>: vi1 9>;,i = 1 to n + 1. Then x can be expressed as a convex combinations of v1; : : : ; vn+1 ina unique manner. Suppose this expression is �1v1 + : : :+ �n+1vn+1 where �1 + : : :+�n+1 = 1, �1; : : : ; �n+1 >= 0. Then de�ne f(x) = �1f(v1) + : : :+ �n+1f(vn+1). f(x)is the piecewise linear approximation of F(x) de�ned on the top layer relative to thepresent triangulation. For X = 8>:x19>; de�ne f(X) = 8>: f(x)1 9>;. In each n-dimensionalsimplex in the top layer in this triangulation f(x) is linear. So f(x) is a well de�nedpiecewise linear continuous function de�ned on the top layer. Remember that thede�nition of f(x) depends on the choice of f(v) from F(v) for V = 8>: v19>; 2 J1.The point x 2 Rn is said to be a linear approximate �xed point of F(x) relativeto the present piecewise linear approximation ifx = f(x) : (2:60)The n-dimensional simplex �Vi = 8>: vi1 9>; : i = 1 to n+ 1� on the top layer contains a�xed point of the piecewise linear map f(x) i� the system�1 : : : �n+11 : : : 1 1f(v1)� v1 : : : f(vn+1)� vn+1 0�i >= 0, i = 1 to n+ 1 (2:61)



2.7. Extensions to Fixed Point Computing 153has a feasible solution. Thus the problem of �nding a �xed point of the piecewise linearapproximation f(x) boils down to the problem of �nding an n-dimensional simplex onthe top layer whose vertices are such that (2.61) is feasible.For each vertex V = 8>: v19>; in the top layer associate the column vector8>: 1f(v)� v9>; 2 Rn+1, which we denote by A.V and call the label of the vertex V .The coe�cient matrix in (2.61) whose columns are the labels of the vertices of the sim-plex is called the label matrix corresponding to the simplex. Because of the natureof the labels used on the vertices, this is called a vector labelling method.An n-dimensional simplex on the top layer is said to be a completely labelledsimplex if the system (2.61) corresponding to it has a nonnegative solution, that is,if it contains a �xed point of the current piecewise linear approximation.Let V0 = 8>: v00 9>; = 8>: 009>;, P = (1; : : : ; n+1) and let (V0; P ) = hV0; V1; : : : ; Vn+1i,where Vi = 8>: vi0 9>;, i = 1 to n. Then hV0; V1; : : : ; Vni is the n-dimensional face of (V0;P ) in the bottom layer. Let W = 8>:wo 9>; be an arbitrary point in the interior of thisn-dimensional simplex hV0; : : : ; Vni, for example, w = (v0+:::+vn)(n+1) . For every vertexV = 8>: v09>; 2 J0 in the bottom layer, de�ne f(V ) = 8>: f(v)0 9>; = 8>:w0 9>;. For anynonvertex X in Rn � [0; 1], X must lie in some (n + 1)-dimensional simplex in thepresent triangulation, say hV 10 ; V 11 ; : : : ; V 1n+1i. So there exist unique numbers �0; : : : ;�n+1 >= 0 such that �0 + �1 + : : :+ �n+1 = 1, X = �0V 10 + �1V 11 + : : :+ �n+1V 1n+1.Then de�ne f(X) = �0f(V 10 )+ : : :+�n+1f(V 1n+1). The map f(X) is thus a continuouspiecewise linear map de�ned on Rn� [0; 1]. In each (n+1) dimensional simplex in thepresent triangulation, f(X) is linear. Also, under this map, every point in the bottomlayer maps into the point W . De�ne the label of any vertex V = 8>: v09>; 2 J0 to be thecolumn vector A.V = 8>: 1w � v9>; 2 Rn+1.Let hV0; V1; : : : ; Vni be the n-dimensional simplex in the bottom layer, from theinterior of which we selected the point W . Since W is in the interior of this simplex,B1, the (n+1)� (n+1) label matrix corresponding to this simplex is nonsingular. Letb = (1; 0; 0; : : : ; 0)T 2 Rn+1. Then the system corresponding to (2.61) for this simplexis �B1 b� >= 0 (2:62)This system has the unique positive solution � = �b = B�11 b > 0, since W is in theinterior of this simplex. Incidentally, this hV0; V1; : : : ; Vni is the only n-dimensionalsimplex in the bottom layer whose label matrix leads to a nonnegative solution to thesystem like (2.61). The reason for it is that since W is in the interior of hV0; V1; : : : ;



154 Chapter 2. The Complementary Pivot AlgorithmVni, W is not contained in any other simplex in the triangulation in the bottom layer.Also, since �b > 0, the n � (n+ 1) matrix ��b ... B�11 � has all rows lexicopositive. Theinverse tableau corresponding to the initial system (2.62) isbasic vector basis inverse� B�11 �b (2:63)The initial simplex hV0; V1; : : : ; Vni in the bottom layer is an n-dimensional face of theunique (n+ 1)-dimensional simplex hV0; V1; : : : ; Vn; Vn+1i in the present triangulationeK1. Introduce a new variable, say �n+1, in (2.62) with its column vector equal to thelabel of this new vertex Vn+1, and bring this variable into the present basic vector. Thepivot column for this pivot operation is B�11 A.Vn+1 . If this pivot column is nonpositive,it would imply that the set of feasible solutions of this augmented system (2.62) withthis new variable is unbounded, which is impossible since the �rst constraint in thesystem says that the sum of all the variables is 1, and all the variables are nonnegative.So, the pivot column contains at least one positive entry, and it is possible to bringthe new variable into the present basic vector. The dropping variable is determinedby the usual lexico minimum ratio test of the primal simplex algorithm, this alwaysdetermines the dropping variable uniquely and unambiguously and maintains the sys-tem lexico feasible. If the label of Vi is the dropping column, the next basis is thelabel matrix of the n-dimensional simplex hV0; : : : ; Vi�1; Vi+1; : : : ; Vn+1i. The inversetableau corresponding to this new basis is obtained by entering the pivot column bythe side of the present inverse tableau in (2.63) and performing a pivot step in it, withthe row in which the dropping variable �i is basic, as the pivot row.By the properties of the triangulation, the new n-dimensional simplex hV0; : : : ;Vi�1; Vi+1; : : : ; Vn+1i is the face of exactly one or two (n + 1) dimensional simplexesin the triangulation. One is the simplex hV0; : : : Vn+1i. If there is another, it must bea simplex of the form hY; V0; : : : ; Vi�1; Vi+1; : : : ; Vn+1i. Then bring the column A.Yinto the basis next. Continuing in this manner, we generate a unique path of the formSn1 , Sn+11 , Sn2 , Sn+12 ; : : :. Here Snk , Sn+1k represent the kth n-dimensional simplex and(n + 1)-dimensional simplex respectively in this path. Termination can only occurif at some stage the basis corresponds to an n-dimensional simplex Snr all of whosevertices are on the top layer. Each n-dimensional simplex in this path is the faceof at most two (n + 1)-dimensional simplexes, we arrive at this face through one ofthese (n + 1)-dimensional simplexes, and leave it through the other. The initial n-dimensional simplex in the bottom layer is a boundary face, and hence is the face ofa unique (n+ 1)-dimensional simplex in the triangulation. So the path continues in aunique manner and it cannot return to the initial n-dimensional simplex again. Also,since the initial n-dimensional simplex is the only n-dimensional simplex in the bottomlayer for which the system corresponding to (2.61) is feasible, the path will never passthrough any other n-dimensional simplex in the bottom layer after the �rst step. Anyn-dimensional simplex obtained on the path whose vertices belong to both the bottomand top layers is an interior face, so it is incident to two (n+1)-dimensional simplexes,



2.7. Extensions to Fixed Point Computing 155we arrive at this n-face through one of these (n+ 1)-dimensional simplexes and leaveit through the other, and the algorithm continues. The reader can verify that theproperties of the path generated are very similar to the almost complementary basicvector path traced by the complementary pivot algorithm for the LCP. Thus we seethat the path continues uniquely and unambiguously and it can only terminate whenthe columns of the current basis are the labels of vertices all of whom belong to thetop layer. When it terminates, from the �nal BFS we get a �xed point of the currentpiecewise linear approximation.Example 2.24Consider n = 1. We consider a single-valued map fromR1 toR1, F(x) = fx2�5x+9g,x 2 R1. The special triangulation of R1 � [0; 1] is given in Figure 2.16.
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Figure 2.16 The column vector by the side of a vertex is its vector label.The vertices for the triangulation are all the points with integer coordinates inR1 � [0; 1]. For each V = 8>: v19>; on the top layer with v integer, we de�ne f(v) =v2 � 5v + 9. We take the initial 1-dimensional simplex on the bottom layer to behV0; V1i and the point W to be the interior point (w; 0)T = �12 ; 0�T in it. For each V =8>: v09>; in the bottom layer, de�ne f(V ) = W = �12 ; 0�T . The label of the vetex V =8>: vxn+19>; is 8>: 1f(v)� v9>; if xn+1 = 1, or 8>: 1w � v9>; if xn+1 = 0. The labels of someof the vertices are entered in Figure 2.16. The initial system corresponding to (2.62)here is



156 Chapter 2. The Complementary Pivot Algorithm�0 �11 1 112 �12 0�0; �1 >= 0The feasible solution of this system and the basis inverse are given below.Basic Basis �b Pivot Column Ratiosvariable Inverse �A.V2�0 12 1 12 92 12=92 Min.�1 12 � 1 12 �72The initial simplex hV0; V1i is the face of the unique 2-dimensional simplex hV0; V1; V2iin the triangulation. So we associate the label of V2 with a variable �2 and bring itinto the basic vector. The pivot column is8>>: 12 112 �19>>; 8>: 149>; = 8>>: 92�72 9>>; = �A.V2and this is entered on the inverse tableau. The dropping variable is �0 and the pivotelement is inside a box. Pivoting leads to the next inverse tableau. For ease in un-derstanding, the vertices are numbered as Vi, i = 0; 1; : : : in Figure 2.16 and we willdenote the variable in the system associated with the label of the vertex Vi by �i.Basic Basis �b Pivot Column Ratiosvariable Inverse �A.V3�2 19 29 19 39 13 Min.�1 89 �29 89 69 86The current 1-simplex hV2; V1i is the face of hV0; V1; V2i and hV3; V1; V2i. We cameto the present basic vector through hV0; V1; V2i, so we have to leave hV2; V1i throughthe 2-simplex hV3; V1; V2i. Hence the updated column of the label of V3, �A.V3 , is theentering column. It is already entered on the inverse tableau. The dropping variableis �2. Continuing, we get the following



2.7. Extensions to Fixed Point Computing 157Basic Basis �b pivot Column Ratiosvariable Inverse �A.V4�3 13 23 13 �23�1 23 �23 23 53 25 Min.�A.V5�3 35 25 35 35 1�4 25 �25 25 25 1�3 0 1 0�5 1 �1 1In the basic vector �3, �4, there is a tie for the dropping variable by the usual primalsimplex minimum ratio test, and hence the lexico minimum ratio test was used indetermining the dropping variable. The algorithm terminates with the basic vector(�3; �5) since the corresponding vertices V3, V5 are both in the top layer. The �xedpoint of the piecewise linear approximation is 0� v3+1� v5 = 0� 2+1� 3 = 3, fromthe terminal BFS. It can be veri�ed that x = 3 is indeed a �xed point of F(x), sinceF(3) = f3g.Su�cient Conditions for Finite Termination with aLinear Approximate Fixed PointOnce the triangulation of Rn� [0; 1] and the piecewise linear approximation are given,the path generated by this algorithm either terminates with an n-dimensional simplexon the top layer (leading to a �xed point of the present piecewise linear approximation)after a �nite number of pivot steps, or continues inde�nitely. Su�cient conditions toguarantee that the path terminates after a �nite number of steps are discussed in [2.58],where the following theorem is proved.Theorem 2.15 Given x̂ 2 Rn and � > 0 let B(x̂; �) = fx : x 2 Rn satisfyingkx� x̂k <= � g. Suppose there are �xed positive numbers � and 
 and a point �x 2 Rnsatisfying: for each x 2 B(�x; �), y 2 B(x; 
)nB(�x; �) and u 2 F(x), (u�x)T (y��x) < 0.Let x0 by an arbitrary point inRn. If the above algorithm is executed using the startingpoint x 2 fx0g [B(�x; � + 
) and a special triangulation eK1 with its mesh <= 
, then,the algorithm terminates in a �nite number of steps with a linear approximate �xedpoint of F(x). Also, every linear approximate �xed point lies in B(�x; � + 
).We refer the reader to O. H. Merril's Ph. D. thesis [2.58] for a proof of this theorem.But it is very hard to verify whether these conditions hold in practical applications.In practical applications we apply the algorithm and let the path continue until some



158 Chapter 2. The Complementary Pivot Algorithmprescribed upper bound on computer time is used up. If termination does not occurby then, one usually stops with the conclusion that the method has failed on thatproblem.One strange feature of the su�cient conditions to guarantee �nite termination ofthe above algorithm is the following. Let f(x) = (f1(x); : : : ; fn(x))T be a continuouslydi�erentiable function from Rn into Rn, and suppose we are applying the algorithmdiscussed above, on the �xed point formulation for the problem of solving the systemof equations \f(x) = 0". Solving the system \f(x) = 0" is equivalent to �ndingthe Kakutani �xed point of either F1(x) = ff(x) + xg or F2(x) = f�f(x) + xg.Mathematically, the problem of �nding a �xed point of F1(x) or F2(x) are equivalent.However, if F1(x) satis�es the su�ciency condition for �nite termination, F2(x) willnot. Thus, if the algorithm is applied to �nd the �xed points of F1(x), and F2(x); thebehavior of the algorithm on the two problems could be very di�erent. On one of themthe algorithm may have �nite termination, and on the other it may never terminate.This point should be carefully noted in using this algorithm in practical applications.Algorithm to generate an Approximate Fixed Point of F(x)Select a sequence of positive numbers �0 = 1; �1; �2; : : : converging to zero. Let x0 = 0.Set t = 0 and go to Step 1.Step 1 : De�ne the piecewise linear approximation for F(x) relative to the specialtriangulation �t eK1(xt) choosing the point W from the interior of the translate of then-dimensonal face of the initial simplex h0; I.1; : : : ; I.ni on the bottom layer in this tri-angulation. Find a �xed point of this piecewise linear approximation using this specialtriangulation by the algorithm discussed above. Suppose the �xed point obtained isxt+1. xt+1 is a linear approximate �xed point of F(x) relative to this special triangu-lation �t eK1(xt). If xt+1 2 F(xt+1), terminate, xt+1 is a �xed point of F(x). Otherwisego to Step 2.Step 2 : Replace t by t+ 1 and do Step 1.So this method generates the sequence fx1; x2; x3; : : :g of linear approximate �xedpoints for F(x). If at any stage xt 2 F(xt), it is a �xed point of F(x) and we terminate.Otherwise, any limit point of the sequence fxt : t = 1; 2; : : :g can be shown to be a�xed point of F(x). In practice, if �nite termination does not occur, we continue until�t becomes su�ciently small and take the �nal xt as an approximate �xed point ofF(x).To �nd Fixed Points of USC Maps De�ned on aCompact Convex Subset ��� � RnWithout any loss of generality we can assume that ��� has a nonempty interior (if theinterior of ��� in Rn is ;, the problem is not altered by replacing Rn by the a�ne hullof ���, in which ��� has a nonempty interior). Let F(x) be the given USC map. So F(x)



2.8. Computational Complexity of the Complementary Pivot Algorithm 159is de�ned for all x 2 ���, and for all such x, F(x) is a compact convex subset of ���. Sincethis map is only de�ned on ���, and not on the whole of Rn, the algorithm discussedabove does not apply to this problem directly. However, as pointed out by B. C. Eaves[2.44], we can extend the de�nition of F(x) to the whole of Rn as below. Let c be anypoint from the interior of ���.F1(x) = 8<: fcg; if x 62 ���convex hull of fc;F(x)g; if x 2 boundary of ���F(x); if x 2 interior of ���.It can be veri�ed that F1(x) is now a USC map de�ned on Rn, and that every �xedpoint of F1(x) is in ��� and is also a �xed point of F(x) and vice versa. Since F1(x) isde�ned over all of Rn, the method discussed above can be applied to �nd a �xed pointof it.Homotopy InterpretationIn the algorithm discussed above for computing a �xed point of the piecewise linearapproximation, there are two layers, the bottom layer and the top layer. We havethe same triangulation of Rn in both the bottom and top layers. The labels for thevertices on the bottom layer are arti�cial labels corresponding to a very simple mapfor which we know the �xed point. The labels for the vertices on the top layer arenatural labels corresponding to the piecewise linear map whose �xed point we want to�nd. The algorithm starts at the known �xed point of the arti�cial map of the bottomlayer and walks its way through the triangulation until it reaches a �xed point of thepiecewise linear map on the top layer. This makes it possible to interpret the abovealgorithm as a homotopy algorithm. Other homotopy algorithms for computing �xedpoints with continuous re�nement of the grid size have been developed by B. C. Eaves[2.44] and B. C. Eaves and R. Saigal [2.47] and several others [2.40 to 2.80].Comments 2.2 H. Scarf [2.68] �rst pointed out that the basic properties of thepath followed by the complementary pivot algorithm in the LCP can be used to com-pute approximate Brouwer's �xed points using partitions of the space into sets calledprimitive sets, and T. Hansen and H. Scarf [2.69] extended this into a method forapproximating Kakutani �xed points. The earliest algorithms for computing approx-imate �xed points using triangulations are those by B. C. Eaves [2.44], H. W. Kuhn[2.54]. These early algorithms su�ered from computational ine�ciency because theystart from outside the region of interest. The �rst method to circumvent this di�cultyis due to O. H. Merrill [2.57, 2.58] discussed above. The applications of �xed pointmethods in nonlinear programming discussed in Sections 2.7.3, 2.7.4, 2.7.5, 2.7.6 and2.7.7 are due to O. H. Merrill [2.58]. Besides the triangulation K1 discussed above,Merrill's algorithm can be implemented using other triangulations, see M. J. Toddsbook [2.72] and the papers [2.40 to 2.80].



160 Chapter 2. The Complementary Pivot Algorithm2.8 COMPUTATIONAL COMPLEXITY OF THECOMPLEMENTARY PIVOT ALGORITHMThe computational complexity of an algorithm measures the growth of the com-putational e�ort involved in executing the algorithm as a function of the size of theproblem. In the complementary pivot algorithm, we will assess the computational ef-fort by the number of pivot steps carried out before the algorithm terminates. Thereare three commonly used measures for studying the computational complexity of analgorithm. These are discussed below.Worst Case Computational ComplexityThis measure is a tight mathematical upper bound on the number of pivot steps re-quired before termination, as a function of the size of the problem. In studying theworst case computational complexity we will assume that the data is integer, or moregenerally, rational, that is, each mij , qi in the matrices q, M is a ratio of two inte-gers. In this case by multiplying all the data by a suitable positive integer, we cantransform the problem into an LCP in which all the data is integer. Hence withoutany loss of generality we assume that all the data is integer, and de�ne the size ofthe problem to be the total number of bits of storage needed to store all the data inthe problem in binary form. See Chapter 6 where a mathematical de�nition of thissize is given. The worst case computational complexity of an algorithm provides aguaranteed upper limit on the computational e�ort needed to solve any instance ofthe problem by the algorithm, as a function of the size of the instance. The algorithmis said to be polynomially bounded if this worst case computational complexity isbounded above by a polynomial of �xed degree in the size of the problem, that is, ifthere exist constants �, r independent of the size, such that the computational e�ortneeded is always <= �sr when the algorithm is applied on problems of size s. Eventhough the worst case computational complexity is measured in terms of the numberof pivot steps, each pivot step needs O(n2) basic arithmetical operations (addition,multiplication, division, comparison) on data each of which has at most s digits, wheres is the size and n the order of the instance; so if the algorithm is polynomially boundedin terms of the number of pivot steps, it is polynomially bounded in terms of the basicarithmetical operations. In Chapter 6 we conclusively establish that the complemen-tary pivot algorithm is not a polynomially bounded algorithm in this worst case sense.Using our examples discussed in Chapter 6, in [2.74] M. J. Todd constructed examplesof square nonsingular systems of linear equations \Ax� b = 0", with integer data, forsolving which the computational e�ort required by Merrill's algorithm of Section 2.7.8,grows exponentially with the size of the problem.An algorithm may have a worst case computational complexity which is an ex-ponentially growing function of the size of the problem, just because it performs verypoorly on problem instances with a very rare pathological structure. Such an algorithm



2.8. Computational Complexity of the Complementary Pivot Algorithm 161might be extremely e�cient on instances of the problem not having the rare patholog-ical structure, which may never show up in practical applications. For this reason, theworst case measure is usually very poor in judging the computational e�ciency of analgorithm, or its practical utility.The Probabilistic Average Computational ComplexityHere we assume that the data in the problem is randomly generated according tosome assumed probability distribution. The average computational complexity of thealgorithm under this model is then de�ned to be the statistical expectation of thenumber of steps needed by the algorithm before termination, on problem instanceswith this data. Since the expectation is a multiple integral, this average analysisrequires techniques for bounding the values of multiple integrals. If the probabilitydistributions are continuous distributions, the data generated will in general be realnumbers (not rational), and so in this case we de�ne the size of the LCP to be itsorder n. We assume that each pivot step in the algorithm is carried out on the realdata using exact arithmetic, but assess the computational complexity by the averagenumber of pivot steps carried out by the algorithm before termination.M. J. Todd performed the average analysis in [2.36] under the folowing assump-tions on the distribution of the data (q;M).i) With probability one, every square submatrix of M whose sets of row indicesand column indices di�er in at most one element, is nonsingular.ii) q is nondegenerate in the LCP (q;M).iii) The distributions of (q;M) are sign-invariant; that is, (q;M) and (Sq; SMS)have identical distributions for all sign matrices S (i. e., diagonal matriceswith diagonal entries of +1 or �1).Under these assumptions he showed that the expected number of pivot steps takenby the lexicographic Lemke algorithm (see Section 2.3.4) before termination whenapplied on the LCP (q;M) is at most n(n+1)4 .M. J. Todd [2.36] also analysed the average computational complexity of the lex-icographic Lemke algorithm applied on the LCP corresponding to the LPminimize cxsubject to Ax >= bx >= 0under the following assumptions. A is a matrix of order m � N . The probabilitydistribution generating the data (A; b; c) and hence the data (q;M) in the correspondingLCP satis�es the following assumptions :i) with probability one, the LP and its dual are nondegenerate (every solution ofAx� u = b has at least m nonzero variables, and every solution of yA+ v =c has at least N nonzero variables), and every square submatrix of A isnonsingular.



162 Chapter 2. The Complementary Pivot Algorithmii) the distributions of (A; b; c) and of (S1AS2; S1b; S2c) are identical for all signmatrices S1, S2 of appropriate dimension). This is the sign invariance re-quirement.Under these assumptions he showed that the expected number of pivot steps takenby the lexicographic Lemke algorithm when applied on the LCP corresponding to thisLP is at most, minimum �m2+5m+112 ; 2N2+5N+52 	. See also [2.31] for similar resultsunder slightly di�erent probabilistic models.In a recent paper, [8.20] R. Saigal showed that the expected number of pivot stepstaken by the lexicographic Lemke algorithm when applied on the LCP correspondingto the above LP is actually bounded above by m and asymptotically approaches m2 �1,where m is the number of rows in A.Unfortunately, these nice quadratic or linear bound expected complexity resultsseem very dependent on the exact manner in which the algorithm is implemented, andon the problabilistic model of the data. For example, it has not been possible so far toobtain comparable results for the complementary pivot algorithm of Section 2.2 whichuses the column vector e of all 1's as the original column vector of the arti�cial variablez0.Empirical Average Computation ComplexityThis measure of computational complexity is used more in the spirit of simulation.Here, a computational experiment is usually performed by applying the algorithm ona large number of problem instances of various sizes, and summary statistics are thenprepared on how the algorithm performed on them. The data is usually generatedaccording to some distribution (typically we may assume that each data element is auniformly distributed random variable from an interval such as �100 to +100, etc.). Inthe LCP, we may also want to test how the complementary pivot algorithm performsunder varying degrees of sparsity of q andM . For this, a certain percentage of randomlychosen entries in q andM can be �xed as zero, and the remaining obtained randomly asdescribed above. It may also be possible to generateM so that it has special properties.As an example, if we want to experiment on LCPs associated with PSD symmetricmatrices, we can generate a random square matrix A as above and takeM to be ATA.Such computational experiments can be very useful in practice. The experimentsconducted on the complementary pivot algorithm, suggest that the empirical averagenumber of pivot steps before termination grows linearly with n, the order of the LCP.We know that Merrill's simplicial method for computing the �xed point of a piece-wise linear map discussed in Section 2.7.8 may not terminate on some problems. Com-putational experiments indicate that on problems on which it did terminate, the av-erage number of simplices that the algorithm walked through before termination, isO(n2), as a function of the dimension of the problem. See [2.62 to 2.67].



2.9. The General Quadratic Programming Problem 1632.9 THE GENERAL QUADRATICPROGRAMMING PROBLEMFrom the results in Section 2.3 we know that the complementary pivot method pro-cesses convex quadratic programs with a �nite computational e�ort. Here we discussthe general, possibly nonconvex, quadratic programming problem. This is a problemin which a general quadratic objective function is to be minimized subject to linearconstraints.The Reduction ProcessIf there is an equality constraint on the variables, using it, obtain an expression forone of the variables as an a�ne function of the others, and eliminate this variable andthis constraint from the optimization portion of the problem. A step like this is calleda reduction step, it reduces the number of variables in the optimization problemby one, and the number of constraints by one. In the resulting problem, if there isanother equality constraint, do a reduction step using it, and continue in the samemanner. When this work is completed, only inequality constraints remain, and thesystem of constraints assumes the form FX >= f , which includes any sign restrictionsand lower or upper bound constraints on the variables. We assume that this system isfeasible. An inequality constraint in this system is said to be a binding inequalityconstraint if it holds as an equation at all feasible solutions. A binding inequalityconstraint can therefore be treated as an equality constraint without a�ecting the setof feasible solutions. Binding inequality constraints can be identi�ed using a linearprogramming formulation. Introduce the vector of slack variables v and transform thesystem of constraints into FX � v = f , v >= 0. The ith constraint in the system,Fi.X >= fi, is a binding constraint i� the maximum value of vi subject to FX � v = f ,v >= 0, is zero. Using this procedure identify all the binding constraints, change eachof them into an equality constraint in the system. Carry out further reduction stepsusing these equality constraints. At the end, the optimization portion of the problemreduces to one of the following formMinimize �(x) = cx+ 12xTDxSubject to Ax >= b (2:64)satisfying the property that Ax > b is feasible. Let A be of order m� n. Without anyloss of generality we assume that D is symmetric (because xTDx = xT D+DT2 x andD+DT2 is a symmetric matrix). Let K = fx : Ax >= bg. By our assumptions here K 6= ;and in fact K has a nonempty interior. Every interior point of K satis�es Ax > b andvice versa. We also assume that K is bounded. The solution of the problem when Kis unbounded can be accomplished by imposing additional constraints �� <= xj <= �for each j, where � is a large positive valued parameter. The parameter � is not given



164 Chapter 2. The Complementary Pivot Algorithmany speci�c value, but treated as being larger than any number with which it may becompared. The set of feasible solution of the augmented problem is bounded, and sothe augmented problem can be solved by the method discussed below. If the optimumsolution of the augmented problem is independent of � when � is positive and large,it is the optimum solution of the original problem (2.64). On the other hand if theoptimum solution of the augmented problem depends on � however large � may be,and the optimum objective value diverges to �1 as � tends to +1, the objectivefunction is unbounded below in the original problem. In the sequel we assume that Kis bounded. Under these assumptions, (2.64) will have an optimum solution. If D isnot PSD, we have the following theorem.Theorem 2.16 If D is not PSD, the optimum solution of (2.64) cannot be an interiorpoint of K.Proof. Proof is by contradiction. Suppose �x, an interior point of K, is an optimumsolution of (2.64). Since �x is an interior point of K, we have A�x > b, and a necessarycondition for it to be optimum for (2.64) (or even for it to be a local minimum for(2.64)) is that the gradient vector of �(x) at �x, which is r�(�x) = c+ �xTD = 0. SinceD is not PSD, there exists a vector y 6= 0 satisfying yTDy < 0. Using c+ �xTD = 0, itcan be veri�ed that �(�x+ �y) = �(�x) + �22 yTDy. Since �x satis�es A�x > b, we can �nd� > 0 and su�ciently small so that �x+�y is feasible to (2.64), and �(�x+�y) = �(�x)+�22 yTDy < �(�x), contradiction to the hypothesis that �x is optimal to (2.64). So if Dis not PSD, every optimum solution must be a boundary point of K, that is, it mustsatisfy at least one of the constraints in (2.64) as an equation.The MethodExpress the problem in the form (2.64), using the reduction steps discussed above asneeded, so that the system Ax > b is feasible. Suppose A is of order m � n. Thenwe will refer to the problem (2.64) as being of order (m;n), where n is the number ofdecision variables in the problem, and m the number of inequality constraints on thesevariables.Check whether D is PSD. This can be carried out by the e�cient algorithm dis-cussed in Section 1.3.1 with a computational e�ort of O(n3). If D is PSD, (2.64) isa convex quadratic program, the optimum solution for it can be computed using thecomplementary pivot algorithm discussed in earlier sections, with a �nite amount ofcomputational e�ort. If D is not PSD, generate m candidate problems as discussedbelow. This operation is called the branching operation.For i = 1 to m, the ith candidate problem is the following :Minimize cx+ 12xTDxSubject to Ap.x >= bp; p = 1 to m; p 6= iAi.x = bi : (2:65)



2.9. The General Quadratic Programming Problem 165If D is not PSD, by Theorem 2.16, every optimum solution for (2.64) must be anoptimum solution of at least one of the m candidate problems.Each of the candidate problems is now processed independently. The set of fea-sible solutions of each candidate problem is a subset (a face) of K, the set of feasiblesolutions of the original problem (2.64). Using the equality constraint, a reduction stepcan be carried out in the candidate problem (2.65). In the resulting reduced problemidentify any binding inequality constraints by a linear programming formulation dis-cussed earlier. Treat binding constraints as equality constraints and carry out furtherreduction steps. The �nal reduced problem is one of the same form (2.64), but of order<= (m � 1; n � 1). Test whether it is a convex quadratic programming problem (thiscould happen even if the original problem (2.64) is not a convex quadratic program)and if it is so, �nd the optimum solution for it using the complementary pivot algo-rithm and store its solution in a solution list. If it is not a convex quadratic programcarry out the branching operation on it and generate additional candidate problemsfrom it, and process each of them independently in the same way.The total number of candidate problems to be processed is <= 2m. When there areno more candidate problems left to be procesed, �nd out the best solution (i. e., theone with the smallest objective value) among those in the solution list at that stage.That solution is an optimum solution of the original problem.This provides a �nite method for solving the general quadratic programming prob-lem. It may be of practical use only if m and n are small numbers, or if the candidateproblems turn out to be convex quadratic programs fairly early in the branching pro-cess. On some problems the method may require a lot of computation. For example,if D in the original problem (2.64) is negative de�nite, every candidate problem withone or more inequality constraints will be nonconvex, and so the method will onlyterminate when all the extreme points of K are enumerated in the solution list. Insuch cases, this method, eventhough �nite, is impractical, and one has to resort toheuristics or some approximate solution methods.2.9.1 Testing CopositivenessLet M be a given square matrix of order n. Suppose it is required to check whetherM is copositive. From the de�nition, it is clear that M is copositive i� the optimumobjective value in the following quadratic program is zero.Minimize xTMxSubject to x >= 0eTx <= 1 : (2:66)where e is the column vector of all 1's in Rn. We can check whether M is PSDwith a computational e�ort of O(n3) by the e�cient pivotal methods discussed inSection 1.3.1. If M is PSD, it is also copositive. If M is not PSD, to check whether



166 Chapter 2. The Complementary Pivot Algorithmit is copositive, we can solve the quadratic program (2.66) by the method discussedabove. If the optimum objective value in it is zero, M is copositive, not otherwise.This provides a �nite method for testing copositiveness. However, this method is notpractilly useful when n is large. Other methods for testing copositiveness are discussedin [3.29, 3.59]. See also Section 2.9.3.Exercise2.4 Using the results from Section 8.7, prove that the general quadratic programmingproblem (2.64) with integer data is an NP-hard problem.Comments 2.2. Theorem 2.16 is from R. K. Mueller [2.23]. The method for thegeneral quadratic programming problem discussed here is from [2.24] of K. G. Murty.2.9.2 Computing a KKT point for aGeneral Quadratic Programming ProblemConsider the QP (quadratic program)minimize Q(x) = cx+ 12xTDxsubject to Ax >= bx >= 0 (2:67)where D is a symmetric matrix of order n, and A, b, c are given matrices of ordersm � n, m � 1, and 1 � n respectively. We let K denote the set of feasible solutionsof this problem. If D is PSD, this is a convex quadratic program, and if K 6= ;, theapplication of the complementary pivot algorithm discussed in Sections 2.2, 2.3 on theLCP corresponding to this QP will either terminate with the global minimum for thisproblem, or provide a feasible half-line along which Q(x) diverges to �1.Here, we do not assume that D is PSD, so (2.67) is the general QP. In this casethere can be local minima which are not global minima (see Section 10.2 for de�nitionsof a global minimum, local minimum), the problem may have KKT points which arenot even local minima (for example, for (2.66) verify that x = 0 is a KKT point,and that this is not even a local minimum for that problem if D is not copositive).The method discussed at the beginning of Section 2.9 is a total enumeration method(enumerating over all the faces of K) applicable when K is bounded. In this section wedo not make any boundedness assumption on K. We prove that if Q(x) is unboundedbelow on K, there exists a half-line in K along which Q(x) diverges to �1. We alsoprove that if Q(x) is bounded below on K, then (2.67) has a �nite global minimumpoint. This result was �rst proved by M. Frank and P. Wolfe [10.14] but our proofsare based on the results of B. C. Eaves [2.9]. We also show that the complementary



2.9. The General Quadratic Programming Problem 167pivot method applied on an LCP associated with (2.67) will terminate with one ofthree possible ways(i) establish that K = ;, or(ii) �nd a feasible half-line in K along which Q(x) diverges to �1, or(iii) �nd a KKT point for (2.67).From the results in Chapter 1, we know that �x 2 K is a KKT point for (2.67) i�there exist vectors �y; �v 2 Rm and �u 2 Rn which together satisfy8>: �u�v9>;�8>:D �ATA 0 9>;8>: �x�y9>; = 8>: cT�b9>; (2:68)8>: �u�v9>; >= 0; 8>: �x�y9>; >= 0; 8>: �u�v9>;T 8>: �x�y9>; = 0which is an LCP. We will call (�x; �y; �u; �v) a KKT solution corresponding to the KKTpoint �x. For the sake of simplicity, we denote8>:uv9>; by w; and 8>:xy9>; by z8>:D �ATA 0 9>; by M; and 8>: cT�b9>; by qn+m by N :So, if ( �w; �z) is complementary solution of the LCP (2.68), then (�z1; : : : ; �zn) = �x is aKKT point for (2.67).A KKT point �x for (2.67) is said to be a reduced KKT point for (2.67) if the setof column vectors �M.j = 8>:D.jA.j 9>; : j such that �xj > 0� is linearly independent.Lemma 2.12 Let �x be a KKT point for (2.67). From �x, we can derive either areduced KKT point ~x such that Q(~x) <= Q(�x), or a feasible half-line in K along whichQ(x) diverges to �1.Proof. Let � �w = (�u; �v); �z = (�x; �y)� be a KKT solution associated with �x. Let J1 =fj : �wj = 0g, J2 = fj : �zj = 0g. By complementarity J1 [ J2 = f1; : : : ; Ng. Fromthe fact that ( �w; �z) is a KKT solution (i.e., it satis�es (2.68)) it can be veri�ed thatQ(�x) = 12 (c�x+ �yT b) = 12(c; bT )�z. Consider the following LPminimize 12 (c; bT )�zsubject to w �Mz = qwj = 0 for j 2 J1zj = 0 for j 2 J2wj >= 0 for j 62 J1zj >= 0 for j 62 J2 (2:69)



168 Chapter 2. The Complementary Pivot AlgorithmIf (w; z) is any feasible solution to this LP, from the constraints in (2.69) it is clearthat the corresponding x = (z1; : : : ; zn) is in K, and that wT z = 0 (complementarity),by this complementarity we have Q(x) = 12 (c; bT )z.There are only two possibilities for the LP (2.69). Either the objective function isunbounded below in it, in which case there exists a feasible half-line, say f(w1; z1) +�(wh; zh) : � >= 0g along which the objective value diverges to �1 (this implies thatthe corresponding half-line fx1 + �xh : � >= 0g is in K and Q(x) diverges to �1 onit), or that it has an optimum solution, in which case it has an optimum BFS. If ( ~w; ~z)is an optimum BFS of (2.69), the corresponding ~x is a reduced KKT point for (2.67)and Q(~x) = 12(c; bT )~z <= 12 (c; bT )�z = Q(�x).Lemma 2.13 If the QP has a global optimum solution, it has a global optimum solu-tion �x satisfying the property that the set of vectors �8>:D.jA.j 9>; : j such that �xj > 0�is linearly independent.Proof. Follows from Lemma 2.12.Lemma 2.14 For given D, A; there exists a �nite set of matrices L1; : : : ; Ll, eachof order n � N , such that for any c, b if x is a reduced KKT point of (2.67), thenx = Lt8>: cT�b9>; for some t.Proof. Let x be a reduced KKT point for (2.67). Let �w = (u; v); z = (x; y)� be thecorresponding KKT solution. Then (w; z) is a BFS of an LP of the form (2.69). Sinceit is a BFS, there exists a basic vector and associated basis B for (2.69) such that this(w; z) is de�ned by nonbasic variables = 0basic vector = B�1qThe matrix Lt can have its jth row to be 0 if xj is a nonbasic variable, or the rth rowof B�1if xj is the rth basic variable in this basic vector. By complementarity, thereare only 2N systems of the form (2.69), and each system has a �nite number of basicvectors, so the collection of matrices of the form Lt constructed as above is �nite anddepends only on D, A. So, for any q, any reduced KKT point must be of the form Ltqfor some Lt in this �nite collection.Theorem 2.17 Assume that K 6= ;. Either the QP (2.67) has a global minimum,or there exists a feasible half-line in K along which Q(x) diverges to �1.Proof. Let f�p : p = 1; 2; : : :g be an increasing sequence of positive numbers diverging



2.9. The General Quadratic Programming Problem 169to +1, such that K \ fx : ex <= �1g 6= ;. Consider the QPminimize cx+ 12xTDxsubject to Ax >= bx >= 0ex <= �p (2:70)For every p in this sequence, (2.70) has a non-empty bounded solution set, and hencehas a global nimimum. By Lemma 2.12, it has a global minimum which is a reducedKKT point for (2.70). Applying Lemma 2.14 to the QP (2.70), we know that thereexists a �nite collection of matrices fL1; : : : ; Llg independent of the data in the righthand side constants vector in (2.70), such that every reduced KKT point for (2.70) isof the form Lt8>>>>>: cT�b�p9>>>>>; = Lt8>>>>>: cT�b0 9>>>>>;+ �pLt8>>>>>: 0019>>>>>; (2:71)for some t. So, for each p = 1; 2; : : :, there exists a t between 1 to l such that the globalminimum of (2.70) for that p is of the form given in (2.71). Since there are only a �nitenumber l, of these t's, there must exist a t, say t1, which gives the global minimum foran in�nite number of p's. Let the subsequence corresponding to these p's in increasingorder be P = fp1; p2; : : :g. Let~x = Lt1 8>>>>>: cT�b0 9>>>>>; ; �y = Lt1 8>>>>>: 0019>>>>>;Then the global minimum for (2.70) is x(pr) = ~x+ �pr �y when p = pr, for r = 1; 2; : : :.So, the optimum objective value in this problem is Q�x(pr)� = Q�~x+ �pr �y�, and thisis of the form a0 + a1�pr + a2�2pr . The quantity �pr is monotonic increasing with r,so the set of feasible solutions of (2.70) for p = pr becomes larger as r increases, soQ�x(pr)� is monotonic decreasing with r. These facts imply that either a2 < 0 ora2 = 0 and a1 <= 0. If a2 < 0 or a2 = 0 and a1 < 0, Q�x(pr)� diverges to �1 asr tends to +1, in this case f~x + ��y : � >= �p1g is a half-line in K along which Q(x)diverges to �1. On the other hand, if a2 = a1 = 0, Q(x) is bounded below by a0 onK, and in this case ~x+ �pr �y is a global minimum for (2.67) for any r.The AlgorithmTo compute a KKT point for (2.67), apply the complementary pivot method on theLCP (
; F ) of order n+m+ 1, where
 = 8>>>>>: cT�bqn+m+19>>>>>; ; F = 8>>>>>: D �AT eA 0 0�eT 0 09>>>>>;



170 Chapter 2. The Complementary Pivot Algorithmwhere qn+m+1 is treated as a large positive valued parameter without giving any speci�cvalue for it (i.e., qn+m+1 is treated as being larger than any numer with which it iscompared), with the original column vector of the arti�cial variable z0 taken to be(�1;�1; : : : ;�1; 0) 2 Rn+m+1. By Lemma 2.9, it can be veri�ed that the matrix Mde�ned above is an L2-matrix. If the complementary pivot method terminates in asecondary ray, by Theorem 2.5, we conclude that�Ax <= �bex <= qn+m+1x >= 0is infeasible for qn+m+1 arbitrarily large, that isAx >= bx >= 0is infeasible. So (2.67) is infeasible, if ray termination occurs in the complementarypivot algorithm when applied on the LCP (
; F ).Suppose the complementary pivot method terminates with a complementary so-lution � �w = ( �wj); �z = (�zj)� where �w; �z 2 Rn+m+1. If �wn+m+1 > 0, �zn+m+1 = 0,it can be veri�ed that �( �w1; : : : ; �wn+m); (�z1; : : : ; �zn+m)� is a complementary solutionfor the LCP �8>: cT�b9>; ; 8>:D �ATA 0 9>;�, that is, it is a KKT solution for (2.67) and�x = (�z1; : : : ; �zn)T is a KKT point for (2.67).On the other hand, if �wn+m+1 = 0 and �zn+m+1 > 0 in the terminal complementaryBFS, the basic variables are a�ne functions of the large positive parameter qn+m+1.Let �x = (�z1; : : : ; �zn)T , �y = (�zn+1; : : : ; �zn+m). It can be veri�ed that Q(�x) = 12 (c�x +bT y)� 12qn+m+1�zn+m+1 and as qn+m+1 tends to +1, this diverges to �1. Hence inthis case, Q(x) is unbounded below on K, and a feasible half-line along which Q(x)diverges to �1 can be obtained by letting the parameter qn+m+1 tend to +1 in thesolution �x.When D is not PSD, it is possible for (2.67) to have some KKT points, even whenQ(x) is unbounded below on K. Thus in this case the fact that this algorithm hasterminated with a KKT point of (2.67) is no guarantee that Q(x) is bounded belowon K.2.9.3 Computing a Global Minimum,or Even a Local Minimum inNonconvex Programming Problems May be HardConsider the smooth nonlinear program (NLP)



2.9. The General Quadratic Programming Problem 171minimize �(x)subject to gi(x) >= 0; i = 1 to m (2:72)where each of the functions is a real valued function de�ned on Rn with high degreesof di�erentiability. (2.72) is convex NLP if �(x) is convex and gi(x) are concave for alli, nonconvex NLP, otherwise.A global minimum for (2.72) is a feasible solution �x for it satisfying �(x) >= �(�x)for all feasible solutions x of the problem. See Section 10.2. For a convex NLP, undersome constraint quali�cations (see Appendix 4) necessary and su�cient optimalityconditions are known. Given a feasible solution satisfying the constraint quali�cation,using these optimality conditions, it is possible to check e�ciently whether that pointis a (global) optimum slution of the problem or not.For a smooth nonconvex nonlinear program, the problem of computing a globalminimum, or checking whether a given feasible solution is a global minimum, are hardproblems in general. To establish these facts mathematically, consider the subset sumproblem, a hard problem in discrete optimization, which is known to be NP-complete(see reference [8.12] for a complete discussion of NP-completeness): given postiveintegers d0; d1; : : : ; dn; is there a solution tonPj=1 djyj = d0yj = 0 or 1 for all jNow consider the quadratic programming problem (QP)minimize  nPj=1 djyj � d0!2 + nPj=1 yj(1� yj)subject to 0 <= yj <= 1; j = 1 to n :Because of the second term in the objective function, QP is a nonconvex quadraticprogramming problem. Clearly, the subset-sum problem given above has a feasiblesolution i� the global minimum objective value in QP is zero. Since the problem ofchecking whether the subset-sum problem is NP-complete, computing the global mini-mum for QP, a very special and simple case of a smooth nonconvex NLP, is an NP-hardproblem (see reference [8.12] for a complete discussion of NP-hardness). This showsthat in general, the problem of computing a global minimum in a smooth nonconvexNLP may be a hard problem. See also Section 10.3 where some of the outstandingdi�cult problems in mathematics have been formulated as those of �nding global min-ima in smooth nonconvex NLPs (for example, there we show that the well knownFermat's last Theorem in number theory, unresolved since 1637 AD, can be posedas the problem of checking whether the global minimum objective value in a smoothnonconvex NLP, (10.1), is zero or greater than zero).



172 Chapter 2. The Complementary Pivot AlgorithmSince the problem of computing a global minimum in a nonconvex NLP is a hardproblem, we will now study the question whether it is at least possible to compute alocal minimum for such a problem by an e�cient algorithm.For nonconvex NLPs, under constraint quali�cations, some necessary conditionsfor a local minimum are known (see Section 10.2 for the de�nitions of a local minimum,and Appendix 4 for a discussion of necessary conditions for a local minimum) and thereare some su�cient conditions for a point to be a local minimum. But there are nosimple conditions known, which are both necessary and su�cient for a given point tobe a local minimum. The complexity of checking whether a given feasible solution isa local minimum in a nonconvex NLP, is not usually addressed in the literature. Manytextbooks in NLP, when they discuss algorithms, leave the reader with the impressionthat these algorithms converge to a global minimum in convex NLPs, and to a localminimum in nonconvex NLPs. The documentations distributed for many professionalNLP software packages also create the same impression. This impression could be quiteerroneous, in the general case. In this section we study this problem by examining thecomputational complexity of determining whether a given feasible solution is not a localminimum, and that of determining whether the objective function is not bounded belowon the set of feasible solutions, in smooth continuous variable, nonconvex NLPs. Forthis purpose, we use the very special instance of an nonconvex quadratic programmingproblem studied in K. G. Murty and S. N. Kabadi [10.32] with integer data, whichmay be considered as the simplest nonconvex NLP. It turns out that the questions ofdetermining whether a given feasible solution is not a local minimum in this problem,and to check whether the objective function is not bounded below in this problem, canboth be studied using the discrete techniques of computational complexity theory, andin fact these questions are NP-complete problems (see reference [8.12] for de�nition ofNP-completeness). This clearly shows that in general, it is a hard problem to checkwhether a given feasible solution in a nonconvex NLP is even a local minimum, or tocheck whether the objective function is bouned below. This indicates the following:when a nonlinear programming algorithm is applied on a nonconvex NLP, unless itis proved that it converges to a point satisfying some known su�cient condition for alocal minimum, claims that it leads to a local minimum are hard to verify in the worstcase. Also, in continuous variable smooth nonconvex minimization, even the down-to-earth goal of guaranteeing that a local minimum will be obtained by the algorithm (asopposed to the lofty goal of �nding the global minimum) may be hard to attain.We review the known optimality conditions for a given feasible solution �x to (2.72)to be a local minimum. Let J = fi : gi(�x) = 0g. Optimality conditions are derivedunder the assumption that some constraint quali�cations (CQ, see Appendix 4) aresatis�ed at �x, which we assume.



2.9. The General Quadratic Programming Problem 173First Order Necessary Conditions for �x to be a Local Minimumfor (2.72)There must exist a ��J = (��i : i 2 J) such thatr�(�x)� Pi2J ��irgi(�x) = 0��i >= 0; for all i 2 J : (2:73)Given the feasible solution �x, it is possible to check whether these conditions hold,e�ciently, using Phase I of the simplex method for linear programming.Second Order Necessary Conditions for �x to be a Local Minimumfor (2.72)These conditions include (2.73). Given ��J satisfying (2.73) together with �x, let L(x;��J) = �(x)�Pi2J ��igi(x). In addition to (2.73) these conditions requireyTHy >= 0; for all y 2 fy : rgi(�x)y = 0 for each i 2 Jg (2:74)where H is the Hessian matrix of L(x; ��J) with respect to x at x = �x. Condition (2.74)requires the solution of a quadratic program involving only equality constraints, whichcan be solved e�ciently. It is equivalent to checking the positive semide�niteness ofa matrix which can be carried out e�ciently using Gaussian pivot steps (see Section1.3.1).Su�cient Conditions for �x to be a Local Minimum for (2.72)Given the feasible solution �x, and ��J which together satisfy (2.73), the most generalknown su�cient optimality condition states that ifyTHy > 0 for all y 2 T1 (2:75)where T1 = �y : y 6= 0 and rgi(�x)y = 0 for each i 2 fi : i 2 J and ��i > 0g, andrgi(�x)y >= 0 for each i 2 fi : i 2 J and ��i = 0g	, then �x is a local minimum for (2.72).Unfortunately, when H is not positive semide�nite, the problem of checking whether(2.75) holds, leads to a nonconvex QP, which, as we will see later, may be hard tosolve.Aside from the question of the di�culty of checking whether (2.75) holds, we canverify that the gap between conditions (2.74) and (2.75) is very wide, particulary whenthe set fi : i 2 J and ��i = 0g 6= ;. In this case, condition (2.74) may hold, and even ifwe are able to check (2.75), if it is not satis�ed, we are unable to determine whether �xis a local minimum for (2.72) with present theory.Now we will use a simple inde�nite QP, related to the problem of checking whetherthe su�cient optimality condition (2.75) holds, to study the following questions :



174 Chapter 2. The Complementary Pivot Algorithmi) Given a smooth nonconvex NLP and a feasible solution for it, can we checkwhether it is a local minimum or not e�ciently ?ii) At least in the simple case when the constraints are linear, can we checke�ciently whether the objective function is bounded below or not on the setof feasible solutions ?Let D be an integer square symmetric matrix of order n. The problem of checkingwhether D is not PSD involves the question\is there an x 2 Rn satisfying xTDx < 0 ?" (2:76)This can be answered with an e�ort of at most nGaussian pivot steps, by the techniquesdiscussed in Section 1.3.1. This leads to an O(n3) algorithm for this problem. At thetermination of this algorithm, it is in fact possible to actually produce a vector xsatisfying xTDx < 0, if the answer to (2.76) is in the a�rmative.All PSD matrices are copositive, but a matrix which is not PSD may be copositive.Testing whether the given matrix D is not copositive involves the question\is there an x >= 0 satisfying xTDx < 0 ?" (2:77)If D is not PSD, no e�cient algorithm for this question is known (the computationalcomplexity of the enumerative method of Section 2.9.1 grows exponentially with n inthe worst case). In fact we show later that this question is NP-complete. To studythis question, we are naturally lead to the NLPminimize Q(x) = xTDxsubject to x >= 0 (2:78)We will show that this problem is an NP-hard problem.We assume that D is not PSD. So Q(x) is nonconvex and (2.78) is a nonconvexNLP. It can be considered the simplest nonconvex NLP. We consider the followingdecision problems.Problem 1: Is x = 0 not a local minimum for (2.78) ?Problem 2: Is Q(x) not bounded below on the set of feasible solu-tions of (2.78) ?Clearly, the answer to problem 2 is in the a�rmative i� the answer to problem 1 is.We will show that both these problems are NP-complete. To study problem 1, we canreplace (2.78) by the NLPminimize Q(x) = xTDxsubject to 0 <= xj <= 1; j = 1 to n (2:79)Lemma 2.15 The decision problem \is there an �x feasible to (2.79) which satis�esQ(�x) < 0", is in the class NP (see [8.12] for the de�nition of the class NP of decisionproblems).



2.9. The General Quadratic Programming Problem 175Proof. Given an x feasible to (2.79), to check whether Q(x) < 0, can be done bycomputing Q(x) which takes O(n2) time. Also, if the answer to the problem is inthe a�rmative, an optimum solution �x of (2.79) satis�es Q(�x) < 0. There is a linearcomplementarity problem (LCP) corresponding to (2.79) and an optimum solution for(2.79) must correspond to a BFS for this LCP. Since there are only a �nite numberof BFSs for an LCP, and they are all rational vectors, a nondeterministic algorithmcan �nd one of them satisfying Q(x) < 0, if it exists, in polynomial time. Hence, thisproblem is in the class NP.Lemma 2.16 The optimum objective value in (2.79) is either 0 or <= �2{L where Lis the size of D, (i.e., the total number of binary digits in all the data in D).Proof. Since the set of feasible solutions of (2.79) is a compact set and Q(x) is contin-uous, (2.79) has an optimum solution. The necessary optimality conditions for (2.79)lead to the following LCP8>:uv9>;�8>: D I�I 09>;8>:xy9>; = 8>: 0e9>; (2:80)8>:uv9>; >= 0 ; 8>:xy9>; >= 0 ; (2:81)8>:uv9>;T 8>:xy9>; = 0 (2:82)It can be veri�ed that whenever (u; v; x; y) satis�es (2.80), (2.81) and (2.82), xTDx =�eT y, a linear function, where e is the column vector of all 1's in Rn. There existsan optimum solution of (2.79) which is a BFS of (2.80), (2.81). By the results underthe ellipsoid algorithm (see, for example Chapter 8 in this book, or Chapter 15 in[2.26]), in every BFS of (2.80), (2.81), each yj is either 0 or >= 2{L. If the optimumobjective value in (2.79) is not zero, it must be < 0, and this together with the abovefacts implies that an optimum solution x or (2.79) corresponds to a BFS (u; v; x; y)of (2.80), (2.81) in which �eT y < 0. All these facts clearly imply that the optimumobjective value in (2.79) is either 0 or <= �2{L.We now make a list of several decision problems, some of which we have alreadyseen, and some new ones which we need for establishing our results.Problem 3: Is there an x >= 0 satisfying Q(x) < 0 ?Problem 4: For any positive integer a0, is there an x 2 Rn satisfy-ing eTx = a0, x >= 0 and Q(x) < 0 ?Now consider a subset sum problem with data d0; d1; : : : ; dn, which are all positiveintegers. Let 
 be a positive integer > 4�d0 �Pnj=1 dj��2 n3. Let l be the size of this



176 Chapter 2. The Complementary Pivot Algorithmsubset sum problem, that is, the total number of binary digits in all the data for theproblem. Let " be a positive rational number < 2{nl2 . The subset sum problem is :Problem 5: Subset sum problem: Is there a y = (yj) 2 Rn satis-fying Pnj=1 djyj = d0, 0 <= yj <= 1, j = 1 to n, and yinteger vector ?We now de�ne several functions involving nonnegative variables y = (y1; : : : ; yn)Tand s = (s1; : : : ; sn)T , related to the subset sum problem.f1(y; s) = 0@ nXj=1 djyj � d01A2 + 
0@ nXj=1(yj + sj � 1)21A+ nXj=1 yjsj= 0@ nXj=1 djyj1A2 + nXj=1 yjsj + 
 nXj=1(yj + sj)2� 2d00@ nXj=1 djyj1A+ 2
 nXj=1(yj + sj) + n
 + d20f2(y; s) = f1(y; s) + 2d00@ nXj=1 djyj(1� yj)1A= 0@ nXj=1 djyj1A2 + 
 nXj=1(yj + sj)2 + nXj=1 yjsj� 2d00@ nXj=1 djy2j1A+ 2
 nXj=1(yj + sj) + n
 + d20f3(y; s) = 0@ nXj=1 djyj1A2 + 
 nXj=1(yj + sj)2 + nXj=1 yjsj� 2d00@ nXj=1 djy2j1A+ d20 � n
f4(y; s) = 0@ nXj=1 djyj1A2 + 
 nXj=1(yj + sj)2 + nXj=1 yjsj� 2d0 nXj=1 djy2j + �d20 � n
n2 �0@ nXj=1(yj + sj)1A2
f5(y; s) = f4(y; s)� � "n2�0@ nXj=1(yj + sj)1A2



2.9. The General Quadratic Programming Problem 177Let P = f(y; s) : y >= 0; s >= 0;Pnj=1(yj + sj) = ng. Consider the following additionaldecision problemsProblem 6: Is there a (y; s) 2 P satisfying f1(y; s) <= 0 ?Problem 7: Is there a (y; s) 2 P satisfying f2(y; s) <= 0 ?Problem 8: Is there a (y; s) 2 P satisfying f4(y; s) <= 0 ?Problem 9: Is there a (y; s) 2 P satisfying f5(y; s) < 0 ?Theorem 2.18 Problem 4 is an NP-hard problem (see [8.11] for the de�nitions ofan NP-hard problem).Proof. Since f1(y; s) is a sum of nonnegative terms whenever (y; s) 2 P, if (�y; �s) 2 Psatis�es f1(y; s) <= 0, then we must have f1(�y; �s) = 0, this clearly implies from thede�nition of f1(y; s), that the following conditions must hold.nXj=1 dj �yj = d0; �yj�sj = 0 and �yj + �sj = 1; for all j = 1 to n :These conditions clearly imply that �y is a solution of the subset sum problem and thatthe answer to problem 5 is in the a�rmative. Conversely if ŷ = (ŷj) is a solution tothe subset sum problem, de�ne ŝ = (ŝj) where ŝj = 1� ŷj for each j = 1 to n, and itcan be veri�ed that f1(ŷ; ŝ) = 0. This veri�es that problems 5 and 6 are equivalent.Whenever �y is a 0{1 vector, we have �yj = �y2j for all j, and this implies thatf1(�y; s) = f2(�y; s) for any s. So, from the above arguments, we see that if (�y; �s) 2 Psatis�es f1(�y; �s) <= 0, then f1(�y; �s) = f2(�y; �s) = 0. If 0 <= yj <= 1, we have 2d0djyj(1�yj)>= 0. If (y; s) 2 P, and yj > 1, then 
2 (yj + sj � 1)2 + 2d0djyj(1� yj) >= 0, since 
 islarge (from the de�nition of 
). Using this and the de�nitions of f1(y; s), f2(y; s), itcan be veri�ed that for (y; s) 2 P, if f2(y; s) <= 0 then f1(y; s) <= 0 too. These factsimply that problems 6 and 7 are equivalent.Clearly, problems 7 and 8 are equivalent.From the de�nition of " (since it is su�ciently small) and using Lemma 2.16, onecan verify that problems 8 and 9 are equivalent.Problem 9 is a special case of problem 4. Since problem 5 is NP-complete, fromthe above chain of arguments we conclude that problem 4 is NP-hard.Theorem 2.19 Problem 4 is NP-complete.Proof. The answer to problem 4 is in the a�rmative i� the answer to the decisionproblem in the statement of Lemma 2.15 is in the a�rmative. So, from Lemma 2.15we conlcude that problem 4 is in NP. From Theorem 2.18, this shows that problem 4is NP-complete.



178 Chapter 2. The Complementary Pivot AlgorithmTheorem 2.20 Problem 3 is NP-complete.Proof. Problems 3 and 4 are clearly equivalent, this result follows from Theorem 2.19.Theorem 2.21 Both problems 1 and 2 are NP-complete.Proof. Problems 1 and 2 are both equivalent to problem 3, so this result follows fromTheorem 2.20.Theorem 2.22 Given an integer square matrix D, the decision problem \is D notcopositive ?" is NP-complete.Proof. The decision problem \is D not copositive ?" is equivalent to problem 1, hencethis result follows from Theorem 2.21.Can We Check Local Minimality E�cientlyIn Unconstrained Minimization Problems ?Let �(x) be a real valued smooth function de�ned on Rn. Consider the unconstrainedproblem minimize �(x) : (2:83)A necessary condition for a given point �x 2 Rn to be a local minimum for (2.83) is(see Appendix 4) r�(�x) = 0; H(�(�x)) is PSD (2:84)where H(�(�x)) is the Hessian matrix (the matrix of second order partial derivatives)of �(x) at �x. A su�cient condition for �x to be a local minimum for (2.83) isr�(�x) = 0; H(�(�x)) is positive de�nite. (2:85)Both conditions (2.84) and (2.85) can be checked very e�ciently. If (2.84) is satis�ed,but (2.85) is violated, there are no simple conditions known to check whether or not �xis a local minimum for (2.83). Here, we investigate the complexity of checking whetheror not a given point �x is a local minimum for (2.83), and that of checking whether �(x)is bounded below or not over Rn.As before, let D = (dij) be an integer square symmetric matrix of order n. Con-sider the unconstrained problem,minimize h(u) = (u21 ; : : : ; u2n)D(u21 ; : : : ; u2n)T (2:86)Clearly, (2.86) is an instance of the general unconstrained minimization problem (2.83).Consider the following decision problems.Problem 10: Is �u = 0 not a local minimum for (2.86) ?Problem 11: Is h(u) not bounded below on Rn ?



2.9. The General Quadratic Programming Problem 179We have, for i; j = 1 to n @h(u)@uj = 4uj�(u21 ; : : : ; u2n)D.j�@2h(u)@ui@uj = 8uiujdij ; i 6= j@2h(u)@u2j = 4(u21 ; : : : ; u2n)D.j + 8u2j djjwhere D.j is the jth column vector of D. So, �u = 0 satis�es the necessary conditionsfor being a local minimum for (2.86), but not the su�cient condition given in (2.85).Using the transformation xj = u2j , j = 1 to n, we see that (2.86) is equivalent to(2.78). So problem 1 and 10 are equivalent. Likewise, problems 2 and 11 are equivalent.By Theorem 2.21, we conclude that both problems 10 and 11 are NP-hard. Thus, evenin the unconstrained minimization problem, to check whether the objective function isnot bounded below, and to check whether a given point is not a local minimum, maybe hard problems in general. This also shows that the problem of checking whether agiven smooth nonlinear function (even a polynomial) is or is not locally convex at agiven point, may be a hard problem in general.What Are Suitable Goals for Algorithms in Nonconvex NLP ?Much of nonlinear programming literature stresses that the goal for algorithms innonconvex NLPs should be to obtain a local minimum. Our results here show that ingeneral, this may be hard to guarantee.Many nonlinear programming algorithms are iterative in nature, that is, beginningwith a initial point x0, they obtain a sequence of points fxr : r = 0; 1; : : :g. For some ofthe algorithms, under certain conditions, it can be shown that the sequence convergesto a KKT point for the original problem, (a KKT point is a feasible solution at whichthe �rst order necessary conditions for a local minimum, (2.73), hold). Unfortunately,there is no guarantee that a KKT point will be a local minimum, and our results pointout that in general, checking whether or not it is a local minimum may be a hardproblem.Some algorithms have the property that the sequence of points obtained is ac-tually a descent sequence, that is, either the objective function, or a measure of theinfesibility of the current solution to the problem, or some merit function or criterionfunction which is a combination of both, strictly decreases along the sequence. Givenxr, these algorithms generate a yr 6= 0 such that the direction xr+�yr, � >= 0, is a de-scent direction for the functions discussed above. The next point in the sequence xr+1is usually taken to be the point which minimizes the objective or criterion functionon the half-line fxr + �yr : � >= 0g, obtained by using a line minimization algorithm.On general nonconvex problems, these methods su�er from the same di�culties, theycannot theoretically guarantee that the point obtained at termination is even a local



180 Chapter 2. The Complementary Pivot Algorithmminimum. However, it seems reasonable to expect that a solution obtained through adescent process is more likely to be a local minimum, than a solution obtained purelybased on necessary optimality conditions. Thus a suitable goal for algorithms for non-convex NLPs seems to be a descent sequence converging to a KKT point. Algorithms,such as the sequential quadratic programming methods discussed in Section 1.3.6, andthose discussed in Chapter 10, reach this goal.2.10 Exercises2.5 Let �(x) be a convex function de�ned on Rn, which is known to be unboundedbelow on Rn. Does there exist a half-line along which �(x) diverges to �1 ? Eitherprove that it does, or construct a counterexample. Does the answer change if �(x) isknown to be a di�erentiable convex function ?2.6 Consider the problem Minimize �(x)Subject to Ax >= bwhere A is a matrix of order m�n, and �(x) is a convex function. Suppose it is knownthat �(x) is unbounded below in this problem. Does there exist a feasible half-line alongwhich �(x) diverges to �1 ? Either prove that it does, or construct a counterexample.Does the answer change if �(x) is a di�erentiabl convex function ?2.7 If the data in the LCP (q;M) satis�esi) M +MT >= 0, andii) q �MT z >= 0; z >= 0 is feasible,prove that the complementary pivot algorithm will terminate with a solution whenapplied on the LCP (q;M).(Philip C. Jones [2.16])2.8 LetGj be the set �(w; z) : w�Mz = q; w >= 0; z >= 0; wizi = 0 for all i 6= j	, andlet G = S(Gj : j = 1 to n). If M is PSD or a P -matrix, prove that G is a connectedsubset of Rn. If (q;M) is the LCP corresponding to the following quadratic program,show that G is not connected.minimize cx+ 12xTDxsubject to 0 <= x <= uwhere D = 8>>>>>:�2 �3 �3�3 �5 �1�1 �1 49>>>>>;, u = 8>>>>>: 1010109>>>>>;, cT = 8>>>>>: 4359>>>>>;.(W. P. Hallman and I. Kaneko [2.15])



2.10. Exercises 1812.9 Prove that the complementary pivot algorithm will process the LCP (q;M) if Mis a Z-matrix.(R. Saigal [2.32])2.10 Let fA.1; : : : ; A.n�1g be a linearly independent set of column vectors in Rn. Letx = fy1; : : : ; yrg be another �nite set of column vectors in Rn, and let b 2 Rn beanother given column vector. It is required to choose A.n 2 x so that the minimumdistance from b to PosfA.1; : : : ; A.ng is a small as possible. Develop an e�cient algo-rithm for doing it.2.11 Let cM = 8>:�1 22 �19>; ; q̂ = 8>:�1�29>; :Show that the LCP (q̂;cM) has a solution. However, show that all the variants of thecomplementary pivot algorithm discussed in this Chapter are unable to �nd a solutionto this LCP (q̂;cM).2.12 Let (P ) be a linear programming problem, and (Q) the corresponding linearcomplementary problem as obtained in Section 1.2. It has been suggested that thesequence of solutions generated when the LCP, (Q), is solved by the complementarypivot method, is the same as the sequence of solutions generated when the LP, (P ), issolved by the self-dual parametric algorithm (see Section 8.13 of [2.26]). Discuss, andexamine the similarities between the self-dual parametric algorithm applied to (P ) andthe complementary pivot method applied on (Q).2.13 Let M = 8>>>>>>>>: 2 2 1 23 3 2 3�2 1 5 �21 �2 1 29>>>>>>>>; ; q = 8>>>>>>>>:�4�6449>>>>>>>>; :i) Prove that M is strictly copositive.ii) Show that the LCP (q;M) has an in�nite number of complementary feasible so-lutions.2.14 Given a square matrix M of order n, let K(M) denote the union of all thecomplementary cones in C(M). Prove thatK(M) is convex i�K(M) = fq : q+Mz >= 0;for some z >= 0g.(B. C. Eaves [2.8])2.15 Let a1; : : : ; an, b be positive integers satisfying b > maxfa1; : : : ; ang. Letq(n+ 2) = (a1; : : : ; an;�b; b)T



182 Chapter 2. The Complementary Pivot AlgorithmM(n+ 2) = 8>>>>>>>>>>>>>: 0 0�In ... ...0 0eTn �1 0�eTn 0 �1
9>>>>>>>>>>>>>;where In is the identity matrix of order n, and eTn is the row vector in Rn all the entriesin which are \1". Consider the LCP (q(n+2);M(n+2)) of order n+2. Are any of thealgorithms discussed in this chapter able to process this LCP ? Why ? If not, developan algorithm for solving this LCP using the special structure of the matrix M .2.16 Consider the quadratic programminimize �x1 � 2x2 + 12 (2x21 + 4x1x2 + 4x22)subject to 3x1 � 2x2 � x3 = 2�x1 + 2x2 � x4 = 6xj >= 0 for all j :Formulate this program as an LCP of order 4 and write down this LCP clearly. Doesa solution of this LCP lead to a solution of this quadratic program ? Why ?It is required to solve this LCP using the variant of complementary pivot methodin which the column vector of the arti�cial variable is (1; 2; 2; 6)T . Obtain the canonicaltableau corresponding to the initial almost complementary basic vector, and then carryout exactly one more pivot step in this algorithm.2.17 Suppose B >= 0, and the linear programsi) Maximize cTx; subject to Ax <= b, x >= 0 andii) Minimize bT y; subject to (A+B)T y >= c, y >= 0have �nite optimum solutions. Show that the complementary pivot algorithm termi-nates with a complementary feasible solution for the LCP (q;M) withq = 8>:�cb9>; ; M = 8>: 0 (A+ B)T�A 0 9>; :(G. B. Dantzig and A. S. Manne [2.6])2.18 Let ��� be a nonenmpty closed convex subset of Rn. For each x 2 Rn let P�(x)denote the nearest point in ��� to x in terms of the usual Euclidean distance. Prove thefollowing : (i) jjP�(x)� yjj2 <= jjx� yjj2 for all x 2 Rn; y 2 ��� :(ii) jjP�(x)� P�(y)jj2 <= jjx� yjj2 for all x; y 2 Rn :(Y. C. Cheng [3.6])



2.10. Exercises 1832.19 Let G and H be symmetric PSD matrices of order n and m respectively. Considerthe following quadratic programs :maximize cx� 12xTGx� 12yTHysubject to Ax�Hy <= bx >= 0and minimize bT y + 12xTGx+ 12yTHysubject to Gx+ AT y >= cTy >= 0Prove that if both the problems are feasible, then each has an optimal solution, andthe optimum objective values are equal; moreover, the optimal solutions can be takento be the same.(R. W. Cottle [2.5] and W. S. Dorn [2.7])2.20 Let M be a nondegenerate square matrix of order n. Let d 2 Rn, d > 0 besuch that for every J � f1; : : : ; ng, if dJ = (dj : j 2 J), MJJ = (mij : i; j 2 J),then (MJJ)�1dJ >= 0. Then prove that if the LCP (q;M) is solved by the variant ofthe complementary pivot algorithm discussed in Section 2.3.3 with �d as the originalcolumn vector for the arti�cial variable z0, it will terminate with a solution of the LCPafter at most (n+ 1) pivot steps.(J. S. Pang and R. Chandrasekaran [8.18])2.21 Consider the process of solving the LCP (q;M) by the complementary pivotalgorithm. Prove that the value of the arti�cial variable z0 decreases as the algorithmprogresses, whenever M is either a PSD matrix or a P -matrix or a P0-matrix, untiltermination occurs.(R. W. Cottle [4.5] and B. C. Eaves [2.8])2.22 Consider the process of solving the LCP (q;M) by the variant of the comple-mentary pivot algorithm discussed in Section 2.3.3 with the column vector d > 0 asthe initial column vector associated with the arti�cial variable z0. Prove that in thisprocess, there exists no secondary ray for all d > 0 > q i� M is an L?-matrix. Usingthis prove that the variant of the complementary pivot algorithm discussed in Section2.3.3 with the lexico minimum ratio rule for the dropping variable section in each step,will always terminate with a complementary solution for all q, no matter what d > 0is used, i� M is an L?-matrix.(B. C. Eaves [2.8])



184 Chapter 2. The Complementary Pivot Algorithm2.23 Consider the convex quadratic programming problemminimize Q(x) = cx+ 12xTDxsubject Ax >= bx >= 0where D is a symmetric PSD matrix. If the problem has alternate optimum solutionprove the following :(i) the set of optimum solutions is a convex set,(ii) (y � x)TD(y � x) = 0 and actually (y � x)TD = 0 for every pair of optimumsolutions x and y, of the problem,(iii) the gradient vector of Q(x), rQ(x) is a constant on the set of optimum solutions,(iv) the set of optimum solutions is the intersection of the constraint set with somelinear manifold.(M. Frank and P. Wolfe [10.14])2.24 Let A1, B1, two given matrices of orders m � n each, be the loss matrices ina bimatrix game problem. Prove that the problem of computing a Nash equilibriumstrategy pair of vectors for this bimatrix game, can be posed as the LCP (q;M), whereq = 8>:�emen 9>; ; M = 8>: 0 ABT 0 9>;where A > 0 and B < 0. Prove (use Lemma 2.8) that the complementary pivotalgorithm will terminate with a solution when applied on this LCP.(B. C. Eaves [2.8])2.25 Consider the LCP (q;M) of order n. Let C1 be the set of feasible solutions ofthe system w �Mz =qw; z >=0wjzj =0; j = 2 to n.If q is nondegenerate in the LCP (q;M) (i.e., if in every solution (w; z) of the systemof linear equations \w�Mz = q", at least n variables are nonzero) prove that C1 is adisjoint union of edge paths. What happens to this result if q is degenerate ?2.26 In Merrill's algorithm for computing a Kakutani �xed point discussed in Section2.7.8, we de�ned the piecewise linear map in the top layer of the special triangulationof Rn � [0; 1] by de�ning for any vertex V = 8>: v19>;, f(V ) = 8>: f(v)1 9>; where f(v)is an arbitrary point chosen from the set F(v). Examine the advantages that couldbe gained by de�ning f(v) to be the nearest point (in terms of the usual Euclideandistance) in the set F(v) to v.



2.10. Exercises 1852.27 LetM , q be given matrices of orders n�n and n�1 respectively. If yTMy+yT qis bounded below on the set fy : y >= 0g, prove that the LCP (q;M) has a comple-mentary solution, and that a complementary solution can be obtained by applying thecomplementary pivot algorithm on the LCP of order (n+ 1) with dataq = 8>: qqn+19>; ; M = 8>: M e�eT 09>;where qn+1 > 0, with the initial column vector associated with the arti�cial variablez0 to be (�1; : : : ;�1; 0) 2 Rn+1.(B. C. Eaves [2.8])2.28 Consider the general quadratic program (2.67). If Q(x) is unbounded below onthe set of feasible solutionsK of this problem, prove that there exists a feasible half-linethrough an extreme point of K along which Q(x) diverges to �1.(B. C. Eaves [2.9])2.29 Let M be a given square matrix of order n. Let fB.1; : : : ; B.rg be a given setof column vectors in Rn. It is required to check whether xTMx is >= 0 for all x 2PosfB.1; : : : ; B.rg. Transform this into the problem of checking the copositivity of amatrix.Can the problem of checking whether xTMx is >= 0 for all x 2 fx : Ax >= 0g whereA is a given matrix of order m� n, be also transformed into the problem of checkingthe copositivity of a matrix ? How ?2.30 (Research Problem) Application to pure 0-1 Integer ProgrammingConsider the pure 0-1 integer programming problemminimize cxsubject to Ax = bDx >= dxj = 0 or 1 for all jwhere x 2 Rn, and c, A, b, D, d are the data in the problem. In the interval 0 <= xj <= 1,the function xj(1�xj) is non-negative, and is zero i� xj is either 0 or 1. Using this wecan transfom the above discrete problem into a continuous variable optimization by apenalty transformation as given belowminimize cx+ �( nPj=1xj(1� xj))subject to Ax = bDx >= d0 <= xj <= 1; j = 1 to n



186 Chapter 2. The Complementary Pivot Algorithmwhere � is a large positive penalty parameter. This is now a quadratic programmingproblem (unfortunately, it is a concave minimization problem and may have lots oflocal minima, in fact it can be veri�ed that every integer feasible solution is a localminima for this problem). Check whether any of the algorithm for LCP discussed hereare useful to approach the integer program through the LCP formulation of the abovequadratic program.2.31 Consider the system w �Mz = qw; z >= 0where M is a given square matrix of order n. Let C1 be the set of feasible solutions ofthis problem satisfying the additional conditionswjzj = 0; j = 2 to n :Assuming that q is nondegenerate in this system (i.e., that in every solution (w; z) ofthe system of equations \w�Mz = q", at last n variables are non-zero), study whetherC1 can contain an edge path terminating with extreme half-lines at both ends, whenM is a copositive plus matrix.2.32 (Research Problem) : Consider the general quadratic programming problem(2.67) of Section 2.9.2, and let K be its set of feasible solutions.Develop necessary and su�cient conditions for Q(x) to be unbounded below onK. Develop an e�cient procedure to check whether Q(x) is unbounded below on K.In (2.67), the objective function is said to be strongly unbounded below, if itremains unbounded below whatever the vector c may be, as long as all the other datain the problem remains unchanged. Develop necessary and su�cient conditions forand an e�cient procedure to check this strong unboundedness.Extend the enumeration procedure for solving the general quadratic programmingproblem under the assumption of a bounded feasible set discussed in Section 2.9, tothe case when K is unbounded.The method discussed in Section 2.9 for solving this problem, may be viewed as atotal enumeration method (enumerating over all the faces of K). Develop an e�cientmethod for computing a lower bound for Q(x) onK, and using it, develop a branch andbound method for solving this problem (this will be an e�cient partial enumerationmethod). (See B. C. Eaves [2.9] for some useful information on this problem.)2.33 Let M be a square matrix of order n which is D + E whereD is symmetric and copositive plusE is copositive.



2.10. Exercises 187Let q 2 Rn. If the system Dx � ET y >= �q, y >= 0 is feasible, prove that the com-plementary pivot algorithm will terminate with a solution when applied on the LCP(q;M).(P. C. Jones [2.17])2.34 Let ( �w; �z) be the solution of the LCP (q;M).i) If M is PSD, prove that �zT q <= 0.ii) If the LCP (q;M) comes from an LP prove that �zT q = 0.2.35 Prove that if M is a copositive plus matrix of order n, and q 2 Rn then theoptimum objective value in the following quadratic program is zero, if the problem hasa feasible solution. minimize Q(x) = xT (Mx+ q)subject to Mx +q >= 0x >= 02.36 In Section 2.9.2, we have seen that if a quadratic function Q(x) is boundedbelow on a convex polyhedron, then Q(x) has a �nite global minimum point on thatpolyhedron. Does this result hold for a general polynomial function ?(Hint: Examine the fourth degree polynomial function f(x) = x21+(x1x2�1)2 de�nedover R2).(L. M. Kelly)2.37 Apply the Complementary pivot method on the LCP with the following data.a) q = 8>>>>>:�4�5�19>>>>>; ; M = 8>>>>>: 2 1 11 2 11 1 29>>>>>;b) q = 8>>>>>:�1�2�39>>>>>; ; M = 8>>>>>: 1 2 0�2 �1 0�1 �3 �19>>>>>;c) q = 8>>>>>:�1�2�39>>>>>; ; M = 8>>>>>:�1 2 �22 �1 2�2 2 �19>>>>>; :Verify that (z1; z2; z3) is a complementary feasible basic vector for (c).Also, solve (a) by the variant of the complementary pivot method discussed inSection 2.4.
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Chapter 3
SEPARATION PROPERTIES,PRINCIPAL PIVOT TRANSFORMS,CLASSES OF MATRICES

In this chapter we present the basic mathematical results on the LCP. Many of theseresults are used in later chapters to develop algorithms to solve LCPs, and to studythe computational complexity of these algorithms. Here, unless stated otherwise, Idenotes the unit matrix of order n. M is a given square matrix of order n. In tabularform the LCP (q;M) is w z qI �M qw >= 0; z >= 0; wT z = 0 (3:1)De�nition: Subcomplementary Sets of Column VectorsA vector (y1; : : : ; yi�1; yi+1; : : : ; yn) where yr 2 fwr; zrg for r = 1; : : : ; i�1; i+1; : : : ; nis known as a subcomplementary vector of variables for the LCP (3.1). The com-plementary pair (wi; zi) is known as the left-out complementary pair of variablesin the subcomplementary vector (y1; : : : ; yi�1; yi+1; : : : ; yn). Let A.j be the columnvector associated with yj in (3.1). The ordered set (A.1; : : : ; A.i�1; A.i+1; : : : ; A.n) isknown as a subcomplementary set of column vectors for the LCP (3.1), and(I.i;�M.i) is the left-out complementary pair of column vectors in this sub-complementary set of column vectors.Sometimes we have to refer to subcomplementary sets which are complementarysets with several elements missing. For this, we adopt the following notation. LetJ � f1; : : : ; ng, J 6= ;, J a proper subset. The vector (yj : j 2 J) where yj 2 fwj ; zjg



196 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...for all j 2 J is said to be a subcomplementary vector of variables for (3.1) associatedwith the subset J. Let tj be the complement of yj and let A.j be the column vectorassociated with yj in (3.1), and let B.j be the complement of A.j , for j 2 J. ThenfA.j : j 2 Jg is said to be a subcomplementary set of column vectors associated withJ, and fB.j : j 2 Jg is its complement. The subcomplementary vector (tj : j 2 J) isthe complement of the subcomplementary vector (yj : j 2 J).3.1 LCPs ASSOCIATED WITH PRINCIPALLYNONDEGENERATE MATRICESIf y = (y1; : : : ; yn) is a complementary vector of variables for (3.1), de�neZ(y) = fj : j such that yj = zjgW(y) = fj : j such that yj = wjg : (3:2)Theorem 3.1 If y is a complementary vector of variables for (3.1), it is a com-plementary basic vector i� the principal subdeterminant of M corresponding to thesubset Z(y) is nonzero.Proof. Let the cardinality of Z(y) be r. Let A be the complementary matrix associatedwith y. For j 2W(y), A.j = I.j and for j 2 Z(y), A.j = �M.j . If r = 0, A = I and itsdeterminant is 1. If r > 0, by expanding the determinant of A in terms of its elementsin the jth column for each j 2W(y) in some order, we see that the determinant of Ais (�1)r (principal subdeterminant of M corresponding to the subset Z(y)). Since y isa complementary basic vector i� the determinant of A is nonzero, the result follows.As an example, let n = 4, and consider the LCP (q;M). Let y = (w1; z2; w3; z4)be a complementary vector of variables for this problem. The corresponding comple-mentary matrix is 8>>>>>>>>: 1 �m12 0 �m140 �m22 0 �m240 �m32 1 �m340 �m42 0 �m449>>>>>>>>;and its determinant is determinant 8>:�m22 �m24�m42 �m449>;, which is non-zero i� the princi-pal subdeterminant of M corresponding to the subset Z(y) = f2; 4g is non-zero. Thus,in this problem, y is a complementary basic vector i� the principal subdeterminant ofM corresponding to the subset Z(y) is non-zero.Corollary 3.1 Every complementary vector of variables is a basic vector for (3.1)i� M is a nondegenerate matrix. This follows from Theorem 3.1 and the de�nition ofnondegeneracy of a matrix.



3.1. LCPs Associated with Principally Nondegenerate Matrices 197Corollary 3.2 The complementary cone associated with the complementary vectorof variables y for (3.1) has a nonempty interior i� the principal subdeterminant of Mcorresponding to the subset Z(y) is nonzero.Proof. If A is the corresponding complementary matrix, the complementary cone isPos(A), and it has nonempty interior i� the determinant of A is nonzero. So the resultfollows from Theorem 3.1.Corollary 3.3 Every complementary cone in the class C(M) has a nonempty interiori� M is a nondegenerate matrix. This follows from Corollary 3.2.Theorem 3.2 The LCP (q;M) has a �nite number of solutions for each q 2 Rn i�M is a nondegenerate matrix.Proof. Let (ŵ; ẑ) be a solution of the LCP (q;M). Let A.j = �M.j if ẑj > 0, I.jotherwise; and �j = ẑj if ẑj > 0, ŵj otherwise. Then (A.1; : : : ; A.n) is a complementaryset of column vectors and q = Pnj=1 �jA.j . In this manner each solution of theLCP (q;M) provides an expression of q as a nonnegative linear combination of acomplementary set of column vectors. There are only 2n complementary sets of columnvectors. If q 2 Rn is such that the LCP (q;M) has an in�nite number of distinctsolutions, there must exist a complementary set of column vectors, say (A.1; : : : ; A.n),such that q can be expressed as a nonnegative linear combination of it in an in�nitenumber of ways. So there exist at least two vectors �t = (�t1; : : : ; �tn)T >= 0, t = 1; 2such that �1 6= �2 and q = A�1 = A�2. So A(�1 � �2) = 0, and since �1 6=�2, fA.1; : : : ; A.ng is linearly dependent. By Theorem 3.1, this implies that M isdegenerate.Conversely suppose M is degenerate. So, by Theorem 3.1, there exists a com-plementary set of column vectors, say fA.1; : : : ; A.ng which is linearly dependent. Sothere exists a � = (�1; : : : ; �n) 6= 0 such that Pnj=1 �jA.j = 0. Let � = Maximumfj�j j : j = 1 to ng. Since � 6= 0, � > 0. De�ne q = �Pnj=1A.j . Let (y1; : : : ; yn) be thecomplementary vector associated with (A.1; : : : ; A.n). De�ne a solution (w(�); z(�))by Complement of yj = 0; j = 1 to nyj = � + ��j ; j = 1 to n : (3:3)Then (w(�); z(�)) is a solution of the LCP (q;M) for each 0 <= � <= 1, and since � 6= 0,each of these solutions is distinct. So if M is degenerate, there exist a q 2 Rn suchthat the LCP (q;M) has an in�nite number of distinct solutions.



198 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Example 3.1Consider the following LCP w1 w2 z1 z21 0 �1 �1 �20 1 �1 �1 �2w1; w2; z1; z2 >= 0, w1z1 = w2z2 = 0We have q = (�2;�2)T = (�M.1) + (�M.2)0 = (�M.1)� (�M.2) :These facts imply that (w1; w2; z1; z2) = (0; 0; 1+�; 1��)T is a complementary solutionto this LCP for all 0 <= � <= 1.The set of q for which the number of complementary solutions for the LCP (q;M)is in�nite, is always a subset of the union of all degenerate complementary cones.Also if the LCP (q;M) has an in�nite number of complementary solutions, q must bedegenerate in it (that is, q can be expressed as a linear combination of (m� 1) or lesscolumn vectors of (I : �M)).Result 3.1 If q is nondegenerate in the LCP (q;M) of order n (that is, if inevery solution to the system of equations w �Mz = q, at least n of the variables inthe system are non-zero), every complementary solution of the LCP (q;M) must bea complementary BFS, and so the number of complementary solutions to the LCP(q;M) is �nite and <= 2n.Proof. In every complementary solution of the LCP (q;M) at most n variables canbe positive by the complementarity constraint, and hence exactly n variables have tobe positive by the nondegeneracy of q, that is one variable from every complementarypair of variables must be strictly positive. Consider a complementary solution (w; z)in which the positive variable from the complementary pair fwj ; zjg is yj say, for j = 1to n and suppose yj has value yj > 0 in the solution. Let A.j = I.j if yj = wj , or�M.j otherwise. So q = nXj=1 yjA.j :If fA.1; : : : ; A.ng is linearly dependent, let the linear dependence relation be0 = nXj=1 �jA.j



3.2. Principal Pivot Transforms 199where � = (�1; : : : ; �n)T 6= 0. Suppose �1 6= 0. Let � = �(y1=�1), then y1 + ��1 = 0.From the above two equations, we haveq = nXj=1(yj + ��j)A.j = nXj=2(yj + ��j)A.jthat is, q is expressed as a linear combination of fA.2; : : : ; A.ng which is a subset ofn� 1 columns of (I ... �M), contradicting the nondegeneracy of q. So fA.1; : : : ; A.ngmust be linearly independent, that is A = (A.1 ... �� ... A.n) is a complementary basis,and hence the representation of q as a linear combination of the columns of A is unique,and (w; z) is a complementary BFS. Thus under the nondegeneracy assumption of q,every complementary solution for the LCP (q;M) must be a complementary BFS.Since the total number of complementary bases is <= 2n, this implies that there are atmost 2n complementary solutions in this case.
3.2 PRINCIPAL PIVOT TRANSFORMSLet y = (yj) be a complementary basic vector associated with the complementarybasis A for (3.1). Let tj be the complement of yj for j = 1 to n (i. e., tj = wj ifyj = zj , tj = zj if yj = wj). Let B.j be the complement of A.j for j = 1 to n, andB = (B.1; : : : ; B.n). Obtain the canonical tableau of (3.1) with respect to the basicvector y, and after rearranging the variables suppose it isbasic vector y1 : : : yn t1 : : : tny I �D q (3:4)Then the matrix D is known as the principal pivot transform (PPT in abbrevi-ation) of M associated with the complementary basic vector y or the correspondingcomplementary basis A of (3.1). Clearly D = �A�1B. Also (3.4) can be viewed as thesystem of equations of an LCP in which the complementary pairs are (yj ; tj), j = 1 ton. Remembering that the variables in (3.4) are just the variables in (3.1) arranged ina di�erent order, we can verify that the canonical tableau of (3.4) with respect to itsbasic vector (w1; : : : ; wn) is (3.1). This clearly implies that M is a PPT of D. Hencethe property of being a PPT is a mutual symmetric relationship among square matricesof the same order.



200 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Example 3.2Consider the LCP (q;M) whereM = 8>>>>>>>>:�1 �2 0 �1�1 1 �1 �20 �1 1 �10 �2 0 29>>>>>>>>; :The LCP (q;M) is w1 w2 w3 w4 z1 z2 z3 z41 0 0 0 1 2 0 1 q10 1 0 0 1 �1 1 2 q20 0 1 0 0 1 �1 1 q30 0 0 1 0 2 0 �2 q4wj ; zj >= 0; wjzj = 0 for all j.(z1; w2; z3; w4) is a complementary basic vector for this problem. The canonical tableauwith respect to it is z1 w2 z3 w4 w1 z2 w3 z41 0 0 0 1 2 0 1 q010 1 0 0 �1 �2 1 2 q020 0 1 0 0 �1 �1 �1 q030 0 0 1 0 2 0 �2 q04Thus the matrix D = 8>>>>>>>>:�1 �2 0 �11 2 �1 �20 1 1 10 �2 0 29>>>>>>>>;is a PPT of M and vice versa.Each complementary basic vector for (3.1) leads to a PPT of M . We thus get aclass of matrices containing M , such that each matrix in the class is a PPT of eachother matrix in the class. Some of the matrices in the class may be equal to the othersas matrices (for example, it can be veri�ed that every PPT of I is equal to I). Thisclass of matrices is known as the principal pivot transform class of M .



3.2. Principal Pivot Transforms 201Single and Double Principal Pivot StepsIf y = (y1; : : : ; yn) is a complementary basic vector for (3.1), then yr can be replaced inthis basic vector by its complement, to yield another complementary basic vector for(3.1), i� the rth diagonal element in the PPT ofM corresponding to y is nonzero. If thiscondition is satis�ed, the pivot operation of replacing yr by its complement, is knownas a single principal pivot step in the rth position in the complementarybasic vector y.Suppose for r 6= s, the rth and sth diagonal elements in M 0 = (m0ij), the PPT ofM corresponding to the complementary basic vector y, are both zero. Then it is notpossible to make a single principal pivot step either in the rth position, or in the sthposition, in the complementary basic vector y. However, supposem0rs 6= 0 andm0sr 6= 0.In this case we can perform two consecutive pivot steps, in the �rst one replacing yrin the basic vector by the complement of ys, and in the second one replacing ys in theresulting basic vector by the complement of yr. In the canonical tableau obtained atthe end of these two pivot steps, the column vector associated with the complement ofys is I.r and the column vector associated with the complement of yr is I.s. So, nowinterchange rows r and s in the canonical tableau. After this interchange it can beveri�ed that in the new canonical tableau the column vector associated with the basicvariable from the jth complementary pair, in the new complementary basic vector, isI.j , for all j (including j = r and s). This operation (one pivot step in position (r; s)replacing yr in the basic vector by the complement of ys, followed by another pivot stepin position (s; r) replacing ys in the resulting basic vector by the complement of yr,followed by an interchange of rows r and s in the resulting canonical tableau) is calleda double principal pivot step in positions r and s in the complementarybasic vector y. Clearly, this double principal pivot step in positions r and s canonly be carried out if the order two determinant 8>:m0rr m0rsm0sr m0ss9>; 6= 0. If this order twodeterminant is nonzero, and one of its diagonal entries, say m0rr, is nonzero; carryingout the double principal pivot in positions r and s in the complementary basic vectory, can be veri�ed to have exactly the same e�ect as carrying out two single principalpivot steps, �rst in position r in y, and then in position s in the complementary basicvector resulting from the �rst. In general, in the algorithms discussed in the followingchapters, a double principal pivot in positions r and s will only be performed if thediagonal entry in the PPT of M in at least one of the two positions r and s is zero(i. e., either m0rr = 0 or m0ss = 0 or both).



202 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Example 3.3Consider the following LCPbasicvariable w1 w2 w3 w4 z1 z2 z3 z4w1 1 0 0 0 �1 1 �1 �1 q1w2 0 1 0 0 �1 0 0 1 q2w3 0 0 1 0 0 0 �1 �1 q3w4 0 0 0 1 1 �1 1 0 q4wj ; zj >= 0; and wjzj = 0 for all jIn this problem, in the complementary basic vector w, single principal pivot stepsare only possible in positions 1 and 3. Carrying out a single principal pivot in thecomplementary basic vector w in position 1 leads to the followingbasicvariable z1 w2 w3 w4 w1 z2 z3 z4z1 1 0 0 0 �1 �1 1 1 q01w2 0 1 0 0 �1 �1 1 2 q02w3 0 0 1 0 0 0 �1 �1 q03w4 0 0 0 1 1 0 0 �1 q04In the above canonical tableau, we have also rearranged the column vectors so that thebasic variables, and the nonbasic variables, appear together and in their proper order.We can make a double principal pivot step in the complementary basic vector w, inpositions 2, 4 in this problem, because the determinant of the 2� 2 matrix 8>: 0 1�1 09>;is non-zero. Carrying out this double principal pivot step requires replacing the basicvariable w2 in the basic vector (w1; w2; w3; w4) by z4, then replacing the basic variablew4 in the resulting basic vector (w1; z4; w3; w4) by z2, and �nally interchanging rows 2and 4 in the resulting canonical tableau. This is carried out below.



3.2. Principal Pivot Transforms 203basicvariable w1 w2 w3 w4 z1 z2 z3 z4w1 1 1 0 0 �2 1 �1 0 q01z4 0 1 0 0 �1 0 0 1 q02w3 0 1 1 0 �1 0 �1 0 q03w4 0 0 0 1 1 �1 1 0 q04w1 1 1 0 1 �1 0 0 0 q001z4 0 1 0 0 �1 0 0 1 q002w3 0 1 1 0 �1 0 �1 0 q003z2 0 0 0 �1 �1 1 �1 0 q004w1 1 1 0 1 �1 0 0 0 q001z2 0 0 0 �1 �1 1 �1 0 q004w3 0 1 1 0 �1 0 �1 0 q003z4 0 1 0 0 �1 0 0 1 q002Block Principal PivotingConsider the LCP (q;M), (3.1). Let J � f1; : : : ; ng be such that MJJ, the principalsubmatrix of M corresponding to the subset J, is nonsingular. De�ne the complemen-tary vector y = (yj) by yj = �wj ; for j 62 Jzj ; for j 2 Jand let A be the complementary matrix corresponding to y. Since MJJ is nonsingular,A is a basis. Let tj be the complement of yj for each j = 1 to n, and let t = (tj).Multiplying (3.1) on the left by A�1 and rearranging the variables leads to the LCPy tI �D q0y; t � 0; yT t = 0where DJJ = (MJJ)�1; DJJ = �(MJJ)�1MJJDJJ =MJJ(MJJ)�1; DJJ =MJJ �MJJ(MJJ)�1MJJq0J = �(MJJ)�1qJ; q0J = qJ �MJJ(MJJ)�1qJ :



204 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Here J = f1; : : : ; ng n J, and MJJ is the submatrix (mij : i 2 J; j 2 J), etc.; andqJ = (qj : j 2 J), etc. D is of course the PPT of M corresponding to the complemen-tary basic vector y. The above LCP (q0; D) is said to have been obtained from theLCP (q;M) in (3.1) by a block principal pivot step in positions J (or by blockprincipal pivoting on �MJJ) in (3.1).Corollary 3.4 If M is a nondegenerate matrix, a single principal pivot step in anyposition is always possible in every complementary basic vector.Proof. Follows from Corollary 3.1 and the argument used in Theorem 3.1.Corollary 3.5 A square matrix M of order n is nondegenerate (that is, principallynondegenerate to be speci�c) i� every diagonal entry in every PPT of M is non-zero.Proof. Follows from Corollary 3.1.Theorem 3.3 If M is a PD or a P -matrix, or a nondegenerate matrix in general;starting with a complementary basic vector y1 = (y11; : : : ; y1n), any other complemen-tary basic vector y2 = (y21; y22; : : : ; y2n) for (3.1), can be obtained by performing asequence of single principal pivot steps.Proof. In these cases, by Corollary 3.1 every complementary vector of variables is acomplementary basic vector. Hence if y1 and y2 have n� r common variables; each ofthe variables in y1 which is not in y2, can be replaced by its complement, to lead toy2 after r single principal pivot steps.Theorem 3.4 All PPTs of a nondegenerate matrix are nondegenerate.Proof. Let M be nondegenerate. Let y, ŷ be distinct complementary vectors of vari-ables associated with the complementary matrices A, Â respectively in (3.1). Since Mis nondegenerate, A is a complementary basis. Let (3.4) be the canonical tableau of(3.1) with respect to y. So D is the PPT of M corresponding to y. We will now provethat D is nondegenerate. Look at (3.4). The complementary matrix corresponding tothe complementary vector of variables ŷ in (3.4) is A�1Â, and this matrix is nonsingu-lar since both A and Â are. Hence ŷ is a complementary basic vector for (3.4). Since ŷis an arbitrary complementary vector of variables, this implies that all complementaryvectors of variables in (3.4) are basic vectors.Hence by Corollary 3.1, D is nondegenerate.Theorem 3.5 All PPTs of a P -matrix are P -matrices.Proof. Let M = (mij) be a P -matrix of order n. Consider a single principal pivotstep on (3.1) in any position, say position 1. The pivot matrix corresponding to thispivot step is P , which is the same as the unit matrix of order n, with the exceptionthat its �rst column vector is (�1=m11;�m12=m11; : : : ;�m1n=m11)T . Let M 0 be the



3.2. Principal Pivot Transforms 205PPT of M obtained after this pivot step. Let J = fj1; : : : ; jrg � f1; : : : ; ng, J 6= ;,and let � be the principal subdeterminant of M 0 corresponding to the subset J. Wewill now prove that � > 0. We consider two cases separately.Case 1: 1 62 J. Let y = (y1; : : : ; yn) where yj = wj if j 62 J [ f1g, or zj otherwise.Let A, A be the complementary bases corresponding to y, in the original LCP (3.1)and in the canonical tableau for (3.1) obtained after the single principal pivot stepin position 1, respectively. So A = PA. Let �1 be the principal subdeterminantof M corresponding to the subset f1g [ J. We have � = (�1)r (determinant ofA) = (�1)r (determinant of PA) = (�1)r (determinant of P ) (determinant of A) =(�1)r(�1=m11)(�1)r+1�1 = (�1=m11) > 0, because m11 > 0 and �1 > 0 since M isa P -matrix.Case 2: 1 2 J. In this case let y = (y1; : : : ; yn) where yj = zj if j 2 J n f1g,or wj otherwise. Let A, A be the complementary bases corresponding to y, in theoriginal LCP (3.1), and in the canonical tableau for (3.1) obtained after the singleprincipal pivot step in position 1, respectively. Then A = PA. Let �2 be the prin-cipal subdeterminant of M determined by the subset J n f1g. As in Case 1, we have� = (�1)r (determinant of A) = (�1)r (determinant of P ) (determinant of A) =(�1)r(�1=m11)(�1)r�1�2 = (�2=m11) > 0, since both �2, m11 are strictly positivebecause M is a P -matrix.Hence the principal subdeterminant ofM 0 corresponding to the subset J is strictlypositive. This holds for all subsets J � f1; : : : ; ng. So M 0 is itself a P -matrix.Thus the property of being a P -matrix is preserved in the PPTs of M obtainedafter a single principal pivot step on (3.1). By Theorem 3.3 any PPT of M can beobtained by making a sequence of single principal pivot steps on (3.1). So, applyingthe above result repeatedly after each single principal pivot step, we conclude thatevery PPT of M is also a P -matrix.Theorem 3.6 If all the diagonal entries in every PPT of M are strictly positive,M is a P -matrix.Proof. By the hypothesis of the theorem all principal subdeterminants of M of order1 are strictly positive.Induction Hypothesis: Under the hypothesis of the theorem, all principal subde-terminants of M of order less than or equal to r are strictly positive.We will now prove that under the hypothesis of the theorem, the induction hy-pothesis implies that any principal subdeterminant of M of order r+ 1 is also strictlypositive. Let �1 be the principal subdeterminant of M corresponding to the subsetfj1; : : : ; jr; jr+1g � f1; 2; : : : ; ng. Carry out a single principal pivot step in positionjr+1 in (3.1) and let M 0 be the PPT of M obtained after this step. Since M 0 is a PPTofM it also satis�es the hypothesis of the theorem. So by the induction hypothesis, allprincipal subdeterminants of M 0 of order r or less are strictly positive, and so �, theprincipal subdeterminant of M 0 corresponding to the subset fj1; : : : ; jrg, is > 0. As in



206 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...the proof of Theorem 3.5 we have � = �1=mjr+1;jr+1 , that is �1 = mjr+1;jr+1�, andsince mjr+1;jr+1 > 0, � > 0, we have �1 > 0. So under the hypothesis of the theorem,the induction hypothesis implies also that all principal subdeterminants of M of orderr+1 are strictly positive. Hence by induction, all principal subdeterminants of M arestrictly positive, and hence M is a P -matrix.Corollary 3.6 The following conditions (i) and (ii) are equivalent(i) all principal subdeterminants of M are strictly positive(ii) the diagonal entries in every PPT of M are strictly positive.Proof. Follows from Theorem 3.5, 3.6.Corollary 3.7 If M is a P -matrix, in making any sequence of single principal pivotsteps on (3.1), the pivot element will always be strictly negative.Theorem 3.7 LetM 0 be a PPT ofM obtained after carrying out exactly one singleprincipal pivot step. Then M 0 is PD if M is PD. And M 0 is PSD if M is PSD.Proof. Let M = (mij). Let u = (u1; : : : ; un)T 2 Rn. De�ne v = (v1; : : : ; vn)T byv �Mu = 0 : (3:5)Suppose M 0 = (m0ij) is the PPT of M obtained after making a single principal pivotstep in (3.5) in position r. So mrr 6= 0. After this single principal pivot step in positionr, (3.5) becomes(v1; : : : ; vr�1; ur; vr+1; : : : ; vn)T �M 0(u1; : : : ; ur�1; vr; ur+1; : : : ; un)T = 0 : (3:6)For any u 2 Rn and v de�ned by (3.5), let � = (u1; : : : ; ur�1; vr; ur+1; : : : ; un),� = (v1; : : : ; vr�1; ur; vr+1; : : : ; vn). Since vr = Mr.u and mrr 6= 0, as u varies overall of Rn, � also varies over all of Rn. Also, as u varies over all the nonzero pointsin Rn, � does the same. Since (3.6) is obtained from (3.5) by a pivot step, theyare equivalent. So for any u 2 Rn and v de�ned by (3.5), (3.6) also holds. NowuTMu = uT v = �T � = �TM 0�. These facts imply that �TM 0� >= 0 for all � 2 Rn i�uTMu >= 0 for all u 2 Rn and �TM 0� > 0 for all � 6= 0 i� uTMu > 0 for all u 6= 0.Hence M is PD i� M 0 is PD. And M 0 is PSD i� M is PSD.Theorem 3.8 Let M 00 be a PPT of M obtained after carrying out exactly onedouble principal pivot step. Then M 00 is PD if M is PD. And M 00 is PSD if M is PSD.Proof. Let M = (mij). Let u = (u1; : : : ; un)T 2 Rn. De�ne v = (v1; : : : ; vn)T by(3.5). Suppose M 00 = (m00ij) is the PPT of M obtained after making a double principalpivot step in positions r and s. This implies that� = determinant 8>:�mss �msr�mrs �mrr9>; 6= 0 ;



3.2. Principal Pivot Transforms 207as otherwise the double principal pivot step in positions r and s cannot be carriedout on (3.5). For any u 2 Rn and v de�ned by (3.5) de�ne � = (u1; : : : ; us�1; vs;us+1; : : : ; ur�1; vr; ur+1; : : : ; un)T , � = (v1; : : : ; vs�1; us; vs+1; : : : ; vr�1; ur; vr+1; : : : ; vn)T .Then after this double principal pivot step in positions r and s, (3.5) gets transformedinto � �M 00� = 0 : (3:7)Since (3.7) is obtained by performing two pivots on (3.5), they are equivalent. So forany u 2 Rn and v de�ned by (3.5), (3.7) holds and we have uTMu = uT v = �T � =�TM 00�. Also, since � 6= 0, as u varies over all of Rn, so does �; and as u varies overall nonzero points in Rn so does �. These facts imply that �TM 00� >= 0 for all � 2 Rni� uTMu >= 0 for all u 2 Rn and �TM 00� > 0 for all � 6= 0 i� uTMu > 0 for all u 6= 0.Hence M 00 is PD i� M is PD, and M 00 is PSD i� M is PSD.Theorem 3.9 If M is a PD matrix, all its PPTs are also PD.Proof. By Theorem 3.3 when M is PD, every PPT of M can be obtained by carryingout a sequence of single principal pivot steps on (3.1). By applying the argumentin Theorem 3.7 repeatedly after each single principal pivot step in the sequence, weconclude that all PPTs of M are also PD, if M is.Theorem 3.10 IfM is PSD, any PPT of M can be obtained by making a sequenceof single or double principal pivot steps on (3.1). Also, all these PPTs of M are alsoPSD.Proof. Let y = (y1; : : : ; yn) be a complementary basic vector of (3.1). Starting withthe complementary basic vector w, perform single principal pivot steps in position j foras many j 2 Z(y) as possible in any possible order. If this leads to the complementarybasic vector y, we are done by repeated use of the result in Theorem 3.7 after each singleprincipal pivot step. Suppose y has not yet been obtained and no more single principalpivot steps can be carried out in the remaining positions j 2 Z(y). Let u = (u1; : : : ; un)be the complementary basic vector at this stage. Let U = fj : j such that uj 6= yjg.So U 6= ;, U � Z(y). And for each j 2 U, we have uj = wj , yj = zj . Let tj denotethe complement of uj , j = 1 to n. Let the canonical tableau of (3.1) at this stage bebasic vector u1; : : : ; un t1; : : : ; tn qu I �M 0 q0 (3:8)M 0 is the PPT of M corresponding to U, it is PSD by repeated use of Theorem 3.7.We have �m0jj = 0 for each j 2 U (as single principal pivot steps cannot be carriedout in these positions). If U is a singleton set, this would imply that the set of columnvectors corresponding to y in (3.8) is linearly dependent, a contradiction, since y is acomplementary basic vector. So cardinality of U is >= 2. Let r 2 U. Since m0rr = 0 and



208 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...M 0 is PSD, by Result 1.6 we have m0ri+m0ir = 0 for all i = 1 to n. Search for an s 2 Usuch that m0sr 6= 0. If an s like this does not exist, again the set of column vectorscorresponding to y in (3.8) is linearly dependent, and y is not a complementary basicvector, a contradiction. So there always exists an s 2 U such that m0sr 6= 0. Sincem0rs +m0sr = 0, m0rs 6= 0 too. So the determinant8>:m0rr m0rsm0sr m0ss9>;is nonzero, and a double principal pivot step can be carried out in (3.8) in positions r, s.The complementary basic vector obtained after this double principal pivot step containstwo more variables in common with y than u does, and the PPT ofM corresponding toit is also PSD by Theorem 3.8. Delete r; s from U. In the resulting canonical tableau,make as many single principal pivot steps in positions j 2 U as possible, deleting suchj from U after each step. Or make another double principal pivot step in positionsselected from U as above, and continue the same way until U becomes empty. At thatstage we reach the canonical tableau with respect to y. By repeated use of Theorems3.7, 3.8, the PPT of M with respect to y is also PSD.
3.2.1 Principal Rearrangements of a Square MatrixLet M be a given square matrix of order n. Let p = (i1; : : : ; in) be a permutation of(1; : : : ; n). The square matrix P of order n whose rows are Ii1.; Ii2.; : : : ; Iin. in thatorder, is the permutation matrix corresponding to the permutation p. P is obtainedessentially by permuting the rows of the unit matrix I of order n using the permutationp. The matrix M 0 = PMPT is known as the principal rearrangement of M accordingto the permutation p. Clearly M 0 is obtained by �rst rearranging the rows of Maccording to the permutation p, and in the resulting matrix, rearranging the columnsagain according to the same permutation p.As an example let n = 3, andp = (3; 1; 2) ; M = 8>>>>>:m11 m12 m13m21 m22 m23m31 m32 m339>>>>>; ; P = 8>>>>>: 0 0 11 0 00 1 09>>>>>;then PM = 8>>>>>:m31 m32 m33m11 m12 m13m21 m22 m239>>>>>; ; M 0 = PMPT = 8>>>>>:m33 m31 m32m13 m11 m12m23 m21 m229>>>>>;and M 0 here is the principal rearrangement of M according to the permutation p.The following results can be obtained directly using the de�nition. Let M 0 bethe principal rearrangement of M according to the permutation p associated with thepermutation matrix P . Then M 0 is a P -matrix, i� M is. For all y 2 Rn, yTMy =(Py)TM 0(Py). So M 0 is a PSD, or PD, or NSD, or ND matrix i� M has the sameproperty. Also, M 0 is principally degenerate (or nondegenerate) i� M has the sameproperty.



3.3. LCPs Associated with P Matrices 2093.3 LCPs ASSOCIATED WITH P -MATRICES
Properties of P -MatricesThe following Theorems 3.11, 3.12 are important properties of P -matrices due toD. Gale and H. Nikaido (see reference [3.24]).Theorem 3.11 Let F = (fij) be a P -matrix of order n. Then the system of linearinequalities Fx <= 0x >= 0 (3:9)has \x = 0" as its unique solution.Proof. The theorem is easily veri�ed to be true for n = 1. We will prove the theoremfor all n by induction.Induction Hypothesis: If T is a P -matrix of order r <= n� 1, then the system ofinequalities T� <= 0, � >= 0, � 2 Rr has \� = 0" as its unique solution.Under the induction hypothesis we will now prove that the statement of the the-orem holds for the matrix F which is a P -matrix of order n. Since F is a P -matrix,it is nonsingular, and hence F�1 exists. Let B = F�1 = (bij). From standard resultsin the theory of determinants (for example, see Chapter 3 in F. E. Hohn, ElementaryMatrix Algebra, Macmillan, 2nd edition, 1964) it is known that bii = (principal sub-determinant of F corresponding to the subset f1; : : : ; i� 1; i+ 1; : : : ; ng)/determinantof F . So bii > 0 for all i, since F is a P -matrix. Thus each column of B has at leastone positive entry. Let x 2 Rn satisfy (3.9). Select a column of B, say B.1. Let� = minimumfxi=bi1 : i such that bi1 > 0g, and suppose this minimum is attained byi = s. So � = xs=bs1 >= 0, and (xj=bj1) >= �, for all j such that bj1 > 0. From thisand the fact that x >= 0, we have � = (�1; : : : ; �n)T = x� �B.1 >= 0 and �s = 0. AlsoF� = Fx � �FB.1 = Fx � �I.1 <= 0. Let T be the matrix of order n � 1 obtainedby striking o� the sth row and the sth column from F . Since F is a P -matrix, itsprincipal submatrix T is also a P -matrix. Let � = (�1; : : : ; �s�1; �s+1; : : : ; �n)T . Since�s = 0 and F� <= 0, we have T� <= 0. Also since � >= 0, � >= 0 too. So T� <= 0, � >= 0.Since T is a P -matrix of order n�1, by the induction hypothesis, � = 0. � = 0, �s = 0together imply that � = 0. So F� = 0, that is F (x� �I.1) = 0. Then Fx = �I.1 >= 0.However from (3.9), Fx <= 0. So Fx = 0, and since F is nonsingular, x = 0.Thus under the induction hypothesis the statement of the theorem also holds forF which is a P -matrix of order n. The statement of the theorem is easily veri�ed forn = 1. Hence, by induction, the statement of the theorem is true for all n.



210 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Theorem 3.12 The Sign Nonreversal Property: Let F be a square matrix oforder n. For x 2 Rn let y = Fx. Then F is said to reverse the sign of x if xiyi <= 0 forall i. If F is a P -matrix it reverses the sign of no vector except zero.Proof. For this proof we need only to consider the case x � 0. For if F reverses thesign of an x 6>= 0, let J = fj : xj < 0g, let D be the diagonal matrix obtained fromthe unit matrix by multiplying its jth column by �1 for each j 2 J. The matrixF � = DFD is again a P -matrix, since F � is obtained by simply changing the signs ofrows and columns in F for each j 2 J. And F � reverses the sign of x̂ = Dx, wherex̂ >= 0.Now suppose that x >= 0 and that F reverses the sign of x. Let P = fj : xj > 0g.Assume that P 6= ;. Let A be the principal submatrix of F corresponding to P. Let� be the vector of xj for j 2 P. The fact that F reverses the sign of x implies that Areverses the sign of �. Since � > 0, this implies that A� <= 0. Since A is a P -matrixA� <= 0, � >= 0 implies � = 0 by Theorem 3.11, a contradiction. So x must be zero.Unique Solution Property of LCPsAssociated with P -MatricesTheorem 3.13 Let M be a P -matrix. The LCP (q;M) has a unique solution foreach q 2 Rn. Also, when the complementary pivot algorithm of Section 2.2 is appliedon the LCP (q;M), it �nds the solution.Proof. Suppose when the complementary pivot algorithm is applied on the LCP(q;M) it ends in ray termination. As in the proof of Theorem 2.1 this implies thatthere exists a zh � 0, wh >= 0, zh0 >= 0 satisfying wh = Mzh + enzh0 ; whi zhi = 0 forall i. So zhi (Mi.zh) + zhi zh0 = 0. This implies that zhi (Mi.zh) = �zhi z0h <= 0 for alli. So M reverses the sign of zh � 0, which is a contradiction to Theorem 3.12. So,when the complementary pivot method is applied on the LCP (q;M) associated witha P -matrix, it cannot end in ray termination, it has to terminate with a solution ofthe LCP. This also proves that every P -matrix is a Q-matrix.Now we will prove that if M is a P -matrix, for any q 2 Rn, the LCP (q;M) hasexactly one solution, by induction on n, the order of the problem.Suppose n = 1. M = (m11) is a P -matrix, i� m11 > 0. In this case q = (q1).If q1 >= 0, (w = (w1) = (q1); z = (z1) = (0)) is the only solution to the LCP (q;M).If q1 < 0, (w = (w1) = (0); z = (z1) = (�q1=m11)) is the only solution to the LCP(q;M). Hence the theorem is true for n = 1.Induction Hypothesis: Suppose any LCP of order (n� 1) or less, associated witha P -matrix, has a unique solution for each of its right hand side constant vectors.Now we will prove that under the induction hypothesis, the LCP (q;M) whereM is a P -matrix of order n, has a unique solution for any q 2 Rn. We have shownabove that it has at least one solution, say ( ~w; ~z). For each j = 1 to n let uj = zj , if



3.3. LCPs Associated with P Matrices 211~zj > 0; or wj otherwise; and let vj be the complement of uj . Then u = (u1; : : : ; un)is a complementary feasible basic vector of variables associated with the BFS ( ~w; ~z)for (3.1). Obtain the canonical tableau for (3.1) with respect to the complementaryfeasible basic vector u, and suppose it isu1; : : : ; un v1; : : : ; vn qI �fM ~q (3:10)~q >= 0 by our assumptions here. (3.10) can itself be viewed as the LCP (~q;fM), onesolution of this LCP is (u = ~u = ~q; v = ~v = 0). fM is a PPT of M , by Theorem 3.5, fMis also a P -matrix. So all the principal submatrices of fM are also P -matrices. So theprincipal subproblem of the LCP (~q;fM) in the variables (u1; : : : ; ui�1; ui+1; : : : ; un);(v1; : : : ; vi�1; vi+1; : : : ; vn) is an LCP of order (n�1) associated with a P -matrix, and bythe induction hypothesis this principal subproblem has a unique solution. One solutionof this principal subproblem is (~u1; : : : ; ~ui�1; ~ui+1; : : : ; ~un; ~v1; : : : ; ~vi�1; ~vi+1; : : : ; ~vn) =(~q1; : : : ; ~qi�1; ~qi+1; : : : ; ~qn; 0; : : : ; 0; 0; : : : ; 0). If the LCP (~q;fM), (3.10), has an alternatesolution (û; v̂) 6= (~u; ~v) in which v̂i = 0, its principal subproblem in the variables(u1; : : : ; ui�1; ui+1; : : : ; un); (v1; : : : ; vi�1; vi+1; : : : ; vn) will have an alternate solution(û1; : : : ; ûi�1; ûi+1; : : : ; ûn; v̂1; : : : ; v̂i�1; v̂i+1; : : : ; v̂n), a contradiction. So, if the LCP(~q;fM) has an alternate solution (û; v̂) 6= (~u; ~v), then v̂i must be strictly positive in it,and by complementarity ûi must be zero. Since this holds for each i = 1 to n, v̂ > 0,û = 0. So û � fMv̂ = ~q, û = 0, v̂ > 0. Since ~q >= 0, this implies that fMv̂ = �~q <= 0,v̂ > 0, a contradiction to Theorem 3.11, since fM is a P -matrix. Hence under theinduction hypothesis the LCP (~q;fM) has a unique solution, which implies that theequivalent LCP (q;M) has a unique solution also. Since this holds for any q 2 Rn,under the induction hypothesis, the LCP (q;M) of order n has a unique solution foreach q 2 Rn when M is a P -matrix. Hence, by induction the theorem is true.Theorem 3.14 Let M be a given square matrix of order n. Suppose the LCP(q;M) has at most one solution for each q 2 Rn. Then M is a P -matrix.Proof. So, the number of solutions of the LCP (q;M) is either 1 or 0 and hence is �nitefor all q, which implies that M is nondegenerate by Theorem 3.2. So the determinantof M is nonzero, and hence M�1 exists.Proof is by induction on n, the order of the matrix M . We �rst verify that thetheorem is true if n = 1. In this case q = (q1), M = (m11). Since M is shown tobe nondegenerate under the hypothesis of the theorem, m11 6= 0. If m11 < 0; whenq1 > 0, (w = (q1); z = 0), (w = 0; z = q1=(jm11j)) are two distinct solutions of theLCP (q;M). Hence under the hypothesis of the theorem m11 6< 0. So, m11 > 0, whichimplies that the theorem is true when n = 1.Induction Hypothesis: If F is a square matrix of order r <= n� 1, such that theLCP (
; F ) has at most one solution for each 
 2 Rr, then F is a P -matrix.



212 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Under the hypothesis of the theorem, and the induction hypothesis, we will nowprove that M has to be a P -matrix too.Consider the principal subproblem of the LCP (q;M) in the variables ! = (w2;: : : ; wn), � = (z2; : : : ; zn). This is an LCP of order n� 1 associated with the principalsubmatrix ofM determined by the subset f2; : : : ; ng. If there exists a ~q = (~q2; : : : ; ~qn)Tfor which this principal subproblem has two distinct solutions, namely, (!; �) and(!̂; �̂), choose ~q1 to satisfy ~q1 >MaximumfjPnj=2 zjm1j j; jPnj=2 ẑjm1j jg, and let w1 =~q1 +Pnj=2 zjm1j , z1 = 0, ŵ1 = ~q1 + Pnj=2 ẑjm1j , ẑ1 = 0, w = (w1; w2; : : : ; wn),z = (z1; z2; : : : ; zn), ŵ = (ŵ1; ŵ2; : : : ; ŵn), ẑ = (ẑ1; ẑ2; : : : ; ẑn), ~q = (~q1; ~q2; : : : ; ~qn)T .Then (w; z), (ŵ; ẑ) are two distinct solutions of the LCP (~q;M), contradicting thehypothesis of the theorem. So the principal subproblem of the LCP (q;M) in thevariables !, � has at most one solution for each of its right hand side constant vectors.By the induction hypothesis this implies that the principal submatrix ofM determinedby the subset f2; : : : ; ng is a P -matrix.A similar argument can be made for each principal subproblem of the LCP (q;M)of order (n� 1), and this implies that all principal submatrices of M of order (n� 1)are P -matrices, by the induction hypothesis. Hence all the principal subdeterminantsof M of order <= (n� 1) are strictly positive. In particular, the diagonal entries of Mare strictly positive. It only remains to be proved that the determinant of M itselfis strictly positive. We have already seen that M�1 exists. The canonical tableau of(3.1) with respect to the complementary basic vector (z1; : : : ; zn) isz wI �M q (3:11)whereM =M�1 and q = �M�1q. The LCP in (3.11) has at most one solution for eachq 2 Rn. So by the previous arguments all diagonal entries in the matrix M have to bestrictly positive. However since M = (mij) = M�1, m11 = (principal subdeterminantof M corresponding to the subset f2; : : : ; ng)/(determinant of M). Since the principalsubdeterminant of M corresponding by the subset f2; : : : ; ng has been shown to bestrictly positive, m11 > 0 implies that the determinant of M is strictly positive. Henceunder the hypothesis of the theorem, and the induction hypothesis, the matrix M oforder n has to be a P -matrix. So, by induction the theorem is true in general.Corollary 3.8 Let M be a given square matrix of order n. If the LCP (q;M) hasat most one solution for each q 2 Rn, then it has exactly one solution for each q 2 Rn.This follows from Theorems 3.13, 3.14.Theorem 3.15 Let M be a given square matrix of order n. The LCP (q;M) hasa unique solution for each q 2 Rn i� M is a P -matrix.Proof. Follows from Theorems 3.13, 3.14.



3.3. LCPs Associated with P Matrices 213Strict Separation PropertyThe strict separation property is a property of the matrix M , and does not dependon the right hand side constants vector q. An LCP associated with the matrix M(or the class of complementary cones C(M)) is said to satisfy the strict separationproperty if the following conditions are satis�ed.(i) Every subcomplementary set of column vectors is linearly independent.(ii) If (A.1; : : : ; A.i�1; A.i+1; : : : ; A.n) is any subcomplementary set of column vectors,the hyperplane which is its linear hull strictly separates the points represented bythe left out complementary pair of column vectors (I.i;�M.i).From (i) and (ii), it is clear that every complementary set of column vectors hasto be linearly independent for the strict separation property to be satis�ed.Example 3.4Let M = 8>: 1 2�1 19>;. Here n = 2. The points representing the column vectors of I,�M are plotted in Figure 3.1.Since n = 2 here, in this case each subcomplementary set consists of exactly oneof the column vectors from fI.1; I.2;�M.1;�M.2g. The linear hull of any subcomple-mentary set of vectors in this example is the straight line through the vector in thatsubcomplementary set and the origin.Consider the subcomplementary set of column vectors fI.1g. The left out com-plementary pair of column vectors in this set is (I.2;�M.2). The linear hull of fI.1g,which is the horizontal axis in Figure 3.1, strictly separates the points I.2;�M.2, sinceneither of these points is on this straight line and they are on opposite sides of it. Ina similar manner it can be veri�ed that both properties (i) and (ii) discussed aboveare satis�ed in this example. Hence any LCP associated with the matrix M in thisexample satis�es the strict separation property.
Example 3.5Let M = 8>: 1 00 19>;. Here again, n = 2. The points representing the column vectors ofI, �M in this case are plotted in Figure 1.3. Consider the subcomplementary set ofcolumn vectors fI.2g in this example. Its linear hull is the vertical axis in Figure 1.3,and it strictly separates the left-out complementary pair of column vectors (I.1;�M.1).In a similar manner, it can be veri�ed that the strict separation property holds in thiscase.
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Figure 3.1 Illustration of Strict Separation
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Figure 3.2 Violation of the Strict Separation Property
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Figure 3.3 Another Example of Violation of the Strict Separation Property.Example 3.6Let M = 8>: 1 21 19>;. Here n = 2, and the column vectors of I, �M are plotted inFigure 3.2. Consider the subcomplementary set of column vectors f�M.1g here. Boththe points in the left-out complementary pair (I.2;�M.2) are on the same side of thelinear hull of f�M.1g here, and hence the strict separation property is not satis�ed bythe LCPs associated with the matrix M here.
Example 3.7LetM = 8>: 1 21 29>;. See Figure 3.3. Consider the subcomplementary set of column vec-tors f�M.1g here. The point �M.2 from the left-out complementary pair (I.2;�M.2)lies on the straight line which is the linear hull of the subcomplementary set of columnvectors f�M.1g. So the strict separation property is not satis�ed in this example.Corollary 3.9 If an LCP associated with the matrixM satis�es the strict separationproperty, M is nondegenerate. This follows from the de�nitions.



216 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...Theorem 3.16 The LCP associated with a matrixM satis�es the strict separationproperty i� M is a P -matrix.Proof. Suppose M is a P -matrix. Property (i) required for strict separation propertyis obviously satis�ed because M is nondegenerate (Corollary 3.1).Let (A.1; : : : ; A.i�1; A.i+1; : : : ; A.n) be any subcomplementary set of column vec-tors where A.j 2 fI.j ;�M.jg for each j 6= i. Let H be the hyperplane which is thelinear hull of fA.1; : : : ; A.i�1; A.i+1; : : : ; A.ng. By Corollary 3.1, the complementarysets of column vectors (A.1; : : : ; A.i�1; I.i; A.i+1; : : : ; A.n) and (A.1; : : : ; A.i�1;�M.i;A.i+1; : : : ; A.n) are both linearly independent, and hence neither I.i nor �M.i lie onthe hyperplane H. Suppose both I.i and �M.i are on the same side of the hyper-plane H in Rn. See Figure 3.4. In this case the interiors of the complementarycones Pos(A.1; : : : ; A.i�1; I.i; A.i+1; : : : ; A.n) and Pos(A.1; : : : ; A.i�1;�M.i; A.i+1; : : : ;A.n) have a nonempty intersection, and if q is a point in the intersection, then q is inthe interior of two complementary cones, and the LCP (q;M) has two distinct solu-tions; a contradiction to Theorem 3.13, sinceM is a P -matrix. So I.i and �M.i cannotbe on the same side of the hyperplane H. Since neither of these points is on H, andthey are not on the same side of H, these points are on either side of H, that is Hseparates them strictly. Since this holds for any subcomplementary set of column vec-tors and the corresponding left-out complementary pair of column vectors, the strictseparation property holds when M is a P -matrix.Suppose the strict separation property is satis�ed. By Corollary 3.9 M is non-degenerate. So all the principal subdeterminants of M are nonzero. It remains to beproved that they are all positive. Let y = (y1; : : : ; yn) be any complementary vector ofvariables for the LCP (q;M). Let tj be the complement of yj for j = 1 to n. SinceM isnondegenerate, (y1; : : : ; yn) is a complementary basic vector of variables by Corollary3.1. Obtain the canonical tableau of (3.1), with respect to the complementary basicvector y. Suppose it is y1 : : : yn t1 : : : tn qI �M 0 q0 (3:12)where M 0 = (m0ij) is the PPT of M corresponding to the complementary basic vectory. Now look at the subcomplementary vector of variables (y1; : : : ; yi�1; yi+1; : : : ; yn).The column corresponding to yj in (3.12) is I.j , for j = 1 to n. For convenience,call the coordinates along the axis of coordinates, as x1; : : : ; xn. Since the column ofyj in (3.12) is I.j , the hyperplane in Rn which contains the columns of yj in (3.12) forall j = 1; : : : ; i� 1; i+ 1; : : : ; n, is the coordinate hyperplane H = fx : xi = 0g.
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Figure 3.4 I.i and �M.i are both on the same side of H. Interiors of the com-plementary cones Pos(A.1; : : : ; A.i�1; I.iA.i+1; : : : ; A.n) and Pos(A.1; : : : ; A.i�1;�M.iA.i+1; : : : ; A.n) have a nonempty intersection.Among the left-out complementary pair of column vectors (I.i;�M 0.i), since the ithcomponent in the column vector I.i is +1, it is on the side on H corresponding to theinequality xi > 0. So by the strict separation property, the point �M 0.i is on the sideof H corresponding to the inequality xi < 0, which implies that �m0ii < 0, or M 0ii > 0.Thus the ith diagonal element in M 0 is strictly positive. In a similar manner we seethat if the strict separation property holds, then all the diagonal elements in all PPTsof M are strictly positive. By Theorem 3.6 this implies that M is a P -matrix.A class of convex polyhedral cones in Rn is said to partition Rn ifa) Every cone in the class has a nonempty interior.



218 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...b) The union of the cones in the class is Rn.c) The interiors of any pair of cones in the class are disjoint.Theorem 3.17 Let M be a given square matrix of order n. The class of comple-mentary cones C(M) partitions Rn i� M is a P -matrix.Proof. If M is a P -matrix, the result that the class of complementary cones C(M)partitions Rn follows from Corollary 3.1 and Theorem 3.13.To prove the converse, suppose that C(M) partitions Rn. Since every comple-mentary cone in C(M) has a nonempty interior, by Corollary 3.2, M must be nonde-generate. Hence all complementary sets of column vectors are linearly independent.If the strict separation property is not satis�ed, there exists a subcomplementary setof column vectors, say (A.1; : : : ; A.i�1; A.i+1; : : : ; A.n) such that the hyperplane Hwhich is its linear hull contains both the points in the left out complementary pair(I.i;�M.i) on the same side of it. As in the proof of Theorem 3.16, this implies thatthe interiors of the complementary cones Pos(A.1; : : : ; A.i�1; I.i; A.i+1; : : : ; A.n) andPos(A.1; : : : ; A.i�1;�M.i; A.i+1; : : : ; A.n) have a nonempty intersection; a contradic-tion, since C(M) partitions Rn. Hence, if C(M) partitions Rn, the strict separationproperty is satis�ed, and by Theorem 3.16 this implies that M is a P -matrix.Hence the class of complementary cones C(M) partitions Rn i�M is a P -matrix.Example 3.8Let M = 8>: 1 00 19>;. The complementary cones are the quadrants in R2, drawn inFigure 1.3, and obviously this class of complementary cones partitions Rn. For any nin general C(I) is the class of orthants of Rn, and these obviously partition Rn. Asmentioned earlier the class of complementary cones is a generalization of the class oforthants of Rn (orthants of Rn are the special class of complementary cones obtainedby taking M = I), and C(M) possesses the property of partitioning Rn as long as Mis a P -matrix. This was �rst proved by Samelson, Thrall and Wesler in [3.69].Corollary 3.10 LetM be a given square matrix of order n. The following conditionsare mutually equivalent.i) All principal subdeterminants of M are strictly positive.ii) The LCP (q;M) has a unique solution for each q 2 Rn.iii) The LCP (q;M) has at most one solution for each q 2 Rn.iv) The diagonal entries in all PPTs of M are strictly positive.v) LCPs associated with M satisfy the strict separation property.vi) The class of complementary cones C(M) forms a partition of Rn.Proof. Follows from Theorems 3.15, 3.16, 3.17, 3.6 and Corollaries 3.6, 3.8.



3.3. LCPs Associated with P Matrices 219Theorem 3.18 Consider the LCP (3.1) in which M is a P -matrix. Suppose (w; z)is the unique solution of the LCP with z1 = 0. Let ! = (w2; : : : ; wn), � = (z2; : : : ; zn).If (y2; : : : ; yn), with yj 2 fwj ; zjg for j = 2 to n, is a complementary feasible basicvector for the principal subproblem of (3.1) in !, �; (w1; y2; : : : ; yn) is a complementaryfeasible basic vector for (3.1).Proof. By Result 2.2 and Theorem 3.13, ! = (w2; : : : ; wn), � = (z2; : : : ; zn) is theunique solution of the principal subproblem in !, �. Since w, z is the unique solutionof (3.1), and z1 = 0, we have Pnj=2m2jzj + q1 = w1 >= 0. Under degeneracy, theremay be several complementary feasible basic vectors (all di�ering in the zero valuedbasic variables) for the principal subproblem in !, �, but the BFS corresponding toeach of them must be !, � by the uniqueness of the solution. Also, the column vectorof w1 in (3.1) is I.1. So, when we compute the basic solution of (3.1) correspondingto the basic vector (w1; y2; : : : ; yn), we get wj = wj , zj = zj for j = 2 to n, z1 = 0and w1 = Pnj=2m2jzj + q1 = w1 >= 0, which is the solution (w; z) of (3.1). So,(w1; y2; : : : ; yn) is a complementary feasible basic vector for (3.1).Higher Order Separation TheoremsTheorem 3.19 Let M be a P -matrix of order n and let J, J be a partition off1; : : : ; ng with J, J both being nonempty. Let fA.j : j 2 Jg, fA.j : j 2 Jg be thecorresponding partition of a complementary set of vectors. Let fB.j : j 2 Jg be thecomplement of the subcomplementary set fA.j : j 2 Jg. If H is a hyperplane in Rnsatisfyingi) H contains the origin 0 and all the vectors in the subcomplementary sets fA.j :j 2 Jg.ii) All the vectors in the subcomplementary set fA.j : j 2 Jg lie in one of the closedhalf-spaces, H>=, de�ned by H, then at least one of the vectors in fB.j : j 2 Jglies strictly on the other side of H in the other open half-space H< de�ned by H.Proof. Consider the system (3.13) w �Mz = 0 : (3:13)Perform principal pivot steps in (3.13) to transform the complementary set of vectorsfA.j : j 2 J[Jg into the set of unit vectors. This is a nonsingular linear transformationthat preserves separation properties. If uj denotes the variable in (3.13) associated withA.j , and vj denotes its complement, this transforms (3.13) intou�Mv = 0 (3:14)where M is also a P -matrix because it is a principal pivot transform of the P -matrixM . Let MJJ denote the principal submatrix of M corresponding to the subset J. Let



220 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...H = fx : Pnj=1 ajxj = 0g be the transform of H. Since A.j is transformed into I.j ,by (i) we have aj = 0 for each j 2 J, and by (ii) we have aJ = (aj : j 2 J) >= 0. Sothe row vector a = (aj) >= 0 and since H is a hyperplane a � 0, that is aJ � 0. (Avector y = (yj) � 0 means that each yj is nonnegative and at least one yj is strictlypositive). For j 2 J, B.j is now transformed into �M .j . The vector (a(�M .j) : j 2J) = �aJMJJ. Since MJJ is itself a P -matrix and aJ � 0, by Theorem 3.11 at leastone of the components of aJMJJ is strictly positive, that is a(�M .j) < 0 for at leastone j 2 J. That is, at least one of the �M .j for j 2 J lies in the open half-spaceH< = fx : Pmj=1 ajxj < 0g not containing the unit vectors. In terms of the originalspace this implies that at least one of the B.j , j 2 J is contained in the open half-spaceH< de�ned by H not containing the complementary set of vectors fA.j : j 2 J [ Jg.Theorem 3.20 Let M be a P -matrix of order n, J a nonempty proper subset off1; : : : ; ng and let fA.j : j 2 Jg be a subcomplementary set of vectors. Let H be ahyperplane in Rn that contains the origin 0 and all the vectors in the set fA.j : j 2 Jg.Then H strictly separates at least one pair of the left out complementary pairs ofvectors fI.j ;�M.jg for j 2 J = f1; : : : ; ng n J.Proof. Choose the subcomplementary set fA.j : j 2 Jg arbitrarily and transform thesystem (3.13) into (3.14) as in the proof of Theorem 3.19. Using the notation in theproof of Theorem 3.19, suppose this transforms H into H = fx : Pnj=1 ajxj = 0g.Since A.j is transformed into I.j and H contains A.j for j 2 J, H must contain I.jfor j 2 J, that is aj = 0 for all j 2 J. Since H is a hyperplane, we must have a 6= 0,that is aJ = (aj : j 2 J) 6= 0. De�ne MJJ as in the proof of Theorem 3.19, it is aP -matrix as noted there. By the sign nonreversal theorem for P -matrices of D. Galeand H. Nikaido, Theorem 3.12, if (yj : j 2 J) = aJMJJ, ajyj > 0 for at least one j 2 J.Since aj = 0 for j 2 J, these facts imply that there exists at least one j 2 J satisfyingthe property that aI.j and a(�M .j) have strictly opposite signs, that is H separatesthe complementary pair of vectors fI.j ;�M .jg strictly. In terms of the original space,this implies that H strictly separates the complementary pair of vectors fI.j ;�M.jgfor that j 2 J.Comment 3.1 Theorem 3.2 is from K. G. Murty [3.47, 3.48]. Theorem 3.5 is dueto A. W. Tucker [3.78]. The proofs of Theorems 3.7, 3.8 given here are attributed toP. Wolfe. The fact that the LCP (q;M) of order n has a unique solution for all q 2 Rnis originally established [3.69]. The inductive proof of Theorem 3.13 given here, andTheorems 3.14, Corollary 3.6 are from K. G. Murty [3.47, 3.49].A Variant of the LCPWe now discuss some results from K. G. Murty [3.51]. Let M be a given square matrixof order n and q a given column vector of order n. Let J be a given subset of f1; : : : ; ng.



3.3. LCPs Associated with P Matrices 221The generalized LCP with data q, M , J is the problem of �nding column vectorsw 2 Rn, z 2 Rn satisfying:w �Mz = qwjzj = 0 for all j = 1 to nwj ; zj >= 0 for all j 62 Jwj ; zj <= 0 for all j 2 J : (3:15)We will use the notation (q;M;J) to denote this generalized LCP. Notice that if J = ;,the generalized LCP (q;M; ;) is the same as the usual LCP (q;M) that we have beendiscussing so far. We will now prove some results about the uniqueness of the solutionto this generalized LCP.Theorem 3.21 Let M be a given square matrix of order n, and J a given subsetof f1; : : : ; ng. With M , J �xed, the generalized LCP (q;M;J) has a unique solutionfor each q 2 Rn i� M is a P -matrix.Proof. In (3.15), make the following transformation of variables: wi = ui for i 62 J,�ui for i 2 J; zi = vi for i 62 J, �vi for i 2 J. After making these substitutions,multiply both sides of the ith equation in it by �1 for each i 2 J. Let u = (u1; : : : ; un)T ,v = (v1; : : : ; vn)T . After these transformation the problem becomes:u�Mv = qu >= 0; v >= 0uT v = 0 (3:16)where M is the matrix obtained from M by multiplying each entry in the ith row ofM by �1 for each i 2 J, and then multiplying each entry in the ith column of theresulting matrix by �1 for each i 2 J. So the value of a principal subdeterminant ofM is exactly equal to the corresponding principal subdeterminant of M . Thus M is aP -matrix, i� M is. The column vector q is obtained by multiplying the ith entry in qby �1 for each i 2 J. (3.16) is equivalent to (3.15). If (ŵ; ẑ) is a solution of (3.15), thenthe corresponding (u; v) obtained as above is a solution of (3.16) and vice versa. But(3.16) is the usual LCP (q;M), and hence by Theorem 3.13 it has a unique solutionfor each q 2 Rn i� M is a P -matrix. Consequently (3.15) has a unique solution foreach q 2 Rn i� M is a P -matrix.Now let M be a given square matrix of order n, and consider the usual LCP(q;M), (3.1), again. The column vector q is nondegenerate in (3.1), if q is not inthe linear hull of any set of (n� 1) columns of (I;�M). There are 2n complementarysets of column vectors in the LCP (q;M), and number these sets in some order, froml = 1 to 2n. Let Al denote the matrix whose columns are the columns in the lthcomplementary set of column vectors (in that order), for l = 1 to 2n. If M is a P -matrix, by Corollary 3.1, Al is nonsingular and hence is a complementary basis for



222 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...(3.1), for each l = 1 to 2n. Let A denote the set of all these complementary bases,that is A = fAl : l = 1; 2; : : : ; 2ng.It is clear from the de�nitions, that if q is nondegenerate in the LCP (q;M) andA is a complementary basis for the LCP (q;M) and q̂ = (q̂j) = A�1q, then q̂j 6= 0for each j = 1 to n. (Since q̂ = A�1q, we have q = Aq̂ = Pnj=1 q̂j A.j . If q̂j = 0 forsome j, then q can be expressed as a linear combination of (n� 1) column vectors of(I ... �M), contradicting the hypothesis that q is nondegenerate in (3.1)).We will now discuss some important results on the LCP (q;M) when M is aP -matrix and q is nondegenerate, from [3.51].Theorem 3.22 Let M be a given P -matrix of order n, and let q be nondegeneratein the LCP (q;M). Then for each subset J � f1; : : : ; ng, there exists a unique com-plementary basis A 2 A satisfying the property that if q̂ = (q̂j) = A�1q, then q̂j < 0for all j 2 J and q̂j > 0 for all j 62 J.Proof. Since q is nondegenerate, for any A 2 A all the components in A�1q arenonzero. Suppose q̂ = A�1q is such that q̂j < 0 for all j 2 J and q̂j > 0 for allj 62 J. Let (y1; : : : ; yn) be the complementary vector of variables corresponding to thecomplementary basis A. Let (ŵ; ẑ) be the solution de�ned by:yj = q̂j ; for j = 1 to nComplement of yj = 0; for j = 1 to n :Then (ŵ; ẑ) is a solution of the generalized LCP (q;M;J). However, by Theorem 3.21,the generalized LCP (q;M;J) has a unique solution, since M is a P -matrix. Thisimplies that there exists a unique complementary basis A 2 A such that if q̂ = A�1q,then q̂j < 0 for all j 2 J and q̂j > 0 for all j 62 J.Example 3.9Let fM(3) = 8>>>>>: 1 0 02 1 02 2 19>>>>>; q = 8>>>>>:�1�1�19>>>>>; :Here n = 3, and there are eight complementary bases. Verify that fM(3) is a P -matrix.The LCP (q;fM(3)) corresponding to this data will be discussed in Example 4.1 ofChapter 4. From there, we see that for A 2 A, q = A�1q, the updated right hand sideconstants vector is as tabulated below.



3.3. LCPs Associated with P Matrices 223Complementary Basic Vector qT = Transpose of the UpdatedCorresponding to the Right Hand side Constants VectorComplementary Basis(w1; w2; w3) (�1;�1;�1)(w1; w2; z3) (�1;�1; 1)(w1; z2; z3) (�1; 1;�1)(w1; z2; w3) (�1; 1; 1)(z1; z2; w3) ( 1;�1;�1)(z1; z2; z3) ( 1;�1; 1)(z1; w2; z3) ( 1; 1;�1)(z1; w2; w3) ( 1; 1; 1)As an example let J = f2g. We verify that the complementary basis correspondingto the complementary basic vector (z1; z2; z3) is the unique complementary basis inthis problem satisfying the property that the jth updated right hand side constantis negative for j 2 J and positive for j 62 J. In a similar manner, the statement ofTheorem 3.22 can be veri�ed to be true in this example for all subsets J � f1; 2; 3g.
3.3.1 One-to-One Correspondence Between ComplementaryBases and Sign VectorsGiven any vector of \+" and \�" sign symbols in Rn, Theorem 3.22 states that if Mis a P -matrix of order n and q is nondegenerate in the LCP (q;M), then there exists aunique complementary basis for the LCP (q;M) satisfying the property that the signsof the components in the updated right hand sides constants vector with respect tothat complementary basis, are exactly the given vector of signs.Corollary 3.11 Let M be a given P -matrix of order n, and let q be a given columnvector which is nondegenerate for the LCP (q;M). The number of complementarybasis A 2 A such that if q̂ = (q̂i) = A�1q, then exactly r of the qi are strictly negative,is �nr�. This follows from Theorem 3.22.Corollary 3.12 Let M be a given P -matrix of order n, and let q be a given columnvector which is nondegenerate for the LCP (q;M). There is a one-to-one correspon-dence between the 2n complementary basic vectors for this problem, and the 2n signvectors for the components in the updated q. This follows from Theorem 3.22.



224 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...The result in Theorem 3.22 and Corollary 3.12 displays the nice combinatorialstructure of the LCP (q;M) whenM is a P -matrix and q is nondegenerate. As we movefrom one complementary basic vector to another, the sign pattern of the components inthe updated q vector changes distinctly. The problem of solving the LCP (q;M) in thiscase, is the same as that of �nding the complementary basic vector that correspondsto the sign vector consisting of all + signs under this one-to-one correspondence.3.4 OTHER CLASSES OF MATRICES INTHE STUDY OF THE LCPIn this section we provide a brief summary of some of the other classes of matricesused by many researchers in the study of the LCP.The Weak Separation PropertyThis is a property of the matrix M , and does not depend on the right hand sideconstants vector q. An LCP associated with the matrix M (or the class of comple-mentary cones C(M)) is said to satisfy the weak separation property if, given anysubcomplementary set of column vectors (A.1; : : : ; A.i�1; A.i+1; : : : ; A.n), there existsa hyperplane H in Rn which contains the points 0, and A.t, t = 1; : : : ; i�1; i+1; : : : ; n,and separates (not necessarily strictly) the points represented by the left out comple-mentary pair of column vectors I.i, �M.i. See reference [3.48]. As an example letM = 8>: 0 11 09>;. The corresponding complementary cones are drawn in Figure 3.5,verify that the weak separation property holds, but not the strict separation property.Also see Figure 3.6.
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Figure 3.5 The Complementary Cones when M = 8>: 0 11 09>;. The ComplementaryCones PosfI.1;�M.2g, Posf�M.1; I.2g are both degenerate, they are the coordinatelines. The Weak Separation Property Holds.
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Figure 3.6 The Complementary Cones when M = 8>: 0 10 09>;. The ConesPos(I.1;�M.2), Pos(�M.1;�M.2), Pos(�M.1; I.2) are all degenerate and theirUnion is the Horizontal Coordinate Line, and the Nonnegative Half of the Ver-tical Coordinate Line.The square matrixM of order n is said to be a weak separation matrix if it satis�esthe weak separation property. Using arguments similar to those in the proof of Theorem3.16, it can be veri�ed that M is a weak separation matrix i� the diagonal entries inM and all the PPTs of M are nonnegative. See reference [3.48], and also Exercise 3.1.P0-Matrices: A square matrix M of order n belongs to this class i� all its principalsubdeterminants are >= 0.The union of all the complementary cones in C(M) may not even be convex whenM is a P0-matrix. For example, consider M = 8>: 0 10 09>;. The complementary conesfor this case are plotted in Figure 3.6. The complementary pivot algorithm may notbe able to process the LCP (q;M) when M is a P0-matrix. For example, on the LCPin which M is the matrix given above, and q = (�1; 0)T , the complementary pivotalgorithm ends up in ray termination, even though the LCP has a solution.Z-Matrices: A square matrix M = (mij) of order n is said to be a Z-matrix i�mij <= 0 for every i 6= j. A very e�cient special algorithm for solving the LCP (q;M)whenM is a Z-matrix has been developed by R. Chandrasekaran, and this is discussedin Section 8.1.



3.4. Other Classes of Matrices in the Study of the LCP 227Matrices with Dominant Principal Diagonal: A square matrix M = (mij) oforder n belongs to this class if jmiij >Pnj=1j 6=i jmij j for each i = 1 to n.Generalized Diagonally Dominant: A square matrixM is said to be a generalizeddiagonally dominant if there exists a positive diagonal matrix T such that AT is strictlydiagonally dominant.M-Matrices: A square matrix M of order n is said to be an M -matrix if it is aZ-matrix which is also a P0-matrix. In the literature these matrices are also calledK0-matrices in some references (see S. R. Mohan [3.46]). Nonsingular M -matrices areprecisely Z-matrices which are also P -matrices (in the literature these are also knownas Minkowski-matrices or K-matrices and some authors refer to these as M -matrices.See the paper [3.22] by M. Fiedler and V. Ptak for the properties of these matrices. IfM is a nonsingular M -matrix, then its inverse M�1 >= 0.)Comparison Matrix: Given a square matrix M = (mij), its comparison matrix isA = (aij) where aii = jmiij for i = 1 to n and aij = �jmij j for all i 6= j, i, j = 1 to n.H-Matrix: A square matrix M is said to be a H-matrix if its comparison matrix(which is a Z-matrix) is a P -matrix.Semi-Monotone Matrices (E0-Matrices): The square matrix M of order n issaid to be semi-monotone i� for all x 2 Rn, x � 0, there exists an index i such thatxi > 0 and Mi.x >= 0. This class of matrices has also been called the class of L1-matrices. The matrixM belongs to this class i� the LCP (q;M) has a unique solutionwhenever q > 0. If M is symmetric, then it is semi-monotone i� it is copositive.Strictly Semi-Monotone Matrices: The square matrix M of order n belongs tothis class if for every x 2 Rn, x � 0, there exists an index i such that xi > 0 andMi.x > 0. Equivalently, let fM refer to any nonempty principal submatrix of M , or Mitself. Then M is strictly semi-monotone, i� the systemfM ~z < 0~z � 0has no solution ~z, for all such fM . B. C. Eaves [3.21] calls this class of matrices L�.See also the papers [1.3] of R. W. Cottle and G. B. Dantzig, [1.16] by S. Karamardian,and [3.40] of C. E. Lemke (Lemke calls this class of matrices E).If M is symmetric, M is strictly semi-monotone i� it is strictly copositive. AmatrixM is strictly semi-monotone if the LCP (q;M) has a unique solution wheneverq >= 0. This class is the same as the class of Q or completely Q-matrices.Fully Semi-Monotone: A square matrix of M of order n belongs to this class ifM and all its PPTs are semi-monotone. See R. W. Cottle and R. E. Stone [3.13].The square matrix M is fully semi-monotone i� the LCP (q;M) has a unique solutionwhenever q is in the interior of any nondegenerate complementary cone.



228 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...S-Matrix: A matrix M , not necessarily square, belongs to this class if the systemMx > 0; x � 0has a solution x. See [3.40] by C. E. Lemke.Q, or Completely Q-Matrices: A square matrix of order n belongs to this classif the matrix, and all its principal submatrices are Q-matrices. In [3.9] R. W. Cottlehas proved that this class is exactly the same as the class of strictly semi-monotonematrices. See Exercises 3.10, 3.11.V -Matrices: The square matrixM of order n belongs to this class if every principalsubmatrix fM of M has the property that there is no positive column vector z suchthat the last coordinate of fM ~z is nonpositive and the remaining ones are zero. In[2.38] L. Van der Heyden constructed a new algorithm for the LCP and showed thatit will always obtain a solution to the LCP (q;M), provided M is a V -matrix. In [3.9]R. W. Cottle has proved that this class of matrices is the same as the class of strictlysemi-monotone matrices, or the class of Q-matrices. See Exercises 3.10, 3.11.Q0-Matrices: A square matrix M of order n belongs to this class if the union of allthe complementary cones in C(M) is convex. In some early papers on the LCP thisclass was denoted by K. We have the following theorem on this class of matrices.Theorem 3.23 If M is a Q0-matrix, the union of all the complementary cones inC(M) is Pos(I;�M).Proof. Let K(M) denote the union of all the complementary cones in C(M). Everysolution of the LCP (q;M) is a (w; z) satisfying w = Mz + q, w; z >= 0 and wT z = 0,and hence (w; z) give the coe�cients in an expression for q as a nonnegative linearcombination of the columns of (I ... �M). So if q 2 K(M), then q 2 Pos(I ... �M),that is, K(M) � Pos(I ... �M). Now, let ��� � fI.j ;�M.j ; j = 1 to ng. For any j = 1 ton, if q = I.j , (w = I.j , z = 0) is a solution of the LCP (q;M); and if q = �M.j , (w = 0,z = I.j) is a solution of the LCP (q;M). So ��� � K(M). Since M is a Q0-matrix byhypothesis ��� � K(M) implies that Pos(���) � K(M), that is, Pos(I ... �M) � K(M).All these facts together imply that K(M) = Pos(I ... �M).Q0-Matrices: The square matrix M of order n belongs to this class if it, and all itsprincipal subdeterminants are Q0-matrices.Adequate Matrices: A square matrix of order n belongs to this class if it isa P0-matrix, and whenever a principal submatrix of M corresponding to a subsetfi1; : : : ; irg � f1; : : : ; ng is singular, the sets of vectors fMi. : i 2 fi1; : : : ; irgg,fM.i : i 2 fi1; : : : ; irgg are both linearly dependent. This class of matrices has beende�ned by A. W. Ingleton [3.31]. He proved that if M is adequate, for any q 2 Rn,there exists at most one w such that (w; z) is a solution of the LCP (q;M). Also, if Mis invertible and adequate, it is a P -matrix.



3.4. Other Classes of Matrices in the Study of the LCP 229L2-Matrices: A square matrix of order n is said to be an L2-matrix if for each z � 0satisfying w = Mz >= 0 and wT z = 0; there exists a ẑ 6= 0 satisfying ŵ = �(ẑTM)T ,w >= ŵ >= 0, z >= ẑ >= 0.E�(d)-Matrices: Let d 2 Rn be given. The square matrix M of order n belongs tothis class if z = 0 in every solution of the LCP (d;M). Thus if M is an E�(d) matrix,the LCP (d;M) has the unique solution (w = d, z = 0) if d >= 0, and no solutions ifd 6>= 0.E(d)-Matrices: Let d 2 Rn be given. The square matrix M of order n belongs tothis class, if whenever (w; z) is a solution of the LCP (d;M) with z 6= 0, there existsan x >= 0 such that y = �MTx >= 0, and z >= x, w >= y.L(d)-Matrices: Let d 2 Rn be given. The square matrix M of order n belongs tothis class if it is both an E(d)-matrix and also an E(0)-matrix.L�(d)-Matrices: Let d 2 Rn be given. The square matrix M of order n belongs tothis class if it is both an E�(d)-matrix and also an E�(0)-matrix.The classes of matrices E(d), E�(d), L(d), L�(d) have been de�ned by C. B. Garcia[3.25]. He has shown that if d > 0, and M is an L(d) matrix, then the LCP (q;M)can be processed by the variant of the complementary pivot algorithm in which theoriginal column of the arti�cial variable z0 is taken to be �d.Regular Matrices: The square matrix M of order n is said to be a regular matrix(denoted by R-matrix) if there exists no z 2 Rn, t 2 R1 satisfyingz >= 0; t >= 0Mi.z + t = 0 if i is such that zi > 0Mi.z + t >= 0 if i is such that zi = 0.So the matrix M is a regular matrix i� for all � >= 0, the only solution to the LCP(�e;M) is (w = �e, z = 0). S. Karmardian [1.16] introduced this class of matrices andproved that all regular matrices are Q-matrices.R0-Matrices: These are matricesM for which the LCP (0;M) has a unique solution.This is exactly the class E�(0) de�ned earlier. These matrices have also been calledsuperregular matrices. If M belongs to this class there exists no z 2 Rn satisfyingz � 0Mi.z = 0 for i is such that zi > 0Mi.z >= 0 for i is such that zi = 0.This class includes all regular matrices. In particular the matrix M = 8>:�1 �1�1 �19>; isan R0-matrix, but not regular.A degenerate complementary cone Pos(A.1; : : : ; A.n) is said to be strongly de-generate if there exists � = (�1; : : : ; �.n) � 0 satisfying Pnj=1 �jA.j = 0, weakly



230 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...degenerate if no such � exists. As an example, letM = 8>>>>>: 1 �1 �11 �1 �1�1 1 09>>>>>; :For this matrixM , the degenerate complementary cone Pos(�M.1;�M.2; I.3) is strong-ly degenerate because 0 = (�M.1) + (�M.2). The degenerate complementary conePos(I.1; I.2;�M.3), is weakly degenerate since it is impossible to express 0 as �1I.1 +�2I.2 + �3(�M.3) with �1; �2; �3 >= 0 and at least one of �1; �2; �3 strictly > 0.Clearly, a square matrixM is an R0-matrix i� there exists no strongly degeneratecomplementary cone inC(M).N-Matrix: A square matrix of order n belongs to this class if all its nonemptyprincipal subdeterminants are strictly negative. See M. Kojima and R. Saigal [3.39] inwhich they prove that if M is an N -matrix, then the LCP (q;M) has either 0, 1, 2 or3 solutions for any q.U-Matrix: A square matrix of order n belongs to this class i� the LCP (q;M) has aunique solution whenever q is in the interior ofK(M) = the union of all complementarycones in C(M). See R. W. Cottle and R. E. Stone [3.13].INS-Matrices: A square matrixM of order n is said to be an INS-Matrix (InvariantNumber of Solutions) i� the number of solutions of the LCP (q;M) is the same forall q contained in the interior of K(M). See R. W. Cottle and R. E. Stone [3.13],R. E. Stone [3.70, 3.71].INSk-Matrices: A square matrixM of order n is called an INSk-Matrix if for everyq in the interior of K(M), the LCP (q;M) has exactly k distinct solutions.W -Matrices: LetM be a given real square matrix of order n. For any J � f1; : : : ; ngde�ne the complementary matrix A(J) associated with the subset J to be the squarematrix of order n in which (A(J)).j = ��M.j ; if j 2 JI.j ; if j 62 J :The matrix M is said to be a W -matrix i�Pos(A(J)) \ Pos(A(J)) = f0gfor every J � f1; : : : ; ng and J = f1; : : : ; ng n J. This de�nition is due to M. W. Jeterand W. C. Pye, they have shown that every W -matrix is a U -matrix.



3.5. Exercises 2313.5 Exercises3.1 Let M be a given square matrix of order n. Let ��� = f1; : : : ; ng. If S � ��� de�nef(S) = 1; if S = ;= principal subdeterminant of M corresponding to S, if S 6= ;.Prove that M is a weak separation matrix i� there exists no nonempty subset S � ���satisfying the property that for some j 2 S, f(S) and f(Snfjg) are both non-zero andhave strictly opposite signs. Using it, prove that a square matrix is a weak separationmatrix i� the diagonal entries of all its PPTs are >= 0.Prove that every nondegenerate weak separation matrix is a P -matrix and thatevery square matrix which is not a weak separation matrix must have a negativeprincipal subdeterminant. Show that all P0-matrices are weak separation matrices.Prove that if the LCP (q;M) has more than one solution, and M is a weakseparation matrix, then q >= 0 (K. G. Murty [3.48, 1.26]).3.2 Prove that the two de�nitions given for strictly semi-monotone matrices are equiv-alent.3.3 Prove that every copositive plus matrix which contains a strictly positive columnvector, is a Q-matrix.3.4 Prove that all PPTs of a P0-matrix are P0-matrices.3.5 Prove that the square matrixM of order n is a P0-matrix i� for all y 2 Rn, y 6= 0,there exists an i such that yi 6= 0 and yi(Mi.y) >= 0 (Fiedler and Ptak [3.23]).3.6 If M is a P0-matrix, prove that there exists an x � 0 such that Mx >= 0(B. C. Eaves [3.21]).3.7 If M is a P0-matrix and x > 0 satis�es Mx = 0, prove that there exists a y � 0such that yTM = 0.3.8 If M is a P0-matrix and (q;M) has a nondegenerate complementary BFS, thenprove that it is the unique complementary feasible solution. Construct a numericalexample to show that the converse could be false (B. C. Eaves [3.21]).3.9 Prove that every Q-matrix is an S-matrix (C. E. Lemke [3.40]).



232 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...3.10 Prove that if M is a square matrix of order n which is an S-matrix, and every(n � 1) � (n � 1) principal submatrix of M is strictly semi-monotone then M itselfis strictly semi-monotone; using this prove that the class of strictly semi-monotonematrices is the same as the class of completely Q-matrices (R. W. Cottle [3.9]).3.11 Prove that the classes of matrices, strictly semi-monotone, Q, V , are the same(R. W. Cottle [3.9]).3.12 IfM is a square symmetric matrix of order n, prove that the following conditionsare equivalent.(i) M is strictly copositive,(ii) M is strictly semi-monotone,(iii) for all q >= 0, the LCP (q;M) has a unique solution (F. Pereira [3.59]).3.13 If M is a square matrix of order n which is principally nondegenerate, provethat the number of complementary feasible solutions for the LCP (q;M) has the sameparity (odd or even) for all q 2 Rn which are nondegenerate. As an example, whenM = 8>>>>>:�1 2 22 �1 22 2 �19>>>>>;show that the number of complementary feasible solutions for the LCP (q;M) is alwaysan even number >= 2 whenever q is nondegenerate (K. G. Murty [1.26, 3.47]).3.14 Prove that if the number of complementary feasible solutions for the LCP (q;M)is a constant for all q which are nondegenerate, then that constant must be equal to1, and M must be a P -matrix. (K. G. Murty [1.26, 3.47]).3.15 If yT q+yTMy is bounded below on the set y >= 0, then prove that the LCP (q;M)has a solution and it can be computed by using the complementary pivot algorithm(B. C. Eaves [3.21]).3.16 Let q, M be matrices of orders n � 1, n � n respectively. If there exists anx 2 Rn, x � 0 such that qTx < 0, MTx <= 0, prove that the LCP (q;M) has nosolution (C. B. Garcia [3.25]).3.17 Prove that the classes of matrices E(d) and E�(d) are the same whenever eitherd > 0, or d < 0 (C. B. Garcia [3.25]).3.18 Prove that the semi-monotone class of matrices is Td>0 E(d). Also, prove that



3.5. Exercises 233the class L of matrices is Td>0 L(d). Verify that the matrixM = 8>>>>>: 1 1 10 �1 1�1 �1 09>>>>>;is an L(d) matrix for d = (2; 3; 1)T , but not an L-matrix (C. B. Garcia [3.25]).3.19 Let d > 0 and suppose M is an L�(d) matrix. For any q 2 Rn, prove that whenthe variant of the complementary pivot algorithm in which the original column of thearti�cial variable z0 is taken to be �d, is applied on the LCP (q;M), it terminateswith a solution of the LCP (S. Karamardian, [1.16], C. B. Garcia [3.25]).3.20 Let M be a copositive plus matrix. Prove that the set of solutions of the LCP(q;M) is nonempty and bounded i� the optimum objective value in the following LPis zero Maximize eTuSubject to MTu <= 0qTu <= 0u >= 0 :In particular, prove that if M is copositive plus and the LCP (q;M) has a nonde-generate complementary BFS, then the set of solutions of the LCP (q;M) is bounded(O. L. Mangasarian [3.42]).3.21 Let M be a copositive plus matrix. If the system: Mx > 0, x >= 0 has a solutionx 2 Rn, prove that the set of solutions of the LCP (q;M) is nonempty and bounded,for every q 2 Rn (O. L. Mangasarian [3.42], J. Parida and K. L. Roy [3.56]).3.22 Prove that every regular matrix is a Q-matrix (S. Karamardian [1.16]).3.23 Prove that if M is a P0-matrix then the following are equivalent(i) M is an R0-matrix,(ii) M is a regular matrix,(iii) M is a Q-matrix.(M. Aganagic and R. W. Cottle [3.2]).3.24 If M is a P -matrix, prove that the systemMx > 0, x > 0 has a feasible solution.



234 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...3.25 LetM be a P -matrix of order n and let q 2 Rn. Consider the quadratic program:minimize zT (Mz + q)subject to Mz + q >= 0z >= 0 : (3:17)Prove the following(i) (3.17) has a unique local minimum z which is the global minimum with objectivevalue 0. In this case (w = Mz + q; z) is the unique solution of the LCP (q;M).(ii) If z is the unique local minimum for (3.17), let � = zT , � = (Mz + q)T . Then(z; �; �) is the unique KKT point for (3.17) (Y. C. Chang [3.7]).3.26 The square matrix M of order n is a nonsingular M -matrix i� the followingproperty holds. Let (w; z) be the solution of the LCP (q;M). Then z is the uniquevector in the region X = fz : Mz + q >= 0; z >= 0g satisfying z 2 X and z >= z for anyz 2 X (R. W. Cottle and A. F. Veinott, Jr. [3.14]).3.27 Let M be a Z-matrix which is also a P -matrix of order n, and q1; q2 2 Rnsatisfying q2 >= q1. If (wi; zi) is a solution of the LCP (qi;M) for i = 1; 2, prove thatz1 >= z2 (R. W. Cottle, G. H. Golub, and R. S. Sacher [3.11]).3.28 Let M be an N -matrix. Then prove that either M < 0 or there exists a d > 0such that Md > 0. Also prove that a square matrix M is an N -matrix i� all properprincipal subdeterminants of M�1 are positive and the determinant of M�1 is < 0(M. Kojima and R. Saigal [3.39]).3.29 Let M be an N -matrix. Prove the following. If M < 0, (q;M) has no solutionsfor q 6>= 0 and exactly two solutions for q > 0. If M 6< 0, and q 6> 0, the LCP (q;M)has a unique solution. If M 6< 0, and q > 0, the LCP (q;M) has 2 or 3 solutions. IfM 6< 0, q � 0 and qi = 0 for at least one i, the LCP (q;M) has exactly two solutions(M. Kojima and R. Saigal [3.39]).3.30 If M is an M -matrix prove that the union of all the degenerate complementarycones is the set of all q 2 Rn for which the LCP (q;M) has an in�nite number ofsolutions. Also, in this case, prove that the LCP (q;M) has in�nitely many solutionsi� q is in the boundary of K(M), which is the union of all complementary cones inC(M) (S. R. Mohan [3.46]).3.31 Prove that every U -matrix is a fully semi-monotone matrix (R. W. Cottle andR. E. Stone [3.13]).



3.5. Exercises 2353.32 Prove that the LCP (q;M) has an even number of solutions for each q 2 Rnwhich is nondegenerate, if there exists a z > 0 such that zM < 0, or equivalently if(x = 0, y = 0) is the only solution to the systemIx�My = 0x; y >= 0(R. Saigal [3.63]).3.33 Consider the LCP (q;M) where M is an adequate matrix. If (w; z), (ŵ; ẑ) areany two solutions of this LCP, prove that w = ŵ (A. W. Ingleton [3.31]).3.34 Let M be a square nondegenerate matrix of order n. For some q� 2 Rn, if theLCP (q�;M) has a unique solution (w�; z�) and w� + z� > 0, then prove that M is aQ-matrix (A. W. Ingleton [3.31]).3.35 If M is an L-matrix and an R0-matrix prove that it must also be an R-matrixand a Q-matrix.Prove that if M is R0-matrix which is copositive, then it must be an R-matrixand a Q-matrix.If M is an L2-matrix and a Q-matrix, prove that it must be an R0-matrix.If M is an L-matrix, prove that the following are equivalent:(i) M is a Q-matrix,(ii) M is an R-matrix,(iii) M is an R0-matrix, and(iv) M is an S-matrix.Is every Q-matrix which is an L1-matrix, also an R0-matrix? (J. S. Pang [3.53]).3.36 Prove that copositive plus and strictly copositive matrices are L-matrices.3.37 Prove that every P0-matrix is semi-monotone, and that every Q-matrix is anS-matrix.3.38 IfM is an L-matrix, prove that it is a Q-matrix i� it is an S-matrix (B. C. Eaves[3.21]).3.39 Prove that the system: Mx = 0, x > 0, is inconsistent if eitherM is an L1-matrixand a Q-matrix, or M is a Q-matrix which is copositive.If M is an L1-matrix and a Q-matrix, prove that every nonzero z that leads tosolution of the LCP (0;M) must have at least two nonzero components.



236 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...IfM is a Q-matrix which is copositive, prove that any vector z satisfying zTMz =0 and (M +MT )z = 0, and leads to a solution of the LCP (0;M) must be the zerovector.If M is a Q-matrix which is symmetric and copositive, prove x = 0 is the onlyfeasible solution to the system: Mx = 0, x >= 0.If M is a Q-matrix which is symmetric and copositive plus, prove that it must bestrictly copositive.If M is a copositive plus matrix prove that the following are equivalent:(i) M is a Q-matrix,(ii) M is a R-matrix,(iii) M is a R0-matrix,(iv) M is an S-matrix.In addition, if M is also symmetric, then prove that each of the above is equivalent to(v) M is strictly copositive,(vi) x = 0 is the only feasible solution of the system: Mx = 0, x >= 0(J. S. Pang [3.53]).3.40 Let M be a nondegenerate Q-matrix of order n. Prove that the number ofdistinct solutions of the LCP (q;M) is <= 2n � 1 for any q 2 Rn (A. Tamir [3.75]).3.41 If M is a square matrix all of whose principle subdeterminants are negative andthere exists an x > 0 such that Mx > 0, then M is a Q-matrix (R. Saigal [3.65]).3.42 Prove that any square matrix of order 2 with all diagonal entries zero cannot bea Q-matrix. Show that this result is not true for higher order matrices by consideringM = 8>>>>>>>>: 0 3 �1 03 0 0 �1�1 �1 0 1�1 �1 1 09>>>>>>>>;which is a Q-matrix since M�1 > 0 (M. Jetter and W. Pye [3.33]).3.43 If M is a square matrix of order n such that there exists a z > 0 satisfyingzTM < 0 then the LCP (q;M) has an even number of solutions for all nondegenerateq (R. Saigal [3.63]).3.44 If M is copositive plus and the LCP (q;M) has a solution (w; z) which is anondegenerate BFS of \w�MZ = q, w >= 0, z >= 0", prove that the set of solutions ofthe LCP (q;M) is a bounded set. However, show that the existence of a nondegenerate



3.5. Exercises 237BFS solution is not necessary for the set of solutions of the LCP (q;M) to be bounded.(Hint: try q = 8>:�1�19>;, M = 8>: 1 11 19>; (O. L. Mangasarian [3.42]).3.45 If M is a copositive plus matrix of order n, for any q 2 Rn, the set of solutionsof the LCP (q;M) is nonempty and bounded if the following system has a solutionx 2 Rn. Mx+ q > 0; x >= 0 (3:18)(O. L. Mangasarian [3.42]).3.46 If M is a copositive Q-matrix, prove that the systemMx = 0x > 0is inconsistent.3.47 If M is a symmetric, copositive plus Q-matrix, prove that M must be strictlycopositive (J. S. Pang [3.53]).3.48 If M is a copositive plus matrix of order n, the solution set of the LCP (q;M)is nonempty and bounded for each q 2 Rn i� M is a Q-matrix. This happens i� thesystem \Mx > 0; x >= 0" has a solution x 2 Rn (O. L. Mangasarian [3.42]).3.49 If the nondegenerate matrix M is the limit of a convergent sequence of non-degenerate Q-matrices, prove that M is a Q-matrix (M. Aganagic and R. W. Cottle[3.2]).3.50 Suppose M is a Q-matrix of order n. Let J � f1; : : : ; ng be such that Mj. >= 0for a j 2 J. Then the principal submatrix ofM determined by the subset f1; : : : ; ngnJmust be a Q-matrix.3.51 Let M be a Q-matrix of order n. If fA.1; : : : ; A.j�1; A.j+1; : : : ; A.ng is a sub-complementary set, there exists a hyperplane H in Rn containing 0 and all the vectorsin this subcomplementary set such that I.j and �M.j do not lie in the same open half-space corresponding to this hyperplane H. Also, if M is a nondegenerate Q-matrix,there exists a hyperplane H of the type described above, which strictly separates I.jand �M.j (M. Aganagic and R. W. Cottle [3.2]).3.52 If M is a Q0-matrix satisfying the property that the LCP (q;M) has a uniquesolution for each q in the interior of K(M), prove that M must be a P0-matrix. Also,



238 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...if M is a P0-matrix with only one zero principal subdeterminant and has the propertythat K(M) 6= Rn, then prove that K(M) is a closed half-space and that the LCP(q;M) has a unique solution whenever q is in the interior of K(M) (R. W. Cottle andR. E. Stone [3.13]).3.53 If M is a symmetric matrix of order n satisfyingmii > 0 for all imij <= 0 for all j 6= iprove that M is copositive i� it is PSD.3.54 Prove that the LCP (q;M) has a unique solution for all q > 0 i� for all x � 0there exists an i such that xi > 0, y = (y1; : : : ; yn)T =Mx and yi >= 0.3.55 If M is a symmetric matrix of order n, the following are equivalent(i) M is copositive;(ii) for all x � 0 there exists an i such that xi > 0 and y = (y1; : : : ; yn)T = Mx,yi >= 0;(iii) (q;M) has a unique solution for all q > 0.3.56 If M is a symmetric matrix of order n, the following are equivalent(i) M is strictly copositive;(ii) M is a Q-matrix and the LCP (q;M) has a unique solution for all q 2 fI.1; : : : ; I.ng(F. J. Pereira [3.59]).3.57 Prove that a H-matrix with positive diagonals is a P -matrix (J. S. Pang [3.55]).3.58 Prove that M -matrices and generalized diagonally dominant matrices are H-matrices.3.59 Prove that if M is a strictly semi-monotone matrix and q is nondegenerate inthe LCP (q;M), then the LCP (q;M) has an odd number of solutions (B. C. Eaves[3.21]).3.60 Prove that a square matrix M of order n is a Z-matrix i� for each q 2 Rnfor which the set X(q;M) = fx : Mx + q >= 0; x >= 0g 6= ;, there exists a leastelement ~x 2 X(q;M) (given K � Rn, an element x 2 K is said to be a least elementin K if x <= x for all x 2 K. If a least element exists, it is clearly unique) satisfying~xT (M ~x+ q) = 0 (A. Tamir [3.73]).



3.5. Exercises 2393.61 Prove that a square matrix M of order n is a nonsingular M -matrix (i. e., aZ-matrix which is also a P -matrix) i� for each q 2 Rn, the set X(q;M) = fx :Mx+ q>= 0; x >= 0g has a least element ~x which is the only vector in X(q;M) satisfyingxT (Mx+ q) = 0 (R. W. Cottle and A. F. Veinott, Jr. [3.14]).3.62 Prove that a square matrix which has either a zero row or a zero column cannotbe a Q-matrix.3.63 IfM is a Q-matrix and PSD, isMT also a Q-matrix? (Hint: Check 8>: 1 �11 09>;).3.64 Let M be a PSD matrix and A a PD matrix of order n. Let (w("); z(")) denotethe solution of the LCP (q;M + "A) for some q 2 Rn and " > 0. If the LCP (q;M)has a solution, prove that the limit"!0+z(") exists, and if this limit is z, it is the pointthat minimizes the norm kAzk in the set fz : (w = Mz + q; z) is a solution of theLCP (q;M)g. If the LCP (q;M) has no solution, prove that limit"!0+kz(")k = +1(A. Gana [5.6]).3.65 Let �M be a Z matrix. A well-known theorem states that if there exists anx >= 0 such that xTM < 0 in this case, then M�1 exists and �M�1 >= 0. Using thistheorem, prove the following:(a) If M satis�es all the above properties, there exist yij >= 0 for all i; j such thatI.j = nXi=1(�yij)M.i; for all j :(Hint: Use the fact that M�1 <= 0.)(b) Under the same conditions on M , Pos(I ... �M) = Pos(�M).(c) Under the same conditions on M the LCP (q;M) has a solution i� �M�1q >=0. Also, if �M�1q >= 0, then a solution to the LCP is (w; z) = (0;�M�1q)(R. Saigal).3.66 Let M be a square matrix of order n satisfying the property \if Mx <= 0, thenx must be nonnegative". Prove the following.(a) M�1 must exist.(b) �M�1 >= 0. (Hint: Use the fact that (M(M�1)).j = I.j >= 0.)(c) In this case Pos(�M) � Pos(I).3.67 LetM be an arbitrary square matrix of order n. Consider the LCP (q;M). Provethat the following property \the LCP has a solution whenever q is such that the system



240 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...w �Mz = q; w >= 0, z >= 0 has a feasible solution and for all such q the LCP has asolution in which w = 0" holds i� Pos(�M) � Pos(I) [i. e., Pos(I ... �M) = Pos(�M)].Also prove that this property holds i� for all x such that Mx <= 0, x must benonnegative (A. K. Rao).3.68 Let M be a square matrix of order n with non-positive o�-diagonal elements.If M is a P -matrix, prove that it has a nonnegative inverse (M. Fiedler and V. Ptak[3.22]).3.69 Let M be a square matrix of order n. Let q 2 Rn. The matrix M is said tobe a Q0-matrix if the LCP (q;M) has a complementary feasible solution whenever thesystem w �Mz = qw >= 0; z >= 0has a feasible solution.i) Prove thatM is a Q0-matrix i� the union of all the complementary cones in C(M)is a convex set.ii) Prove that the matrixM is aQ0-matrix i� the LCP (q;M) satis�es: \if q1; q2 2 Rnare such that (q1;M) has a complementary feasible solution, and q2 >= q1, then(q2;M) also has a complementary feasible solution" (A. K. Rao).3.70 If M is a square matrix which is positive semide�nite, and q is nondegenerate inthe LCP (q;M), prove that the number of solutions of the LCP (q;M) is either 0 or 1.3.71 If M is a square matrix of order n which is positive semide�nite, prove that theintersection of the interiors of any pair of complementary cones in C(M) is empty.3.72 If M is a square matrix of order n which is positive semide�nite, and q lies inthe interior of a complementary cone in C(M), prove that the LCP (q;M) has a uniquesolution.3.73 Let M be a M -matrix (i. e., a Z-matrix which is also a P0-matrix). Let w("),z(") be the solution of the LCP (q;M + "I). If the LCP (q;M) has a solution, provethat limit"!0+z(") exists, and if this limit is z, it is the least element of fz : z >=0;Mz + q >= 0g (i. e., z <= z for all z in this set). If the LCP (q;M) does not have asolution, then limit"!0+kz(")k is +1 (A. Gana [5.6]).3.74 Consider the LCP (q;M) of order n. Suppose the matrix M is not a P -matrix,but its principal submatrix of order n � 1 obtained by deleting row i and column i



3.5. Exercises 241from it is a P -matrix for a given i. Discuss an e�cient algorithm for computing all thesolutions of this LCP (V. C. Prasad and P. K. Sinha [3.60]).3.75 Let M be a square nondegenerate matrix. Prove that the number of com-plementary feasible solutions for the LCP (q;M), is either even for all q that arenondegenerate, or odd for all q that are nondegenerate (K. G. Murty [3.50]).3.76 Given q 2 Rn and a square matrixM of order n, q is said to be nondegeneratewith respect to M , if q does not lie in the linear hull of any set of n�1 or less columnvectors of (I ... �M).Let M be a nondegenerate Q-matrix of order n satisfying the property for someq 2 Rn which is nondegenerate with respect toM , the LCP (q;M) has an odd numberof solutions. Prove that small perturbations in the entries of M still leave it as anondegenerate Q-matrix (A. Tamir).3.77 Let M be a square matrix of order 2 and let I be the identity matrix of order2. Prove that M is a Q-matrix i� the LCPs (�I.1;M) and (�I.2;M) both havecomplementary feasible solutions (L. M. Kelly and L. T. Watson [3.38]).3.78 Let M = 8>>>>>: 1 �1 44 �3 11 0:4 �0:19>>>>>; ; q̂ = 8>>>>>: 01�19>>>>>;and let I be the identity matrix of order 3. Show that the LCPs (�I.1;M), (�I.2;M),(�I.3;M) all have complementary feasible solutions, but the LCP (q̂;M) does not havea complementary feasible solution. This clearly shows that the result in Exercise 3.77cannot be generalized for n > 2 (L. M. Kelly and L. T. Watson [3.38]).3.79 Consider the following matrixM(") = 8>>>>>>>>: 21 25 �27 �36� "7 3 � 9 36 + "12 12 �20 04 4 � 4 � 8 9>>>>>>>>;and let I be the identity matrix of order 4.(a) Show that M(") is a nondegenerate matrix for all 0 <= " < 1.(b) Show that M(0) is a Q-matrix.(c) Show that M(") is not a Q-matrix for 0 < " < 1. In particular, let q(") =(1 � ")32I.3 + "(0:26;�0:02; 30:8;�0:08)T . Show that the LCP (q(");M(")) hasno complementary feasible solution when 0 < " < 1.



242 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...These results clearly establish that small perturbations in its elements mightchange a nondegenerate Q-matrix into a nondegenerate non Q-matrix (L. M. Kellyand L. T. Watson [3.38]).3.80 LetM be a given square matrix of order n. Prove that the set of complementaryfeasible solutions for the LCP (q;M) is a bounded set for every q 2 Rn, i� (w; z) =(0; 0) is the unique solution of the LCP (0;M).3.81 The set of nondegenerate Q-matrices is closed in the relative topology of the setof nondegenerate matrices.Let M be a given nondegenerate Q-matrix of order n. Let � > 0, and let @M bea square matrix of order n satisfying the properties thata) M + �@M is a nondegenerate Q-matrix for all 0 <= � < �,b) M + �@M is nondegenerate.Then prove that M + �@M is also a Q-matrix.Using the same arguments, prove the following: Suppose M1;M2; : : : is a givenin�nite sequence of nondegenerate Q-matrices satisfying the property that it convergesto a limit, M . If M is also nondegenerate, prove that M is a Q-matrix (L. T. Watson[3.79], and M. Aganagic and R. W. Cottle [3.2]).3.82 Let M be a square matrix of order n satisfying the following properties:a) mij >= 0 for all i 6= j, and mii <= 0.b) There exists a row vector � 2 Rn satisfying � > 0 and �M < 0.Property b) is easily satis�ed by � = e, if a) holds and jmiij > Pj 6=imij for each i.Prove the following:i) If M satis�es properties a), b) above, then Pos(I) � Pos(�M).ii) If M satis�es properties a), b) above, then either the LCP (q;M) has asolution in which w = 0, or it has no solution at all.iii) If M satis�es properties a), b) above, the LCP (q;M) has a solution i��Mz = qz >= 0has a solution. And if z is a feasible solution of the above system then(w = 0; z) is a solution of the LCP (q;M).iv) If M satis�es conditions a), b) above, and if q � 0, the the LCP (q;M) has2n distinct solutions (R. Saigal [3.64]).3.83 Consider the LCP (q;M) where M is a square matrix of order n all of whosenonempty principal subdeterminants are strictly negative. Prove the following:



3.5. Exercises 243i) The matrix 8>>>>>>>>>>>>>>:�1 2 �2 2 � � �2 �1 2 �2 � � ��2 2 �1 2 � � �2 �2 2 �1 � � �... ... ... ... �1
9>>>>>>>>>>>>>>;satis�es the property that all its nonempty principal subdeterminants are strictlynegative.ii) If all the nonempty principal subdeterminants of M are strictly negative, eitherM < 0 or there exists an x > 0 satisfying Mx > 0.(iii) All the nonempty principal subdeterminants of M are strictly negative i� all theproper principal subdeterminants ofM�1 are strictly positive and the determinantof M�1 is strictly negative.(iv) If all the nonempty principal subdeterminants of M are strictly negative andM < 0, then the LCP (q;M) has a solution whenever q >= 0, and no solutionwhenever q 6>= 0. Also when q > 0, it has exactly two solutions.v) If all the nonemtpy principal subdeterminants of M are strictly negative andM 6< 0, then the LCP (q;M)a) has a unique solution whenever q 6>= 0,b) has exactly three solutions whenever q > 0,c) has exactly two solutions, with one solution degenerate, whenever q >= 0 withat least one qi = 0.Hence establish that any matrix M 6< 0 whose nonempty principal subdetermi-nants are strictly negative, is a Q-matrix.Also prove that in this case, if q � 0, and wi = 0 in some solution of the LCP (q;M),then that wi > 0 in all other solutions of the LCP (q;M).vi) Whenever M is such that all the nonempty principal subdeterminants of M arestrictly negative, the LCP (q;M) has either 0, 1, 2 or 3 solutions for any q 2 Rn(M. Kojima and R. Saigal [3.39]).3.84 If M is a Q-matrix, prove that the systemMz > 0z >= 0has a solution z.3.85 LetM be a given square matrix of order n. For j = 1 to n, let A.j 2 fI.j ;�M.jg.Then (A.1; : : : ; A.n) is a complementary set of column vectors for the LCP (q;M) andwe call the matrix with A.1; : : : ; A.n as its columns in this order, a complementarysubmatrix of (I ... �M). Obviously there are 2n such matrices, and let these beA1; : : : ; A2n. On these, some may be nonsingular and some singular. Let there be



244 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...l nonsingular complementary submatrices, and let all the 2n � l remaining comple-mentary submatrices be singular. Rearrange the complementary submatrices in thesequence A1; : : : ; A2n, so that the �rst l of these are nonsingular, and all the remainingare singular. So the complemenatry cone Pos(At) has a nonempty interior i� 1 <= t <= l,and has an empty interior if l+ 1 <= t <= 2n.Prove that M is a Q-matrix i�l[t=1Pos(At) = Rnthat is, i� the union of all the complementary cones with a nonempty interior is Rn.3.86 Using the same notation as in Exercise 3.85 for any �xed i between 1 to n,the subcomplementary set of column vectors (At.1; : : : ; At.i�1; At.i+1; : : : ; At.n) is linearlyindependent for 1 <= t <= l, and let Hti denote the hyperplane in Rn which is thesubspace of Rn containing all the column vectors in this subcomplementary set.If there exists an i between 1 to n such that I.i and �M.i are both in one of theopen half-spaces determined by Hti, for each t = 1 to l, then prove that M is not aQ-matrix.3.87 A Finite Procedure for Checking Whether a Given Square Matrix Mof Order n is a Q-MatrixUsing the same notation as in Exercise 3.85, let Dt be (At)�1 for t = 1 to l. Foreach t = 1 to l, select one of the rows of Dt, for example the itth for t = 1 to l, leadingto the set of row vectors fDtit. : t = 1 to lg. For each t, it can be chosen in n di�erentways, and hence there are nl di�erent sets of row vectors fDtit. : t = 1 to lg obtainedin this manner. For each such sets de�ne the following system of linear inequalities inthe variables q = (q1; : : : ; qn)T Dtit.q < 0; t = 1 to l : (3:19)So there are nl di�erent systems of inequalities of the form (3.19) depending on thechoice of the rows from the matrices Dt.(i) (3.19) is a system of l strict linear inequalities in n variables q1; : : : ; qn. Provethat the system (3.19) has a feasible solution q, i� the following system (3.20) isinfeasible: lXt=1 �tDtit. = 0lXt=1 �t = 1�t >= 0 for all t = 1 to l (3:20)



3.5. Exercises 245that is, it has no feasible solution � = (�t).(ii) Prove thatM is aQ-matrix i� each of the nl systems of the form (3.19) is infeasible,that is, none of them has a feasible solution q.(iii) Remembering that l <= 2n, construct a �nite procedure for checking whether agiven square matrixM of order n is a Q-matrix, using the above results. Commenton the practical usefulness of such a procedure (D. Gale, see [3.2]).3.88 A square matrixM is called a Q0-matrix if the union of all complementary conesin C(M) is a convex set.(i) Prove that M is a Q0-matrix i� w�Mz = q, w >= 0, z >= 0 has a feasible solutionimplies that the LCP (q;M) has a complementary feasible solution.(ii) Prove that M is a Q0-matrix i�(q0;M) has a complemenatry feasible solutionimplies(q;M) has a complemenatry feasible solution for all q >= q0 :(iii) Prove that every 1�1-matrix is a Q0 matrix. Also develop necessary and su�cientcondition for a 2� 2 matrix to be a Q0-matrix.(iv) Consider the matricesM = 8>>>>>:�1 1 11 �1 11 1 �19>>>>>; ; q = 8>>>>>:�10259>>>>>; :Show that w � Mz = q, w >= 0, z >= 0 has a feasible solution, but the LCP(q;M) has no complementary feasible solution. Also, in this case verify that allthe proper principal submatrices of M are Q0-matrices (by (i), this implies thatthere are matrices which are not Q0-matrices, but all of whose proper submatricesare Q0-matrices).3.89 A Finite Characterization for Q0-MatricesGiven a square matrix M of order n, using the notation and results in Exercises3.85, 3.87, prove that M is a Q0-matrix i�Pos(I ... �M) = l[t=1Pos(At) :Using this, show that M is a Q0-matrix, i� each of the following nl systemslXt=1 �tDtit. �� = 0��M >= 0lXt=1 �t = 1� >= 0; � >= 0



246 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...are infeasible (i. e., none of them have a feasible solution (�; �)). This provides amethod for checking whether a given square matrix of order n, is a Q0-matrix or not,using at most a �nite amount of computation.3.90 Prove that every PPT of a Q-matrix is a Q-matrix.3.91 Let M be a square matrix of order n. Prove that all nonempty principal sub-matrices of M are Q-matrices i� any of the following three equivalent conditions hold.i) For all nonempty principal submatrices M of M (including M itself), the systemMy <= 0y � 0has no solution.ii) For every vector x � 0, there exists an index j such that xj > 0 and (Mx)j > 0.iii) For every q >= 0 the LCP (q;M) admits the unique solution (w; z) = (q; 0)(R. W. Cottle [3.9]).3.92 Row and Column Scalings of MatricesGiven a square matrix of order n, multiply its rows by positive numbers �1; : : : ;�n respectively. Multiply the columns of the resulting matrix by positive numbers�1; : : : ; �n respectively. The �nal matrix M 0, is said to have been obtained from Mby row scaling using the positive vector of scales � = (�1; : : : ; �n), and column scalingusing the positive vector of scales � = (�1; �2; : : : ; �n).(i) Prove that, to every LCP associated with the matrix M ; there is a correspond-ing LCP associated with the matrix M 0, that can be obtained by dividing eachconstraint by a suitable positive number and appropriate scaling of the variables(i. e., choose appropriate units for measuring it); and vice versa.(ii) Prove that M is a P -matrix i� M 0 is.(iii) Assume thatM is an asymmetric P -matrix which is not a PD matrix. It is possiblethat M 0 is PD (e. g., let M = 8>: 1 0�10 19>;. Obtain M 0 using � = (100; 1),� = (1; 1) and verify that the resulting matrix is PD). If M is either a lowertriangular or an upper triangular P -matrix, show that positive scale vectors �, �exists, such that the resulting matrix is PD.(iv) Let M = 8>>>>>: 1 �1 �31 1 11 �3 "9>>>>>;where " is a positive number. Verify that M is a P -matrix. When " is su�cientlysmall, prove that there exist no positive scale vectors �, � which will transformthis matrix into a PD matrix by scaling.



3.5. Exercises 247If M is a P -matrix which is not PSD, the LCP (q;M) is equivalent to thenonconvex quadratic programMinimize zT (Mz + q)Subject to z >= 0Mz + q >= 0 :And yet, if we can �nd positive row and column scale vectors �, � that willconvert M into a PD matrix M 0 by scaling, this problem can be transformedinto an equivalent convex quadratic programming problem. For this reason,the study of scalings of P -matrices that transform them into PD matrices isof interest. Prove that every P -matrix of order 2 can be scaled into a PD-matrix. Characterize the class of P -matrices which can be transformed intoPD matrices by scaling (R. Chandrasekaran and K. G. Murty).3.93 Let D be a given square matrix of order n and let I be the unit matrix of ordern. Let c, b be given column vectors in Rn. Letq = 8>: cb9>; ; M = 8>: D I�I 09>; :With this data, prove that LCP (q;M) always has a solution, and that the solution isunique if D is a P -matrix (B. H. Ahn [9.4]).3.94 Let M be a Z-matrix of order n. Prove thatM is a P -matrix if the LCPs (0;M)and (en;M) have unique solutions.3.95 Let M be a given square matrix of order n, and let D be an arbitrary diagonalmatrix with positive diagonal elements. Prove that the following are equivalent.i) M is a P -matrix.ii) (I � E)D + EM is a P -matrix for all diagonal matrices E = (Eij) of order nsatisfying 0 <= Eii <= 1 for all i.iii) (I � E)D + EM is nonsingular for all diagonal matrices E = (Eij) of order nsatisfying 0 <= Eii <= 1 for all i (M. Aganagic [3.1]).3.96 Develop an e�cient method based on the complementary pivot algorithm tocheck whether a given square matrix is an M -matrix (K. G. Ramamurthy [3.61]).3.97 Prove that a Z-matrix which is also a Q-matrix must be a P -matrix. Also provethat every M -matrix is a U -matrix.3.98 Prove that a symmetric matrix is semi-monotone i� it is copositive. Prove thata symmetric matrix M is strictly semi-monotone i� it is strictly copositive.



248 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes ...3.99 If M is a fully semi-monotone matrix and (w; z) is a solution of the LCP (q;M)and w + z > 0, prove that (w; z) is the unique solution of this LCP.3.100 (Research Problem) Given a square matrix M of order n, develop �nite setsof points ���1 and ���2 in Rn, constructed using the data in M , satisfying the properties(i) M is a Q-matrix if the LCP (q;M) has a solution for each q 2 ���1,(ii) M is a Q0-matrix if the LCP (q;M) has a solution for each q 2 ���2.3.101 Let M be a P -matrix of order n. Let J � f1; 2; : : : ; ng, J = f1; 2; : : : ; ng n J.Let (A.j : j 2 J) be a subcomplementary vector corresponding to J. For each j 2 J,let fA.j ; B.jg = fI.j ;�M.jg. Is the following conjecture | \there exists a hyperplanecontaining the linear hull of (A.j : j 2 J) which separates the convex hull of fA.j : j 2Jg from the convex hull of fB.j : j 2 Jg", | true?3.102 Let M be a square matrix of order n. M is said to be totally principallydegenerate i� all its principal subdeterminants are zero. Prove that M is totallyprincipally degenerate i� it is a principal rearrangement of an upper triangular matrixwith zero diagonal elements. Use this to develop an e�cient algorithm to check whethera matrix is totally principally degenerate (T. D. Parsons [4.15]).3.103 Let M be a square matrix of order n which is not an R0-matrix (i. e., the LCP(0;M) has (w = 0, z = 0) as the unique solution). Show that there exists a squarematrix M̂ = (m̂ij) of order n, satisfyingm̂nn = 0 andm̂in = 0 or 1 for all i = 1 to n� 1such that for any q 2 Rn, the LCP (q;M) can be transformed into an equivalent LCP(q̂; M̂), by performing a block principal pivot step, some principal rearrangements, androw scalings.Use this to show the followinga) Every Q-matrix of order 2 must be an R0-matrix.b) Every Q-matrix which is also a PSD matrix, must be an R0-matrix.Verify that the result in (a) does not generalize to n > 2, using the matrixM = 8>>>>>:� 1 2 12 � 1 110 10 09>>>>>; :
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Chapter 4
PRINCIPAL PIVOTING METHODSFOR LCP

In this chapter we discuss several methods for solving the LCP based on principalpivot steps. One common feature of these methods is that they do not introduce anyarti�cial variable. These methods employ either single or double principal pivot steps,and are guaranteed to process LCPs associated with P -matrices or PSD-matrices orboth. We consider the LCP (q;M) of order n, which is the following in tabular form.w z qI �M qw; z >= 0; wT z = 0 (4:1)4.1 PRINCIPAL PIVOTING METHOD IThis method is most useful for solving LCPs (q;M) in which M is a P -matrix. Itonly moves among complementary basic vectors for (4.1) which are infeasible, andterminates when a complementary feasible basic vector is obtained. It employs onlysingle principal pivot steps. The initial complementary basic vector for starting themethod is w = (w1; : : : ; wn).In this method, the variables may change signs several times during the algorithm,before a complementary solution is obtained in the �nal step.In a general step, let q = (q1; : : : ; qn)T be the updated right hand side constantsvector in the present canonical tableau of (4.1). If q >= 0, the present complementary



4.1. Principal Pivoting Method I 255basic vector is feasible and the present BFS of (4.1) is a solution of the LCP (q;M),terminate. If q 6>= 0, letr = Maximum fi : i such that qi < 0g : (4:2)Make a single principal pivot step in position r, that is, replace the present basicvariable in the complementary pair (wr; zr) by its complement. If this pivot stepcannot be carried out because the pivot element is zero, the method is unable tocontinue further, and it terminates without being able to solve this LCP. Otherwisethe pivot step is carried out and then the method moves to the next step.Example 4.1 M = 8>>>>>: 1 0 02 1 02 2 19>>>>>; q = 8>>>>>:�1�1�19>>>>>; :The various canonical tableaus obtained in solving this LCP (q;M) by Principal Piv-oting Method I are given below. In each tableau the pivot element is inside a box.BasicVariable w1 w2 w3 z1 z2 z3 qw1 1 0 0 �1 0 0 �1w2 0 1 0 �2 �1 0 �1w3 0 0 1 �2 �2 �1 �1w1 1 0 0 �1 0 0 �1w2 0 1 0 �2 �1 0 �1z3 0 0 �1 2 2 1 1w1 1 0 0 �1 0 0 �1z2 0 �1 0 2 1 0 1z3 0 2 �1 �2 0 1 �1w1 1 0 0 �1 0 0 �1z2 0 �1 0 2 1 0 1w3 0 �2 1 2 0 �1 1



256 Chapter 4. Principal Pivoting Methods for LCPBasicVariable w1 w2 w3 z1 z2 z3 qz1 �1 0 0 1 0 0 1z2 2 �1 0 0 1 0 �1w3 2 �2 1 0 0 �1 �1z1 �1 0 0 1 0 0 1z2 2 �1 0 0 1 0 �1z3 �2 2 �1 0 0 1 1z1 �1 0 0 1 0 0 1w2 �2 1 0 0 �1 0 1z3 2 0 �1 0 2 1 �1z1 �1 0 0 1 0 0 1w2 �2 1 0 0 �1 0 1w3 �2 0 1 0 �2 �1 1The solution of this LCP (q;M) is therefore (w1; w2; w3; z1; z2; z3) = (0; 1; 1; 1; 0; 0).Theorem 4.1 Suppose M is a given P -matrix of order n. When Principal PivotingMethod I is applied on the LCP (q;M), it terminates with a complementary feasiblebasic vector for it in a �nite number of pivot steps. Also, a complementary basic vectorwhich appeared once in the course of this method never reappears in subsequent steps.Proof. The proof is by induction of n. Since M is a P -matrix, and all the pivot stepsin the method are principal pivot steps, by Theorem 3.5, and Corollary 3.5 all thepivot steps required are possible, and the pivot element in all the pivot steps is strictlynegative. If n is equal to 1, the theorem is easily veri�ed to be true, and the methodterminates after at most one pivot step. We now set up an induction hypothesis.Induction Hypothesis: Suppose F is a P -matrix of order s and p 2 Rs. Fors <= n� 1, Principal Pivoting Method I applied on the LCP (p; F ) solves it in a �nitenumber of pivot steps without cycling.We will now show that the induction hypothesis implies that Principal Pivot-ing Method I solves the LCP (q;M) of order n in a �nite number of steps with-out cycling. Consider the principal subproblem of the LCP (q;M) in the variables! = (w2; : : : ; wn)T , � = (z2; : : : ; zn)T . If Principal Pivoting Method I is applied onthis subproblem, by the induction hypothesis, it terminates in a �nite number of pivotsteps with a complementary feasible basic vector for it. Let (yl2; yl3; : : : ; yln), l = 1 to



4.1. Principal Pivoting Method I 257k be the sequence of complementary basic vectors for this subproblem obtained underthis method.When Principal Pivoting Method I is applied on the original LCP (q;M), w1 is abasic variable in the initial complementary basic vector w. The question of replacingw1 from the basic vector will only arise for the �rst time when a complementary basicvector (w1; y2; : : : ; yn) associated with a complementary basis B1 for (4.1) is reached,satisfying the property that if q = B�11 q, then q2 >= 0; : : : ; qn >= 0 (i. e., (y2; : : : ; yn)must be a complementary feasible basic vector for the principal subproblem in thevariables !, �). When such a complementary basis B1 is obtained for the �rst time inthe method, if q1 < 0, w1 is replaced from the basic vector by z1, and the method iscontinued. On the other hand if q1 >= 0, B1 is a complementary feasible basis for (4.1)and the method terminates. Hence the �rst k basic vectors obtained when PrincipalPivoting Method I is applied on (4.1) must be (w1; yl2; : : : ; yln), l = 1 to k.By Theorem 3.13, the LCP (q;M) has a unique solution. Suppose it is (ŵ; ẑ). Weconsider two possible cases separately.Case 1: ẑ1 = 0.Since (yk2 ; : : : ; ykn) is a complementary feasible basic vector for the principal subprob-lem in the variables !, �, the hypothesis in this case, and Theorem 3.18 imply that(w1; yk2 ; : : : ; ykn) must be a complementary feasible basic vector for the LCP (q;M).Hence in this case the method solves the LCP (q;M) in a �nite number of steps,without cycling.Case 2: ẑ1 > 0.In this case Theorem 3.13 implies that every complementary basic vector of the form(w1; y2; : : : ; yn) must be an infeasible basic vector for (4.1). Let B1 be the comple-mentary basis for (4.1) corresponding to (w1; yk2 ; : : : ; ykn). If q = (qi) = B�11 q, thenq1 < 0, q2 >= 0; : : : ; qn >= 0, since (yk2 ; : : : ; ykn) is a complementary feasible basic vec-tor for the principal subproblem in the variables !, �. Hence, the next basic vec-tor obtained in Principal Pivoting Method I applied on the LCP (q;M) must be(z1; yk2 ; : : : ; ykn) = (u1; : : : ; un) = u, say. Let v = (v1; : : : ; vn) where vj is the com-plement of uj , j = 1 to n. Let the canonical tableau of (4.1) with respect to u beu v qI �fM ~q (4:3)fM is the PPT of M corresponding to the complementary basic vector u, and byTheorem 3.5, fM is also a P -matrix. By our assumptions in this case, (4.3) is the systemof equations in an LCP (~q;fM) with (ui; vi) as the complementary pair of variablesfor i = 1 to n, which has a unique solution in which v1 is zero. The subsequentcomplementary basic vectors obtained in the Principal Pivoting Method I appliedon the LCP (q;M) are exactly those which will be obtained when the LCP (~q;fM),



258 Chapter 4. Principal Pivoting Methods for LCPwhich has the property that v1 = 0 in its unique solution, is solved by the samemethod starting with u as the initial complementary basic vector. Applying the resultestablished under Case 1 to (4.3), we conclude that when Principal Pivoting Method Iis continued from (4.3), u1 = z1 remains as a basic variable, and after a �nite numberof principal pivot steps, a complementary feasible vector will be obtained. Also nocycling ever occurs.This proves that under the induction hypothesis, the statement of the theoremholds for the LCP (q;M) which is of order n. The theorem has been veri�ed for n = 1.Hence it holds for all n by induction.When M is a P -matrix, all the pivot elements in pivot steps encountered underPrincipal Pivoting Method I applied on the LCP (q;M) will be strictly negative, byCorollary 3.7. If row r is the pivot row, just before this pivot step the updated righthand side constant in row r is strictly negative (and this is the bottom most row withthis property at this stage) and just after this pivot step, the updated right hand sideconstant in row r becomes strictly positive.The pivot row choice rule (4.2) in Principal Pivoting Method I is only one ofthe rules which guarantee �nite termination when M is a P -matrix. Actually, let(i1; i2; : : : ; in) be any permutation of (1; 2; : : : ; n). Select this permutation at the be-ginning of the method arbitrarily, but keep it �xed during the method. Suppose,instead of selecting r as in (4.2), it is selected by the following rule:s = Maximum ft : t such that qit < 0g; r = is : (4:4)The rule (4.4) selects row r as the last row in which the updated right hand side con-stant vector is strictly negative when the rows are listed in the �xed order (i1; i2; : : : ; in).The rule (4.4) becomes rule (4.2) if the permutation (i1; : : : ; in) is (1; 2; : : : ; n). Itcan be veri�ed that Principal Pivoting Method I with the rule (4.4) for selectingr, instead of (4.2), again solves the LCP (q;M) in a �nite number of steps with-out cycling, if M is a P -matrix. The proof is very similar to the proof of Theorem4.1. Instead of looking at the principal subproblem of the LCP (q;M) in the vari-ables ((w2; : : : ; wn); (z2; : : : ; zn)), look at the principal subproblem in the variables((w1; : : : ; wi1�1; wi1+1; : : : ; wn); (z1; : : : ; zi1�1; zi1+1; : : : ; zn)); and change the wordingof the induction hypothesis to account for the new rule (4.4) of the choice of r in themethod. Row i1 plays the same role as row 1 did in the proof of Theorem 4.1.Computational experience indicates that by the proper selection of the permuta-tion of the rows (i1; : : : ; in) and the use of (4.4) for choosing r in the Principal PivotingMethod I, its computational e�ciency can be improved substantially. Verify that onthe problem in Example 4.1 above, if the permutation of rows (i1; i2; i3) = (2; 3; 1)is used together with the rule (4.4) for the choice of r, Principal Pivoting Method Isolves that problem after exactly one pivot step, whereas the original version of themethod illustrated in Example 4.1 took seven pivot steps. However, no rules have beendeveloped yet for the choice of the row permutation (i1; : : : ; in) depending on the data



4.1. Principal Pivoting Method I 259in q;M , to guarantee that Principal Pivoting Method I solves the LCP (q;M) moste�ciently.Even with rule (4.2) for pivot row choice, the performance of Principal PivotingMethod I on LCPs (q;M) in whichM is a positive de�nite matrix, was superior to othermethods in computational tests. See, for example, reference [4.11] of M. M. Kostreva.The interesting fact is that when M is a P -matrix, Principal Pivoting Method I solvesthe LCP (q;M), whether q is degenerate or not, in a �nite number of pivot stepswithout cycling, without the explicit use of any techniques for resolving degeneracy,like perturbation of the right hand side constants vector.It is not necessary to calculate the canonical tableaus of (4.1) in each pivot step toimplement Principal Pivoting Method I. Since it does not require the columns of thebasis inverse other than the pivot column in any step, an implementation of this methodusing either the product form of the inverse, or the elimination form of the inverse wouldbe the most convenient to use, when solving problems on a digital computer. Such animplementation improves the numerical stability and also the computational e�ciencyof the method.When M is a general matrix (not a P -matrix), Principal Pivoting Method I maybe forced to terminate without obtaining a complementary feasible basic vector for theLCP (q;M) if the required single principal pivot step cannot be performed in somestep because the corresponding diagonal element in the PPT of M at that stage iszero. However, if M is a nondegenerate matrix (and not a P -matrix), all the requiredsingle principal pivot steps in Principal Pivoting Method I can always be carried outby Theorem 3.4. But in this case the pivot elements in some single principal pivotsteps under the method may be strictly positive. In such a pivot step, the updatedright hand side constant in the pivot row remains negative even after the pivot step,and if the method is continued after such a pivot step, the same complementary basicvector may reappear and cycling occurs. Thus, Principal Pivoting Method I seems tobe most useful only for solving LCPs (q;M) where M is a P -matrix.Comment 4.1 This method and the �niteness proof for it in the case when M is aP -matrix are taken from [4.14] of K. G. Murty.4.1.1 Extension to an Algorithm for theNonlinear Complementarity ProblemIn [4.8] G. J. Habetler and M. M. Kostreva have extended the Principal PivotingMethod I into an algorithm for solving the nonlinear complementary problem (1.44).Let f(x) = (f1(x); : : : ; fn(x))T , where each fi(x) is a real valued function de�ned onRn. f is said to be a P -function, if for all x 6= y 2 Rn, there exists an i such that(xi � yi)(fi(x) � fi(y)) > 0. Given f and J � f1; 2; : : : ; ng de�ne gJ(x) = (gJj (x)),where gJj (x) = xj for j 62 J= fj(x) for j 2 J: (4:5)



260 Chapter 4. Principal Pivoting Methods for LCPThe P -function f is said to be a nondegenerate P -function, if gJ(x) de�ned as in(4.5) is a function from Rn onto Rn for each subset J � f1; : : : ; ng. If M is a givensquare matrix of order n, from Theorems 3.11, 3.12 it follows that the a�ne functionMx+ q is a nondegenerate P -function i� M is a P -matrix.Consider the system of equations gJ(x) = 0. If this system has a solution x, then xis said to be a complementary point associated with the subset J. A complementarypoint x clearly satis�es the complementary condition xT f(x) = 0 in (1.44). If f(x) is anondegenerate P -function, it can be shown (see references [4.8, 4.12, 4.13]) that thereexists a unique complementary point associated with any subset J � f1; : : : ; ng; andthat the NLCP (1.44) has a unique complementary feasible solution. The algorithmdiscussed here is guaranteed to solve the NLCP (1.44) when f(x) is a nondegenerateP -function.For any J � f1; : : : ; ng, the solution of the systemgJ(x) = 0 (4:6)can be found by iterative methods for solving systems of nonlinear equations such asNewton-Raphson method (see Section 2.7.2 and [10.33]). Newton-Raphson methodbegins with an initial point x0 and generates a sequence of points by the iterationxr+1 = xr � (rgJ(xr))�1gJ(xr). We will denote the solution of (4.6) by the symbolx(J).The AlgorithmStart with J = ;. In a general step suppose J is the current subset of f1; : : : ; ng. Findthe associated complementary point x(J). If x(J) + f(x(J)) >= 0, then the solution ofNLCP (1.44) is xj(J), terminate. If x(J) + f(x(J)) 6>= 0, �nd r = min �fj : xj(J) +f(x(J)) < 0g. De�ne ~J = J n frg if r 2 J, J [ frg otherwise, go to the next step with~J as the new subset and continue.In [4.8] G. J. Habetler and M. M. Kostreva have proved that if f(x) is a nonde-generate P -function, this algorithm �nds the unique solution of the NLCP (1.44) ina �nite number of steps. Computational tests have indicated that this algorithm isquite e�cient if implemented with an e�cient and robust method for solving systemsof nonlinear equations of the form (4.6).4.1.2 Some Methods which Do not Work For LCPY. Bard's MethodA method similar to Principal Pivoting Method I was suggested by Y. Bard (see [4.1],pages 157 { 172). His method is the following: start with w = (w1; : : : ; wn) as theinitial complementary basic vector.



4.1. Principal Pivoting Method I 261In a general step, let q = (q1; : : : ; qn)T be the updated right hand side constantsvector in the canonical tableau of (4.1) with respect to the current complementarybasic vector. If q >= 0, the present BFS of (4.1) is a solution of the LCP (q;M),terminate. If q 6>= 0, let r be such that qr = Minimum fqi : i such that qi < 0g. Ifthere is a tie, select an r among those tied, arbitrarily. Make a single principal pivotstep in position r. If this pivot step cannot be carried out because the pivot elementis zero, the method is unable to continue further, and it terminates without being ableto solve this LCP. Otherwise the pivot step is carried out, and the method moves tothe next step.This method can cycle even when M is a P -matrix, as this following exampleconstructed by L. Watson indicates.Example 4.2Let M = 8>>>>>: 10 0 �22 0:1 �0:40 0:2 0:19>>>>>; ; q = 8>>>>>: 101� 19>>>>>; :It can be veri�ed that M is a P -matrix. When this method is applied on the LCP(q;M), (4.1) with this data, the following complementary basic vectors are obtained.Complementary qT = Transpose of the r = Position of theBasic Vector Updated Right Hand Side Single Principle Pivot StepConstants Vector at this Stage(w1; w2; w3) (10; 1;�1) 3(w1; w2; z3) (�10;�3; 10) 1(z1; w2; z3) (1;�1; 10) 2(z1; z2; z3) (�3; 10;�10) 3(z1; z2; w3) (�1; 10; 1) 1(w1; z2; w3) (10;�10;�3) 2(w1; w2; w3) (10; 1;�1) 3Hence the method cycles, even though the choice of r in each step in this example wasunambiguous. LetM = 8>>>>>: 0:01 �0:1 2�0:2 4:1 � 60�0:4 �6:0 1009>>>>>; ; q = 8>>>>>: 0:01�0:71:0 9>>>>>; :Verify that M is PD. Apply Y. Bard's method on the LCP (q;M) with this data andverify that the method cycles, even though the choice of r in each step of the methodis unambiguously determined.



262 Chapter 4. Principal Pivoting Methods for LCPThe Least Recently Considered Pivot Row ChoiceRule for Principal Pivoting Method IHere the pivot row, r, is chosen by the following. Arrange the rows in any speci�corder at the beginning of the algorithm, say 1; 2; : : : ; n, and �x this order. In Step 1,choose the pivot row to be the �rst row with a negative right hand side constant, whenthe rows are examined in the speci�c order 1; 2; : : : ; n. To choose the pivot row in anysubsequent step, identify which row was the pivot row in the previous step. Supposeit was row i. Now examine the rows in the speci�c order i+ 1; : : : ; n; 1; : : : ; i� 1, andchoose the �rst one with a negative updated right hand side constant as the pivot row.This rule circles through the rows in the speci�c order beginning with the pivotrow of the previous step, until it �nds the �rst row eligible to be the pivot row in thisstep and chooses it. A rule similar to this for choosing the entering column in theprimal simplex algorithm for linear programming problems has been found to makeit signi�cantly more e�cient. Hence this rule was proposed for the pivot row choicein Principal Pivoting Method I, with the hope that it will be computationally moree�cient. With this rule, the method does not work, unfortunately. Consider the LCP(q;M) in Example 4.2. When this method is applied on that problem, it can be veri�edthat it goes through exactly the same pivot steps as in Example 4.2 and cycles.A Block Pivoting Method for the Linear Complementarity ProblemLet M be a square matrix of order n. Consider the following method for solvingthe LCP (q;M). Start with any complementary basic vector for (4.1), say, w =(w1; : : : ; wn).In a general step let y = (y1; : : : ; yn) be the present complementary basic vector,and let q = (q1; : : : ; qn) be the updated right hand side constants vector in the canonicaltableau of (4.1) with respect to y. If q >= 0, the present BFS is a solution of theLCP (q;M), terminate. If q 6>= 0, de�ne the complementary vector of variables u =(u1; : : : ; un) by uj = yj if qj >= 0= complement of yj, if qj < 0 :If u is not a complementary basic vector (i. e., if the complementary set of columnvectors corresponding to u is linearly dependent), the method terminates without beingable to solve this LCP. If u is a complementary basic vector, a block pivot is made toobtain the canonical tableau with respect to the new complementary basic vector u,and the method moves to the next step.Unfortunately this method can cycle even when M is a P -matrix and q is nonde-generate, as illustrated by the following example constructed by L. Watson. Let:M = 8>>>>>: 1 0 �2�2 1 4�4 2 99>>>>>; ; q = 8>>>>>: 1�1�39>>>>>; :



4.2. The Graves' Principal Pivoting Method 263When this method is applied on the LCP (q;M) beginning with the basic vectorw = (w1; w2; w3), we get the following sequence of basic vectors completing a cycle.Complementary qT = Transpose of theBasic Vector Updated Right Hand Side Constants Vector(w1; w2; w3) (1;�1;�3)(w1; z2; z3) (�1;�3; 1)(z1; w2; z3) (�3; 1;�1)(w1; w2; w3) (1;�1;�3)In the LCP (q;M) ifM is a P -matrix, and q is a nondegenerate the results in Theorem3.22 indicate that the 2n complementary basic vectors for the problem are in one toone correspondence with the 2n, n dimensional vectors of + and � sign symbols(these are the signs of the components in the updated right hand side constants vectorwith respect to the complementary basic vector). The LCP (q;M) is equivalent to theproblem of �nding the complementary basic vector corresponding to the sign vectorconsisting of all \+" sign symbols, under this one to one correspondence. This givesthe problem a combinatorial 
avor. It may be possible to develop an e�cient algorithmto solve the LCP (q;M) under these conditions, based on this result.4.2 THE GRAVES' PRINCIPALPIVOTING METHODWe will now discuss a principal pivoting method for solving LCPs developed byRobert L. Graves in [4.7]. This method is useful for solving LCPs (q;M) in whichM is PSD. Consider the LCP (q;M) where M is a given PSD matrix of order n,(4.1). This method deals only with complementary basic vectors for (4.1), beginningwith w = (w1; : : : ; wn) as the initial complementary basic vector. It uses only singleor double principal pivot steps. All the complementary basic vectors obtained in themethod, excepting possibly the terminal one, will be infeasible. When a complementaryfeasible basic vector for (4.1) is obtained, the method terminates. In this method also,variables may change signs several times during the algorithm.The method requires a nonsingular square matrix of order n, say B, all of whoserows are lexicopositive initially. Any nonsingular square matrix of order n, whose rowsare lexicopositive, can be used as the matrix B in the method. Whenever any pivotsteps are carried out on (4.1), the same row operations are also carried out on thematrix B. Even though the row vectors of B are lexicopositive initially, they may not



264 Chapter 4. Principal Pivoting Methods for LCPpossess this property subsequently, after one or more pivot steps. In our discussion ofthis method, we will choose B to be I, the identity matrix of order n. When B ischosen as I, the updated B at any stage of the method will be the matrix consisting ofthe columns of w in the canonical tableau of (4.1) at that stage, and clearly, this willbe the inverse of the complementary basis at that stage. Thus choosing B to be I isvery convenient, because, all the computations in the method can then be performede�ciently using the basis inverse.Instead of choosing B as I, if it is choosen as some general nonsingular matrixof order n whose rows are lexicopositive, the method is operated in the same way asbelow, with the exception that �i. is to be replaced by the ith row of the update ofthe matrix B. In this general method, the lexicopositivity of B is required so that thestatement of the corresponding version of Theorem 4.4 discussed below, holds in Step1 of this general method. We will now describe the method with B = I.The Graves' Principal Pivoting MethodThe initial complementary basic vector is w = (w1; : : : ; wn). In a general step, lety = (y1; : : : ; yn), where yj 2 fwj ; zjg for each j = 1 to n, be the present complementarybasic vector. Let � = (�ij) be the inverse of the complementary basis correspondingto y. Let q be the present updated right hand side constants vector, that is, q = �q.If q >= 0, y is a complementary feasible basic vector for (4.1) and the present BFS is asolution of the LCP (q;M). Terminate. If q 6>= 0, de�ne the row vector f = (f1; : : : ; fn)in this step to be f = lexico maximum f�i.=qi : i such that qi < 0g. Since � = (�ij) isnonsingular, this lexico maximum is uniquely determined, and suppose it is attainedby i = r. So f = (�r.)=qr. This is known as the f-vector in this step. Row r in thecanonical tableau of (4.1) with respect to the present complementary basic vector, isknown as the crucial row in this step. Let tr denote the complement of yr and letA.r be the column vector corresponding tr in the original tableau (4.1). The updatedcolumn of tr is A.r = �A.r = (a1r; : : : ; anr)T , say. If arr 6= 0, perform a single principalpivot step in position r in the present complementary basic vector y and go to the nextstep. If arr = 0; and air <= 0 for all i (4:7)under the assumption that M is PSD, (4.1) does not even have a nonnegative solution(this is proved in Theorem 4.2 below) and hence, the LCP (q;M) has no solutions.Terminate. If arr = 0 and air > 0 for at least one i, �nd lexico maximum f(�i. �qi(�r.=qr))=air : i such that air > 0g. Let s be the i which attains this lexico maximum(it is shown in Theorem 4.3 bleow, that this s is unique). Perform a double principalpivot step in positions r and s in the present complementary basic vector y (we showin Theorem 4.3 below that this is possible under the assumption that M is PSD), andgo to the next step.



4.2. The Graves' Principal Pivoting Method 265Example 4.3Consider the following LCP associated with a PSD matrix.w1 w2 w3 w4 z1 z2 z3 z41 0 0 0 �1 2 �1 1 �40 1 0 0 �2 0 2 �1 �40 0 1 0 1 �2 0 3 20 0 0 1 �2 1 �3 �3 1wj ; zj >= 0; for all j, wjzj = 0 for all jWe denote the f -row in the kth step by fk. We denote the inverses of the variouscomplementary bases obtained in the method as �k, k = 1; 2; : : : .The symbol A.j represents the present updated column of the entering variable.First Inverse TableauBasic �1 = Inverse of the Updated qVariable Complementary Basisw1 1 0 0 0 �4w2 0 1 0 0 �4w3 0 0 1 0 2w4 0 0 0 1 1Step 1: The f -row in this step is lexico maximum f�(1; 0; 0; 0)=4;�(0; 1; 0; 0)=4g=(0;�1=4; 0; 0). So r = 2 and row 2 is the crucial row. The present basic variable in thecrucial row is w2, its complement z2 has the updated column vector A.2 = (2; 0;�2; 1)T .Since a22 = 0, we compute lexico maximum f((1; 0; 0; 0) � (�4)(0;�1=4; 0; 0))=2;((0; 0; 0; 1)� (0;�1=4; 0; 0))g and this is attained by s = 1. So we carry out a doubleprincipal pivot step in positions 2, 1. This leads to



266 Chapter 4. Principal Pivoting Methods for LCPSecond Inverse TableauBasic �2 = Inverse of the Updated qVariable Complementary Basisz1 0 �1=2 0 0 2z2 1=2 �1=4 0 0 �1w3 1 0 1 0 �2w4 �1=2 �3=4 0 1 6Step 2: The f -vector here is lexico maximum f�(1=2;�1=4; 0; 0);�(1; 0; 1; 0)=2g =(�1=2; 1=4; 0; 0). So r = 2 and the second row is the crucial row again. The presentbasic variable in the crucial row is z2, its complement w2 has the updated column�2I.2 = (�1=2;�1=4; 0;�3=4)T . Since a22 = �1=4 6= 0, we perform a single principalpivot step in position 2. This leads toThird Inverse TableauBasic �3 = Inverse of the Updated qVariable Complementary Basisz1 �1 0 0 0 4w2 �2 1 0 0 4w3 1 0 1 0 �2w4 �2 0 0 1 9Step 3: From the third inverse tableau we get f3 = lexico maximum f�(1; 0; 1; 0)=2g= (�1=2; 0;�1=2; 0). So r = 3 and the crucial row is row 3 in this step. The basicvariable in the crucial row is w3, and the updated column vector of its complement,z3, is A.3 = �3(�1; 2; 0;�3)T = (1; 4;�1;�1)T . Since a33 = �1 6= 0, we have to carryout a single principal pivot in position 3 in this step. This leads to



4.2. The Graves' Principal Pivoting Method 267Fourth Inverse TableauBasic �4 = Inverse of the Updated qVariable Complementary Basisz1 0 0 1 0 2w2 2 1 4 0 � 4z3 �1 0 �1 0 2w4 �3 0 �1 1 11Step 4: From the fourth inverse tableau we get f4 = lexico maximum f�(2; 1; 4; 0)=4g= (�1=2;�1=4;�1; 0). r = 2 and row 2 is the crucial row. w2 is the present basicvariable in the crucial row, the updated column vector of its complement, z2, is A.2 =�4(2; 0;�2; 1)T = (�2;�4; 0;�3)T . Since a22 = �4 6= 0, we do a single principal pivotin position 2. This leads to Fifth Inverse TableauBasic �5 = Inverse of the Updated qVariable Complementary Basisz1 �1 �1=2 �1 0 4z2 �1=2 �1=4 �1 0 1z3 �1 0 �1 0 2w4 �9=2 �3=4 �4 1 14Since the updated q vector is now nonnegative, (z1; z2; z3; w4) is a complementaryfeasible basic vector. The BFS: (w1; w2; w3; w4; z1; z2; z3; z4) = (0; 0; 0; 14; 4; 1; 2; 0) isa solution of this LCP. Terminate.Example 4.4Consider the LCP for which the original tableau is given below (M can be veri�ed tobe a PSD matrix in this problem).



268 Chapter 4. Principal Pivoting Methods for LCPw1 w2 w3 w4 z1 z2 z3 z4 q1 0 0 0 �1 1 �1 �1 20 1 0 0 �1 �1 0 �2 00 0 1 0 1 0 �1 0 �20 0 0 1 1 2 0 0 �1wj ; zj >= 0; and wjzj = 0, for all jStep 1: The initial complementary basic vector is (w1; w2; w3; w4). We compute f1 =lexico maximum f�(0; 0; 1; 0)=2;�(0; 0; 0; 1)g= (0; 0; 0;�1). So r = 4, and the crucialrow is row 4. w4 is the present basic variable in the crucial row, and the updatedcolumn vector of its complement, z4, is: A.4 = (�1;�2; 0; 0)T . a44 = 0, and we�nd that ai4 <= 0 for all i. So condition (4.7) is satis�ed in this step. The methodtherefore terminates with the conclusion that the LCP has no solution. Actually, theconstraint corresponding to the fourth row is w4 + z1 + 2z2 = �1, which by itself hasno nonnegative solution. This clearly implies that this LCP (q;M) has no solution.Proof of the MethodTheorem 4.2 If M is PSD and condition (4.7) is satis�ed in some step of theGraves' principal pivoting method applied on (4.1), there exists no feasible solution tow �Mz = q, w >= 0, z >= 0.Proof. Let y = (y1; : : : ; yn) where yi 2 fwj ; zjg for each j = 1 to n, be the comple-mentary basic vector in the step in which condition (4.7) is satis�ed.Let t = (t1; : : : ; tn) where tj is the complement of yj for j = 1 to n. Let thecanonical tableau with respect to the complementary basic vector y bey tI A qLet row r be the crucial row in this step. By (4.7), arr = 0 and air <= 0 for all i. SinceM is PSD, its PPT �A is also PSD, and hence by Result 1.6 air + ari = 0 for all i.So ari >= 0 for all i. So the equation corresponding to the crucial row, row r, in thepresent canonical tableau, is yr+Pni=1 ariti = qr. Since qr < 0 (as row r is the crucialrow) and ari >= 0 for all i, this by itself has no nonnegative solution. This implies thatthere exists no (w; z) satisfying w �Mz = q, w >= 0, z >= 0.



4.2. The Graves' Principal Pivoting Method 269Theorem 4.3 In some step of the Graves' principal pivoting method applied on(4.1), if the crucial row is row r, and a single principal pivot in position r cannot becarried out, and if condition (4.7) is not satis�ed, then the position s is determinedunambiguously. Also, if M is PSD, then a double principal pivot in positions r, s ispossible in this step.Proof. Let y be the complementary basic vector in the step under discussion. Let� = (�ij) be the inverse of the complementary basis associated with y. Let q = �q.Let �A be the PPT of M corresponding to y. The hypothesis in the theorem impliesthat arr = 0. Suppose i = h, k both tie for the lexico maximum for determining s.Then (�h. � qh(�r.=qr))=ahr = �k. � (qk(�r.=qr))=akr, which is a contradiction to thenonsingularity of the basis inverse �. So s is determined unambiguously.Now, let A.s be the updated column vector associated with the complement of ys.The double principal pivot step of replacing yr, ys in the complementary basic vectory by their complements, is possible i� the order two determinant 8>: ass asrars arr9>; 6= 0.Since arr = 0, asr > 0 in this case, and ars = �asr 6= 0, this order two determinant isnonzero. So the double principal pivot in positions r and s is possible in this step.Theorem 4.4 Let M be a PSD matrix. Let �̂ be the inverse of the complementarybasis, and q̂ the updated right hand side constants vector, in some step of the Graves'principal pivoting method applied on (4.1). If row l is the crucial row in this step, then�̂i. � q̂i(�̂l.=q̂l) for all i 6= l : (4:8)Proof. Since the method begins with w as the initial complementary basic vector, theinverse of the initial complementary basis is I, all of whose rows are lexicopositive.From this, and from the de�nition of the crucial row in Step 1 of the method, it canbe veri�ed that the statement of the theorem holds true in Step 1 of the method. Wenow show that if the statement of the theorem holds in a step, say step k, then it alsoholds in the next step k + 1.Suppose �̂ is the inverse of the complementary basis and q̂ the updated righthand side constants vector in step k + 1 of the method, where k >= 1. In the previousstep, step k, let y be the complementary basic vector, and let � be the inverse of thecomplementary basis corresponding to y. Let row r be the crucial row in step k. Letq = �q, it is the updated right hand side constants vector in step k. Suppose thestatement of the theorem holds true in step k, that is:�i. � qi(�r.=qr) for all i 6= r : (4:9)Let tj be the complement of yj for j = 1 to n and let �A be the PPT of M corre-sponding to the complementary basic vector y. Since M is PSD, by Theorem 3.10, �Ais also a PSD matrix. So, by Results 1.5, 1.6 we have: aii <= 0 for all i, and if aii = 0,then aij + aji = 0 for all j. Since rows r, l are the crucial rows in steps k, k + 1, wehave qr < 0, q̂l < 0.



270 Chapter 4. Principal Pivoting Methods for LCPIf the pivot step in step k is a single principal pivot step in position r, we havearr < 0, q̂r = qr=arr > 0 (which implies that l 6= r, by the above facts), �̂r. = �r.=arr;�̂i. = �i. � �r.(air=arr), for i 6= r; q̂i = qi � qr(air=arr), for i 6= r. From (4.9) we have�i.qr � qi�r.. This implies that for all i 6= r, (�i. � �r.(air=arr))qr � (qi � qr(air=arr))�r., that is, �̂i.qr � q̂i�r.. Since arr < 0, this implies that for all i 6= r, �̂i.qr=arr � q̂i�r.=arr. So �̂i.q̂r � q̂i�̂r., or, �̂i. � q̂i(�̂r.=q̂r), since q̂r > 0, for all i 6= r. Fromthis we get (�̂i.=q̂i) � (�̂r.=q̂r) for all i 6= r satisfying q̂i < 0. Putting i = l in this(since q̂l < 0) we get (�̂l.=q̂l) � (�̂r.=q̂r). This and the previously proved statementthat �̂i. � q̂i(�̂r.=q̂r) together imply (4.8) for all i 6= l such that q̂i >= 0. For i 6= l suchthat q̂i < 0, (4.8) holds by the de�nition of the crucial row in step k+1. Thus, in thiscase, (4.8) holds in step k + 1 if it holds in step k.If the pivot in step k is a double principal pivot step in positions r; s, we haveqr < 0, arr = 0, asr > 0, ars = �asr < 0. It can be veri�ed that this pivot step yields�̂r. = (�s. � �r.(ass=ars))=asr ; �̂s. = �r.=ars�̂i. = �i. � �r.(ais=ars)� (�s. � �r.(ass=ars))(air=asr) ; for all i 6= r; sq̂r = (qs � qr(ass=ars))=asr ; q̂s = qr=arsq̂i = qi � qr(ais=ars)� (qs � qr(ass=ars))(air=asr) ; for all i 6= r; s : (4:10)We will now prove that, for i 6= s: �̂i. � q̂i(�r.=qr) : (4:11)First consider the case where i 6= r or s. Substituting for �̂i, q̂i and cancelling commonterms, we verify that if air 6= 0,�̂i. � q̂i��r.qr � = air � 1air ��i. � qi��r.qr ��� 1asr ��s. � qs��r.qr ��� : (4:12)If air < 0, from the choice of s and the fact that asr > 0, we conclude that the righthand side of (4.12) is lexicopositive and hence (4.11) holds. On the other hand ifair > 0, then from the choice of s we conclude that the right hand side of (4.12) islexicopositive, and hence again (4.11) holds. If air = 0, from (4.10) we have �̂i. �q̂i(�r.=qr) = �i. � qi(�r.=qr) and by (4.9) this implies that (4.11) holds in this casetoo. So (4.11) holds for all i 6= r; s. Now consider i = r. From (4.10) we verify that�̂r. � q̂r(�r.=qr) = (�s. � qs(�r.=qr))=asr � 0 from (4.9) and the fact that asr > 0.So (4.11) holds for i 6= s. Since l is the crucial row in step k + 1, and q̂s > 0, weknow that l 6= s. So from (4.11) we have �̂l. � q̂l(�r.=qr) and since q̂l < 0, this yields(�̂l.=q̂l) � (�r.=qr). Using this in (4.9) we get �̂i. � q̂i(�̂l.=q̂l) for all i such that i 6= sand q̂i > 0, which yields (4.8) for this i. If i is such that q̂i < 0, (4.8) follows fromthe choice of the crucial row in step k + 1, since row l is the crucial row in step k + 1.If i is such that i 6= s and q̂i = 0, (4.8) follows from (4.11). If i = s, from (4.10) weconlcude (�s.=q̂s) = (�r.=qr). We have already seen above that (�r.=qr) � (�̂l.=q̂l). So(�̂s.=q̂s) � (�̂l.=q̂l) and since q̂s > 0 this implies (4.8) for i = s.



4.2. The Graves' Principal Pivoting Method 271Thus whether the pivot step in step k is a single or double principal pivot step,if the statement of this theorem holds in step k, it holds in step k + 1. We alreadyveri�ed that the statement of the theorem holds in step 1. Hence it holds in all stepsof the method.Theorem 4.5 The f -vector undergoes a strict lexico-decrease in each step of themethod, when applied on the LCP (q;M) where M is PSD.Proof. We consider a step in the method, say step k. As in the proof of Theorem4.4, let �, �̂ denote the inverse of the complementary bases; and let q, q̂ denote theupdated right hand side constant vectors, in steps k, k + 1 respectively. Let rows r, lbe the crucial rows; and let f , f̂ denote the f -vectors in steps k, k+1 respectively. Wewish to prove that f̂ � f . From the de�nition of the crucial row we have: f = �r.=qr,f̂ = �̂l.=q̂l. If the pivot in step k is a single principal pivot step, we have already shownin the proof of Theorem 4.4 that (�̂l.=q̂l) � (�̂r.=q̂r) = (�r.=qr) which implies thatf̂ � f . If the pivot in step k is a double principal pivot step, we have already shownin the proof of Theorem 4.4 that (�̂l.=q̂l) � (�r.=qr) which implies that f̂ � f . So thef -vector undergoes a strict lexico decrease as the algorithm moves from step k to stepk + 1. So it undergoes a strict lexico decrease in each step of the method.Theorem 4.6 When M is PSD, the Graves' principal pivoting method either �ndsa solution of the LCP (q;M) or determines that it has no solution, in a �nite numberof steps.Proof. Each complementary basic vector for (4.1) corresponds to a unique f -vector.In each step of the method, if it does not terminate by either �nding a complementaryfeasible basic vector, or by determining that the LCP (q;M) has no solution, the f -vector undergoes a strict lexico decrease, by Theorem 4.5. Hence in each step of themethod, a new complementary basic vector is obtained, thus a complementary basicvector obtained in a step of the method, cannot reappear later on. Since there are atmost 2n-complementary basic vectors for (4.1), the method must terminate by either�nding a complementary feasible basic vector (the BFS of (4.1) corresponding to whichis a solution of the LCP (q;M)) or by determining that (4.1) does not even have anonnegative solution, after at most 2n steps.The proof of �nite convergence of this method is quite novel, and is based onthe fact that the f -vector undergoes a strict lexico decrease in each step. There is noobjective function in LCPs and the f -vector is really extraneous to the problem, andyet, since the method guarantees that it undergoes a strict lexico decrease in each step,the method must terminate in a �nite number of steps, and the only ways the methodcan terminate is by either �nding a solution of the LCP or by determining that theLCP has no solution.



272 Chapter 4. Principal Pivoting Methods for LCPTheorem 4.7 If the Graves' principal pivoting method is applied on the LCP(q;M) where M is a P -matrix, then the following statements hold:i) All pivot steps will be single principal pivot steps.ii) In each step the pivot element is always strictly negative.iii) The method terminates with a solution of the LCP in a �nite number of stepswithout cycling.Proof. (i) and (ii) follow from Corollary 3.5. It can be veri�ed that the proof ofTheorem 4.4 holds in this case too, and hence, the conclusion of Theorems 4.5, 4.6remain valid here also. This implies (iii).Thus the principal pivoting method discussed above can be applied to processLCPs (q;M) when M is either a PSD matrix or a P -matrix. However, when M is aP -matrix, Principal Pivoting Method I discussed in Section 4.1 will probably be muchmore e�cient since it does not require the rows of the explicit basis inverse, or thedetermination of the lexico maximum of a set of row vectors in each step. The Graves'principal pivoting method has the advantage of processing LCPs (q;M) which M inPSD and not PD, and Principal Pivoting Method I may not be able to process theseproblems.Exercises4.1 Relationship of the Graves' Principal Pivoting Method to the SimplexAlgorithm. Consider the LP (1.9) which can be written asMinimize cxsubject to Ax� v = bx >= 0; v >= 0 (4:13)where A is a matrix of order m� n, v = (v1; : : : ; vm)T , and �b >= 0. So v is a feasiblebasic vector for (4.13). The LCP corresponding to this LP is (q;M) with q, M givenas in (1.10). Suppose the Graves' principal pivoting method is applied on (4.13). Thenprove the following:(i) All the pivots steps will be double principal pivot steps.(ii) The columns of the PPT of M obtained in any step can be rearranged so that ithas the structure M 0 = 8>: 0 �A0TA0 0 9>; :(iii) The rows of the inverse of the basis at the end of each step can be rearranged sothat it has the following structure:� = 8>:�1 00 �29>;



4.3. Dantzig-Cottle Principal Pivoting Method 273where �1, �2 square nonsingular matrix of orders n and m respectively.(iv) If (c;�bT )T is the updated right hand side constants vector in any step, then �bis nonnegative.(v) The sequence of basic solutions obtained in the Graves' principal pivoting methodapplied on (4.13) can be interpreted as the sequence of primal feasible and dualbasic solutions obtained in the various steps of the primal simplex algorithm usingthe lexico minimum ratio rule for pivot row choice in each step, applied on the LP(4.13) beginning with the primal feasible basic vector v (R. L. Graves [4.7]).4.2 Consider the quadratic program (1.11) discussed in Section 1.3. If Q(x) is aconvex function on Rn, prove that the LCP (1.19) corresponding to it, is an LCP(q;M) in which the matrix M is PSD, and so it can be processed by the Graves'Principal Pivoting Method.
4.3 DANTZIG-COTTLE PRINCIPALPIVOTING METHODThis method due to G. B. Dantzig and R. W. Cottle [4.5, 4.6] pre-dates the otherprincipal pivoting methods discussed so far, and evolved from a quadratic programmingalgorithm of P. Wolfe [4.18] who seems to be the �rst to use a type of complementarypivot choice rule. The method is useful for processing LCPs (q;M) in which M iseither a P -matrix or a PSD matrix. The method goes through a sequence of whatare called major cycles. Each major cycle begins with a complementary basic vectorand ends with a complementary basic vector. Intermediate basic vectors in a majorcycle are almost complementary basic vectors of the type discussed in Section 2.4. Noarti�cial variable is introduced, but the original problem variables may take negative ornonnegative values during the method. When a nonnegative solution is obtained, it willbe a complementary feasible solution of the LCP (q;M) and the method terminates.Once a variable becomes nonnegative in this method, it remains nonnegative in allsubsequent steps (this property distinguishes this method from the other principalpivoting methods discussed so far). Also, if M is a P -matrix or a PD matrix, oncea component of the updated q becomes nonnegative in this method, that particularcomponent will remain nonnegative in all future updated qs. Each major cycle makesat least one more variable nonnegative. So there can be at most n major cycles whenthe method is applied to solve an LCP of order n. The �rst major cycle begins withw = (wj) as the initial complementary basic vector.If q is nondegenerate, each component of the updated q remains nonzero through-out and there will never be any ties for the blocking variable (this term is de�ned



274 Chapter 4. Principal Pivoting Methods for LCPbelow) in each step of any major cycle, thus identifying the blocking variable uniquelyand unambiuously in every step. If q is degenerate, there may be ties for the blockingvariable. However, as discussed in Section 2.2.8, in this case q can be perturbed tobecome nondegenerate, treating the perturbation parameter to be positive and smallwithout giving any speci�c value to it. This requires the use of the lexico minimumratio test in place of the usual minimum ratio test, whenever it is used, right from thebeginning, and this again guarantees that the blocking variable is identi�ed uniquelyand unambiguously in each step. If the method can be proved to process the LCP(q;M) in a �nite number of steps when q is nondegenerate, using arguments similarto those in Section 2.2.8 it can be proved that it will process it in a �nite number ofsteps even when q is degenerate, if this lexico minimum ratio test is used in place ofthe minimum ratio test in each step. Because of this, without any loss of generality,we assume that q is nondegenerate, in the description of the method given below.Case 1: M is a P -Matrix.The �rst major cycle begins with w = (w1; : : : ; wn) as the initial complementary basicvector.Let y = (y1; : : : ; yn) where yj 2 fwj ; zjg for j = 1 to n, be the initial comple-mentary basic vector at the beginning of a major cycle. For j = 1 to n, let tj be thecomplement of yj . Let the canonical tableau of (4.1) with respect to y bebasic vector y ty I �M qt = 0 in the current solution, y = q (4:14)If q >= 0, y is a complementary feasible basic vector for the LCP (q;M) and we ter-minate. Otherwise select an r such that qr < 0. yr will be called the distinguishedvariable in this major cycle. We try to make yr increase from its present negativevalue in the solution, to zero, without allowing any variable already nonnegative tobecome negative. For this, we increase tr from zero to a � say. This leads to the newsolution yi = qi + �mir ; i = 1 to ntr = � ; all other tj = 0: (4:15)Since M is a P -matrix, by Theorem 3.5, mrr > 0. Hence, in (4.15), the value ofyr increases as � increases. So, in this role, tr is called the driving variable. Theincrease in the value of the driving variable must stop as soon as a positive basicvariable decreases to zero, or the distinguished variable increases to zero. The variablewhich thus limits the increase of the driving variable is called the blocking variable.To identify the blocking variable, �nd minimum f(qr=(�mrr)); (qi=(�mir)), for all isuch that qi >= 0 and (�mir) > 0g. Suppose this minimum is attained by i = s (ifthere is a tie for this s, the lexico minimum ratio rule as in Sections 2.2.7, 2.2.8 shouldbe used to break the tie, as discussed above).



4.3. Dantzig-Cottle Principal Pivoting Method 275If s = r, a principal pivot step in position r is carried out in (4.14), this leads toa complementary basic solution in which yr is positive, and the method moves to thenext major cycle with it.If s 6= r, perform a pivot in (4.14) replacing the basic variable ys by tr, a non-principal pivot. The new basic vector obtained is almost complementary (as de�nedin Section 2.4), both the distinguished variable ys and its complement are basic vari-ables in it, both the blocking variable yr and its complement are nonbasic. Let �mis,i = 1 to n, be the entries in the updated column of ts after this pivot step. Clearly�mss = �mss=(�msr) < 0 since mss > 0 (since M is a P -matrix) and (�msr) > 0(by the choice of the blocking variable), and �mrs = �mrs +mrrmss=msr < 0 sincemsr < 0 (by choice of the blocking variable) and mrrmss �msrmrs > 0 (this is theprincipal subdeterminant of M corresponding to the subset fs; rg which is positivesince M is a P -matrix, being a PPT of the P -matrix M). The pivot step has left thedistinguished variable basic at a negative value. The next variable to enter the basis,that is, the next driving variable, is the complement of the blocking variable whichjust became nonbasic; it is ts here. Since we have shown that (�mss) < 0, (�mrs) < 0above, increasing the value of the new driving variable results in the continuing in-crease of both the distinguished variable and its complement. The increase of the newdriving variable is also governed by the same rules as above. Since the value of the dis-tinguished variable has been shown to increase, it is potentially a blocking variable, andhence a blocking variable exists again. Using the properties of P -matrices discussed inChapter 3, it can be veri�ed that all these properties continue to hold when the majorcycle is continued with the same rules. A sequence of almost complementary basicvectors is obtained in the process, which can only terminate when the distinguishedvariable is driven up to zero, at which time it is the blocking variable, and the corre-sponding pivot leads to a complementary basic vector. Since the distinguished variableand its complement increase strictly from one pivot step to the next, no basis can berepeated, and hence the sequence is �nite, as there are only a �nite number of almostcomplementary basic vectors. The �niteness of the overall method follows since thereare at most n major cycles (the number of negative variables decreases by at least onein each major cycle).In this case it can be veri�ed that once the entry in a row in an updated q becomesnonnegative, it stays nonnegative in all subsequent steps.Case 2: M is a PSD Matrix, but not a P -MatrixIn this case it is possible that the system w �Mz = q, w; z >= 0 is not even feasible,and the method should be able to detect this possibility. As before let (4.14) be thecanonical tableau at the beginning of a major cycle. Select the distinguished variableas in Case 1 to be the basic variable in a row in which the updated right hand sideconstant is negative, say yr. Since M is PSD, its PPT M is also PSD by Theorem3.10 and hence its diagonal entries are all nonnegative by Result 1.5. So mrr >= 0, andcould be zero here.



276 Chapter 4. Principal Pivoting Methods for LCPSuppose mrr = 0. In addition, if (�mir) <= 0 for all i, Result 1.6 implies that(�mrj) >= 0 for all j (since M is PSD and mrr = 0 we will have mir +mri = 0 for alli). The equation corresponding to the updated rth row isyr + nXj=1(�mrj)tj = qr : (4:16)Under these conditions (qr < 0, �mrj >= 0 for all j), (4.16) does not even have anonnegative solution, which implies that \w �Mz = q, w >= 0, z >= 0" has no feasiblesolution. So under these conditions the LCP (q;M) has no solution.If mrr = 0, and the infeasibility condition (�mir <= 0 for all i) is not satis�ed; asin Case 1, we increase the value of the driving variable tr from zero. However, sincemrr = 0, it has no e�ect on the negative value of the distinguished variable. In addition,if �mir <= 0 for all i satisfying qi >= 0, the increase in the value of the driving variabletr, makes no nonnegative basic variable decrease. But under these conditions �mir > 0for at lest one i satisfying qi < 0, and the value of this ith basic variable decreasesfurther from its present negative value as the value of the driving variable is increased.So there is no blocking variable in the sense discussed under Case 1. Also, underthese conditions, since there is at least one mir > 0, we cannot make the infeasibilityconclusion. Thus using the de�nitions of blocking as under Case 1, these conditionslead to an unblocked driving variable and yet no infeasibility conclusion is possible.In order to force the algorithm to move to a successful conclusion when this occurs,we make the following modi�cations in the de�nition of blocking (the aim is to makesure that the occurrence of an unblocked driving variable indicates the infeasibility ofthe original system \w �Mz = q, w >= 0, z >= 0" through an inconsistent equationof the form (4.16)). Let � < minimum fqi : i = 1 to ng. We impose a lower boundof � on all negative variables. A negative basic variable can then block the drivingvariable by decreasing to its lower bound �. When this happens, the blocking negativebasic variable is replaced from the basic vector by the driving variable, and made intoa nonbasic variable at its lower bound �. Once any variable attains a nonnegativevalue its lower bound is immediately changed to zero. With this modi�cation, eachnonbasic variable either has value 0 or �. A basic solution is nondegenerate if eachbasic variable has value di�erent from 0 or � in the solution. Since nonbasic variablescan have nonzero values, the basic values may not be equal to the updated right handside constant vector q, so we have to maintain the basic values separately in a columncalled b.At any stage of this method, if q̂, b̂, �m̂ij denote the updated right hand sideconstants vector, updated basic values vector, and the updated entries in the nonbasiccolumns respectively, then b̂i = q̂i + �(�m̂ij : over j such that the correspondingvariable is nonbasic at its lower bound �). If at this stage the driving column (theupdated column of the driving variable) is (�m̂1s; : : : ;�m̂ns)T , and the distinguishedvariable is the basic variable in the rth row, it can be shown that m̂rs >= 0 using thefacts that the PPTs of a PSD matrix are PSD, and that the principal subdeterminantsof a PSD matrix are >= 0 (similar to the proof of the corresponding statement that



4.3. Dantzig-Cottle Principal Pivoting Method 277mrr > 0 under Case 1). Compute � = minimum f(�b̂r=m̂rs), if m̂rs 6= 0; (�b̂i=m̂is),for all i such that �b̂i >= 0 and m̂is < 0; (� � b̂i)=m̂is, for all i such that b̂i < 0 andm̂is < 0g. The blocking variable is the ith basic variable corresponding to the i thatattains the minimum here. Ties for the blocking variable should be resolved using thelexico minimum ratio test in place of the usual minimum ratio test as described above.If a blocking variable exists, the pivot step replaces the blocking variable in the basicvector by the driving variable. In the new basic solution obtained after the pivot stepthe blocking variable that just left the basic vector is zero if it was the distinguishedvariable or a nonnegative basic variable, or � if it was a negative valued basic variablethat decreased to its lower bound. The old driving variable which is now the new rthbasic variable, has a value of � in the basic solution. The new value of the ith basicvariable is b̂i + �m̂is for i 6= r. All other variables (nonbasics) continue to have thesame value in the basic solution as before. If the distinguished variable is still basic, theprocedure is continued by choosing the new driving variable to be the complement ofthe blocking variable that just dropped from the basic vector. As before, the proceduredoes not allow any nonnegative variable to become negative. It can be veri�ed thateach iteration of the method results in an increase (or lexico increase) of the sum ofthe distinguished variable and its complement. The major cycle terminates when thedistinguished variable reaches the value zero and drops out of the basic vector, leadingto a complementary basic vector.To choose the distinguished variable at the beginning of a major cycle, we look fora basic variable, say the rth, whose value in the current basic solution, br < 0 (eventhough the current updated qr may be >= 0). However, in this case it is possible that nosuch basic variable exists. This happens when we reach a complementary basic vectorwith nonnegative values for all the basic variables in the current basic solution. If allthe nonbasic variables are zero in this solution, the present complementary basic vectoris feasible to the original LCP (q;M) and we terminate. On the other hand, if thereare some nonbasic variables which are at their lower bound � in the current solution,check whether the current updated right hand side constants vector q is >= 0. If so, setall the nonbasic variables to zero, this changes the basic values to q, and since q >= 0,the present complementary basic vector is feasible to the original LCP (q;M) and weterminate. However, if q 6>= 0 in such a situation, select one of the negative nonbasicvariables (with value = � in the present basic solution) as the distinguished variable.In the �rst step of the ensuing major cycle, that nonbasic distinguished variable isitself the driving variable. If it is blocked, it becomes a basic variable after the �rstpivot step, and the major cycle continues until this distinguished variable increases tozero. However, a major cycle like this in which the nonbasic distinguished variable isthe driving variable may consist of one step without any pivots if this driving variablecan increase all the way from � to zero without making any nonnegative basic variablenegative.If we have a complementary basic vector in which the driving variable is unblocked,it cannot be the distinguished variable (since a distinguished driving variable must be



278 Chapter 4. Principal Pivoting Methods for LCPa negative nonbasic variable which will not be increase beyond zero). So an unblockeddriving variable when the present basic vector is complementary must be the com-plement of a negative basic variable upon which its increase has no e�ect. Beingunblocked, the updated column of the driving variable must be <= 0, and this impliesinfeasibility of the original LCP as discussed earlier.The pivot element in any almost complementary basic vector is always positiveby the rules under which the method is operated. The pivot element is only negativein this method when the dropping basic variable is the distinguished variable, whichsignals the end of a major cycle.Suppose the driving variable is unblocked when the present basic vector is almostcomplementary. When this happens, the distinguished variable must be basic. Supposeit is the rth. Its complement must also be basic. Suppose it is the pth basic variable.Let the updated column of the driving variable be (�m̂1s; : : : ;�m̂ns)T . Since thedistinguished variable is not blocking, we must have m̂rs = 0. Also we must have�m̂is <= 0, as otherwise some basic variable would block. It can be veri�ed that in thiscase �m̂ps < 0. Pivoting with �m̂ps as the pivot element restores complementarityand it can be veri�ed that after this pivot step, it is possible to conlcude that theoriginal LCP is infeasible.4.4 References4.1 R. H. Bartels, G. H. Golub and M. A. Saunders, \Numerical Techniques in Math-ematical Programming", in: J. B. Rosen, O. L. Mangasarian and K. Ritter(editors), Nonlinear Programming, Academic Press, New York, 1970, 123{176.4.2 P. T. Boggs, \The Solutions of Nonlinear Systems of Equations by A-StableIntegration Techniques", SIAM Journal of Numerical Analysis, 8 (1971) 767{785.4.3 K. M. Brown, \A Quadratically Convergent Newton-Like Method Based UponGaussian Elimination", SIAM Journal of Numerical Analysis, 6 (1979) 560{569.4.4 R. W. Cottle, \Nonlinear Programs With Positively Bounded Jacobians", SIAMJournal of Applied Mathematics, 14 (1966) 147{158.4.5 R. W. Cottle, \The Principal Pivoting Method of Quadratic Programming",in: G. B. Dantzig and A. F. Veinott, Jr. (editors) Mathematics of DecisionSciences, AMS, Rhode Island, 1968, 144{162.4.6 G. B. Dantzig and R. W. Cottle, \Positive (Semi-)De�nite Programing", in:J. Abadie (editor), Nonlinear Programming, North-Holland, Amsterdam, TheNetherlands, 1967, 55{73.4.7 R. L. Graves, \A Principal Pivoting Simplex Algorithm for Linear and QuadraticProgramming", Operations Research, 15 (1967) 482{494.
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Chapter 5
THE PARAMETRIC LINEARCOMPLEMENTARITY PROBLEM

Let M be a given square matrix of order n and let b, b� be given column vectors inRn. Let q(�) = b + �b�. Assuming that b� 6= 0, q(�) traces a straight line in Rn,L = fx : x = q(�), for some �g, as � takes all real values. We consider the followingparametric LCP: �nd w, z satisfyingw �Mz = q(�) = b+ �b�w >= 0; z >= 0wT z = 0 (5:1)as functions of �, for each value of � in some speci�ed interval. Here we discuss analgorithm developed in [5.12] by K. G. Murty for obtaining a solution of this parametricLCP as a function of �. This algorithm is most useful when M is a P -matrix. Thisalgorithm solves the LCP (q(�);M) for some �xed value of � by any method (suchas the complementary pivot method, or the principal pivoting methods), and thenobtains solutions for the parametric LCP for all values of � using only a series of singleprincipal pivot steps.The AlgorithmStep 1: Choose a value �0, and �x � at �0 (�0 could be equal to zero), andsolve the LCP (q(�0);M) by any one of the algorithms discussed earlier, and obtaina complementary feasible basic vector for it. With this complementary feasible basicvector for (5.1) when � = �0, go to Step 2.Step 2: Determine the range of values of � for which the present complementarybasic vector remains feasible. The procedure for doing this is the same as in parametric



Chapter 5. The Parametric Linear Complementarity Problem 281right hand side LP, and it is as follows: Let (y1; : : : ; yn), where yj 2 fwj ; zjg foreach j = 1 to n, be the present complementary basic vector. Let � = (�ij) be theinverse of the present complementary basis. Let b, b� be the present updated righthand side constants vectors, that is b = �b, b� = �b�. Compute �, �; the lowerand upper characteristic values associated with the present complementarybasic vector, from the following.� = �1; if b�i <= 0 for all i= Maximum f�bi=b�i : i such that b�i > 0g, otherwise� = +1; if b�i >= 0 for all i= Minimum f�bi=b�i : i such that b�i < 0g, otherwise : (5:2)
Since the present complementary basic vector is feasible for (5.1) for at least one valueof �, we will have � <= �, and for all values of � in the closed interval � <= � <= �, thepresent complementary basic vector remains feasible, and hence the solutionPresent ith basic variable yi = bi + �b�i ; i = 1 to nComplement of yi; ti = 0; i = 1 to n (5:3)is a solution of the parametric LCP (q(�);M). Go to Step 3 or 4 if it is required to�nd the solutions of the parametric LCP (q(�);M) for values of � > �, or for valuesof � < � respectively.Step 3: We come to this step when we have a complementary basic vector, y =(y1; : : : ; yn) say, for which the upper characteristic value is �, and it is required to�nd solutions of the parametric LCP (q(�);M), for values of � > �. Let b, b� bethe present updated right hand side constant vectors. Find out J = fi : i ties forthe minimum in (5.2) for determining �g, r = maximum fi : i 2 Jg. So b�r < 0 and�br=b�r = �. The value of the rth basic variable yr, in the solution in (5.3) is zerowhen � = �, and it becomes negative when � > �. Let tr be the complement of yrand let A.r = (a1r; : : : ; anr)T be its updated column vector. If arr < 0, perform asingle principal pivot step in position r in y leading to the complementary basic vectoru = (y1; : : : ; yr�1; tr; yr+1; : : : ; yn). Both y and u have the same BFS when � = �(since yr = 0 when � = � in the solution in (5.3)). u is a complementary feasible basicvector for (5.1) when � = �. The value of tr in the basic solution of (5.1) with respectto u is (br=arr) + �(b�=arr), this quantity is 0 when � = �, and since arr < 0, b�r < 0,we verify that this quantity is positive when � > �. From this it can be veri�ed thatthe lower characteristic value for u is � = upper characteristic value for y. With u, goback to Step 2.If arr >= 0, either the single principal pivot step in position r cannot be carried out(when arr = 0); or even after it is carried out, the new rth basic variable continues tobe negative when � > � in the new basic solution (which happens when arr > 0). Thusin this case, the algorithm is unable to solve the parametric LCP (q; (�);M) for � > �,



282 Chapter 5. The Parametric Linear Complementarity Problemit is even unable to determine whether there exists a solution to the LCP (q; (�);M)or not when � > �.Step 4: We come to this step when we have a complementary basic vector, y =(y1; : : : ; yn) say, for which the lower characteristic value is �, and it is required to �ndsolutions of the parametric LCP (q; (�);M) for values of � < �. Let J = fi : i tiesfor the maximum in (5.2) for determining �g, r = maximum fi : i 2 Jg. Let tr bethe complement of yr and let A.r = (a1r; : : : ; anr)T be its updated column vector. Ifarr < 0, perform a single principal pivot step in position r in y. This leads to thenext complementary feasible basic vector for which � is the upper characteristic value,continue with it in the same way. If arr >= 0, this algorithm is unable to solve, or evendetermine whether a solution exists for the parametric LCP (q; (�);M) when � < �.Example 5.1Consider the parametric LCP (q; (�) = b+ �b�;M), for which the original tableau isw1 w2 w3 z1 z2 z3 b b�1 0 0 �1 0 0 8 �10 1 0 �2 �1 0 4 �10 0 1 �2 �2 �1 2 �1When � = 0, (w1; w2; w3) is a complementary feasible basic vector for this problem.The inverse tableau corresponding to this is:First Inverse Tableau�bi=b�i for i PivotBasic Inverse of the Com- such that Range of ColumnVariable plementary Basis b b� b�i < 0 b�i > 0 Feasibility z3w1 1 0 0 8 �1 8 �1 < � <= 2 0w2 0 1 0 4 �1 4 0w3 0 0 1 2 �1 2 �1So in the range �1 < � <= 2, (w = (8 � �; 4 � �; 2� �)T ; z = 0) is a solution of thisparametric LCP. To �nd out solutions of this parametric LCP when � > 2, we have tomake a single principal pivot step in position 3.The updated column vector of z3 is A.3 = (0; 0;�1). a33 = �1, and hence we cancontinue. The pivot column is already entered by the side of the �rst inverse tableau.Performing the pivot leads to the next inverse tableau.



Chapter 5. The Parametric Linear Complementarity Problem 283Second Inverse Tableau�bi=b�i for iBasic Inverse of the Com- such that Range ofVariable plementary Basis b b� b�i < 0 b�i > 0 Feasibilityw1 1 0 0 8 �1 8 2 < � <= 4w2 0 1 0 4 �1 4z3 0 0 � 1 �2 1 2� = 4 = � = 2So in the range 2 <= � <= 4, the solution (w1; w2; z3) = (8 � �; 4 � �;�2 + �),(z1; z2; w3) = (0; 0; 0) is a solution of this parametric LCP (q(�);M). Continuing inthe same way, we get the following solutions for this problem summarized in the tablebelow.Optimality Complementary Feasible Complementary SolutionRange Basic Vector (wT ; zT )�1 < � < 2 (w1; w2; w3) (8� �; 4� �; 2� �; 0; 0; 0)2 <= � <= 4 (w1; w2; z3) (8� �; 4� �; 0; 0; 0;�2+ �)4 <= � <= 6 (w1; z2; z3) (8� �; 0; 0; 0;�4+ �; 6� �)6 <= � <= 8 (w1; z2; w3) (8� �; 0;�6 + �; 0;�4 + �; 0)8 <= � <= 10 (z1; z2; w3) (0; 0;�6 + �;�8 + �;�4 + �; 0)10 <= � <= 12 (z1; z2; z3) (0; 0; 0;�8+ �; 12� �;�10 + �)12 <= � <= 14 (z1; w2; z3) (0;�12 + �; 0;�8 + �; 0; 14� �)14 <= � (z1; w2; w3) (0;�12 + �;�14 + �;�8 + �; 0; 0)



284 Chapter 5. The Parametric Linear Complementarity ProblemExample 5.2Consider the parametric LCP (q(�) = b+ �b�;M) for which the original tableau is:w1 w2 w3 w4 z1 z2 z3 z4 b b�1 0 0 0 �1 1 1 1 3 �20 1 0 0 1 �1 1 1 5 �40 0 1 0 �1 �1 �2 0 �9 50 0 0 1 �1 �1 0 �2 �5 3Putting � = 0, we verify that this LCP is the same as the one solved in Example 2.8.The complementary feasible basic vector obtained for this problem (when � = 0) inExample 2.8 is (z1; z2; z3; z4). The inverse tableau corresponding to (z1; z2; z3; z4) is�bi=b�i for iBasic Inverse of the Com- such that Range ofVariable plementary Basis b b� b�i < 0 b�i > 0 Feasibilityz1 �1=2 0 � 1=4 � 1=4 2 �1 2z2 0 � 1=2 � 1=4 � 1=4 1 0 � <= 1z3 1=4 1=4 � 1=4 1=4 3 �2 3=2z4 1=4 1=4 1=4 1=4 1 �1 1Minimum Maximum= � = 1 = � = �1So when � <= 1, the solution (w = (w1; w2; w3; w4) = 0, z = (z1; z2; z3; z4) = (2� �; 1;3 � 2�; 1 � �)) is a solution of this parametric LCP (q(�);M). To look for solutionswhen � > 1, we have to make a single principal pivot step in position 4. The updatedcolumn vector of w4 is A.4 = (�1=4;�1=4; 1=4; 1=4). So a44 = 1=4 > 0. Since a44is strictly positive, the algorithm discussed above is unable to process this parametricLCP (q(�);M) when � > 1.Theorem 5.1 Let M be a given P -matrix of order n. Consider the parametricLCP (q(�);M). The algorithm discussed above �nds solutions of this parametric LCPfor all real values of � in a �nite number of pivot steps. Also, for each �, the solutionobtained is the unique solution of this parametric LCP for that value of �.Proof. In the notation of the algorithm, let y = (y1; : : : ; yn) be the complementarybasic vector in Step 2 at some stage of the algorithm, for which the range of feasibility



Chapter 5. The Parametric Linear Complementarity Problem 285is � <= � <= �. In order to �nd out solutions for � > �, suppose we have to make asingle principal pivot step in position r. Let tr be the complement of yr and let A.r bethe updated column vector of tr. By Corollary 3.5 the method can continue. Let theBFS with respect to y be the one given in (5.3). Let T = fi : i such that bi+�b�i = 0g.Clearly r 2 T and in fact the set J de�ned in Step 3 at this stage satis�es J � T.As long as � remains �xed at �, any principal pivot steps performed on positions inT will not change the basic solution (because when the basic variable in the pivotrow is 0 in the basic solution, the pivot step is a degenerate pivot step that leaves thebasic solution unchanged). Let u = (u1; : : : ; un) be any complementary basic vectorsatisfying the property that ui = yi for i 62 T, ui = yi or its complement for i 2 T.Suppose the updated right hand side constant vectors with respect to u are b̂, b̂�. Bythe above argument, the basic solution of (5.1) with respect to u at � = � isui = b̂i + �b̂�i = bi + � b�i ; i = 1 to n(Complement of ui) = 0; i = 1 to n.So b̂i+�b̂i = 0 for i 2 T and > 0 for i 62 T. So the upper characteristic point associatedwith u is > � i� b̂�i >= 0 for all i 2 T. Thus, if T is a singleton set, the pivot step carriedout in Step 3 at this stage is guaranteed to produce a complementary feasible basicvector for which the upper characteristic value is > �. If T has 2 or more elements,let ! = (wi; i 2 T), � = (zi; i 2 T), M the principal submatrix of M correspondingto the subset T, and 
 = (b�i ; i 2 T). Consider the LCP (
;M) in the variables(!; �). Since M is a P -matrix, by Theorem 4.1, the LCP (
;M) can be solved byPrincipal Pivoting Method I in a �nite number of pivot steps without cycling, startingwith the complementary basic vector (yi; i 2 T) until a complementary basic vector isobtained for it, with respect to which the updated 
 is >= 0. The choice of the pivotrow r in Step 3 of the parametric algorithm implies that when it is continued from thecanonical tableau of (5.1) with respect to y, keeping � = �, it will go through exactlythe same sequence of pivotal exchanges as in the LCP (
;M), when it is solved byPrincipal Pivoting Method I, until we obtain a complementary feasible basic vector,u = (u1; : : : ; un) say, satisfying the property that the updated b�i with respect to u is>= 0 for each i 2 T. By the above argument the upper characteristic value of u is > �,and hence when we reach the basic vector u, we are able to strictly increase the valueof � beyond �. Also, once we cross the interval of feasibility of a complementary basicvector in this parametric algorithm, we will never encounter this basic vector again.We can apply the same argument in Step 4 for decreasing � below �. Continuing inthis way, since there are only 2n complementary basic vectors, these arguments implythat after at most a �nite number (less than 2n) of pivot steps, we will obtain solutionsof the parametric LCP (q(�);M) for all �.The fact that the solution obtained is the unique solution for each �, follows fromTheorem 3.13.When there are ties for the i that attains the minimum in (5.2) of Step 3 and thepivot row is chosen among i 2 J arbitrarily (instead of choosing it as the bottommost



286 Chapter 5. The Parametric Linear Complementarity Problemas mentioned in Step 3), cycling can occur at this value of � = �, as shown in thefollowing example due to A. Gana [5.6]. He considers the parametric LCP with thefollowing data M = 8>>>>>: 1 2 00 1 22 0 19>>>>>; ; b = 8>>>>>: 1119>>>>>; ; b� = 8>>>>>:�1�1�19>>>>>; :Starting with the complementary feasible basic vector (w1; w2; w3) when � = 0, wewant to solve this problem for all � >= 0. Here is a sequence of complementary basicvectors obtained when the pivot row in Step 3 is chosen among i 2 J arbitrarily. Pivotelements are in a box.Basic FeasibilityVariables w1 w2 w3 z1 z2 z3 b b� Intervalw1 1 0 0 �1 �2 0 1 �1w2 0 1 0 0 �1 �2 1 �1 0 <= � <= 1w3 0 0 1 �2 0 �1 1 �1z1 �1 0 0 1 2 0 �1 1w2 0 1 0 0 �1 �2 1 �1 1 <= � <= 1w3 �2 0 1 0 4 �1 �1 1z1 �1 2 0 1 0 �4 1 �1z2 0 �1 0 0 1 2 �1 1 1 <= � <= 1w3 �2 4 1 0 0 �9 3 �3w1 1 �2 0 �1 0 4 �1 1z2 0 �1 0 0 1 2 �1 1 1 <= � <= 1w3 0 0 1 �2 0 �1 1 �1w1 1 �2 4 �9 0 0 3 �3z2 0 �1 2 �4 1 0 1 �1 1 <= � <= 1z3 0 0 �1 2 0 1 �1 1w1 1 0 0 �1 �2 0 1 �1w2 0 1 �2 4 �1 0 �1 1 1 <= � <= 1z3 0 0 �1 2 0 1 �1 1



Chapter 5. The Parametric Linear Complementarity Problem 287Basic FeasibilityVariables w1 w2 w3 z1 z2 z3 b b� Intervalz1 �1 0 0 1 2 0 �1 1w2 4 1 �2 0 �9 0 3 �3 1 <= � <= 1z3 2 0 �1 0 4 1 1 �1z1 �1 0 0 1 2 0 �1 1w2 0 1 0 0 �1 �2 1 �1 1 <= � <= 1w3 �2 0 1 0 4 �1 �1 1The complementary basic vector (z1; w2; w3) repeated at � = 1, and hence cycling hasoccurred, and the execution can go through this cycle repeatedly without ever beingable to increase � beyond 1. Theorem 5.1 indicates that if the pivot row is chosen asmentioned in Steps 3, 4 of the parametric algorithm, this cycling cannot occur.Geometric InterpretationLet M be a given square matrix of order n. Consider the parametric LCP (q(�) =b+�b�;M). In the process of solving this problem by the parametric LCP algorithm dis-cussed above, let y = (y1; : : : ; yn), where yj 2 fwj ; zjg for each j = 1 to n, be a comple-mentary basic vector obtained in some stage. Let D.j be the column vector associatedwith yj in (5.1) for j = 1 to n. Let [�; �] be the interval of feasibility of y. To �nd solu-tions for the parametric LCP (q(�);M) when � > �, suppose we have to make a princi-pal pivot step in position r. Let tr be the complement of yr and let A.r be the columnassociated with tr in (5.1). So A.r is the complement of D.r. Since the value of yr in thesolution in 5.1 is zero when � = �, we have q(�) 2 PosfD.1; : : : ; D.r�1; D.r+1; : : : ; D.ng.Thus the portion of the straight line L in (5.1) corresponding to � <= � <= � lies in thecomplementary cone K1 = PosfD.1; : : : ; D.ng, and as � increases through �, it leavesthe cone K1 through its facet F = PosfD.1; : : : ; D.r�1; D.r+1; : : : ; D.ng. Let H denotethe hyperplane in Rn which is the linear hull of fD.1; : : : ; D.r�1; D.r+1; : : : ; D.ng. LetA.r = (a1r; : : : ; anr)T be the updated column associated with tr. By Theorem 3.16,the hyperplane H strictly separates D.r and A.r i� arr < 0. If arr < 0, q(�) is onthe common facet F of the complementary cones K1 and K2 = PosfD.1; : : : ; D.r�1;A.r; D.r+1; : : : ; D.ng. See Figure 5.1. As � increases beyond �, the line L leaves thecomplementary coneK1 and enters the complementary coneK2 through their commonfacet F.
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Figure 5.1 Situation when arr < 0. As � increases through �, the point q(�)travels along the straight line L, leaves the complementary cone K1 and enters thecomplementary cone K2, through their common facet F.If M is a P -matrix, by the strict separation property discussed in Section 3.3, thissituation occurs whenever Step 3 or 4 is carried out in the parametric LCP algorithm,and the algorithm �nds the solutions of the parametric LCP for all values of theparameter �.If arr = 0, A.r lies on the hyperplane H itself. If arr > 0, A.r lies on the same sideof the hyperplane H as D.r. In either of these cases, as � increases through �, the lineL leaves both the complementary cones K1 and K2 and (y1; : : : ; yr�1; tr; yr+1; : : : ; yn)is not a complementary feasible basic vector for the parametric LCP (q(�);M) when� > �. Hence if arr >= 0, the parametric LCP algorithm is unable to �nd solutions ofthe parametric LCP (q(�);M) when � increases beyond �.Hence, geometrically, the parametric LCP algorithm discussed above can be in-terpreted as a walk along the straight line L crossing from one complementary cone inC(M) to an adjacent complement cone through their common facet.



5.1. Parametric Convex Quadratic Programming 289Exercises5.1 Let M be a given PSD matrix of order n, which is not PD. Discuss an approachfor solving the parametric LCP (q(�) = b+ �b�;M) for all values of � for which it hasa solution, and determining the range of values of � for which it has no solution, basedon the Graves' principal pivoting method of Section 4.2.5.2 Suppose M is a copositive plus matrix and not a P -matrix. Discuss an approachfor processing the parametric LCP (5.1) in this case, by the algorithm discussed above,using the complementary pivot algorithm to extend the value of � whenever the pivotelement in the parametric algorithm turns out to be nonnegative. Also prove that inthis case, the set of all values of � for which the parametric LCP (5.1) has a solution,is an interval.
5.1 PARAMETRIC CONVEXQUADRATIC PROGRAMMINGHere we consider a problem of the following form:minimize Q�(x) = (c+ �c�)x+ 12xTDxsubject to Ax >= b+ �b�x >= 0 (5:4)where D is a symmetric PSD matrix of order n, and � is a real valued parameter. Theparameter � in the right hand side constants vector in the constraints, and the linearpart of the objective function, is the same. If b� = 0, or c� = 0, we get the special caseof the problem in which the parameter appears in only the right hand side constantsvector, or the linear part of the objective function, respectively. It is required to �ndan optimum solution of this problem, treating � as a parameter, for all values of �.By the results in Chapter 1, this problem is equivalent to a parametric LCP(q + �q�;M) where M is a PSD matrix. For the problem above, the data in theparametric LCP is given byM = 8>:D �ATA 0 9>; ; q = 8>: cT�b 9>; q� = 8>: (c�)T�b� 9>; : (5:5)We now discuss an algorithm for solving problems of this type. In preparing thissection, I bene�tted a lot from discussions with R. Saigal.



290 Chapter 5. The Parametric Linear Complementarity ProblemAlgorithm for Parametric LCP (q + �q�;M) When M is PSDInitializationFind a value for the parameter � for which the systemw �Mz = q + �q�w; z >= 0 (5:6)has a feasible solution. Since M is PSD, by the results in Chapter 2, the LCP (q +�q�;M) has a solution i� (5.6) has a feasible solution for that �. Phase I of theparametric right hand side simplex method can be used to �nd a feasible solution for(5.6) (see Section 8.8 of [2.26]). When M , q, q� are given by (5.5), if (5.6) is infeasiblefor a value of �, by the results in Chapter 2, (5.4) does not have an optium solutionfor that � (it is either infeasible, or Q�(x) is unbounded below on the set of feasiblesolutions for it).If there exists no value for � for which (5.6) has a feasible solution, the parametricLCP (q + �q�;M) does not have a solution for any �, terminate. Otherwise, let �0be a value of �, for which (5.6) has a feasible solution (the parametric right handside simplex algorithm, see Section 8.6 of [2.26], can in fact be used to determine theinterval of values of � for which (5.6) is feasible).Now, �nd a complementary feasible basis for the LCP (q + �0q�;M) with � �xedequal to �0. The complementary pivot algorithm of Section 2.2 can be used for �ndingthis. Since (5.6) is feasible when � = �0 and M is PSD, by the results in Chapter 2,the complementary pivot algorithm applied on the LCP (q + �0q�;M) will terminatewith a complementary feasible basic vector for it, in a �nite number of pivot steps,if the lexicographic minimum ratio rule is used to determine the dropping variable ineach step. Let the complementary feasible basic vector be y = (y1; : : : ; yn), (whereyj 2 fwj ; zjg for each j = 1 to n), associated with the complementary basis B. Let q,q� be the updated right hand side constants vectors (q = B�1q; q� = B�1q�). Let�1 = �1; if q� <= 0= Maximum f�qi=q�i : i such that q�i > 0g; otherwise,�2 = +1; if q� >= 0= Minimum f�qi=q�i : i such that q�i < 0g; otherwise.Then, for all �1 <= � <= �2, y is a complementary feasible basic vector for the parametricLCP (q+�q�;M). This interval is nonempty since �0 is contained in it. In this interval,a complementary feasible solution for the parametric LCP iscomplement of y is 0y = q + �q�:



5.1. Parametric Convex Quadratic Programming 291Procedure to Increase the Value of �Suppose we have a complementary basic vector y = (y1; : : : ; yn), where yj 2 fwj ; zjgfor each j = 1 to n, corresponding to the complementary basis B, for which theupper characteristic value is �, which is �nite. Here we discuss how to proceed to �ndcomplementary solutions of the parametric LCP when � > �. Assume that B is lexicofeasible for � = �. Let � = B�1, q = B�1q, q� = B�1q�. Then (qi + �q�i ; �i.) � 0 forall i = 1 to n. Determine the i which attains the lexico minimum f�(qi; �i.)=(q�i ) : isuch that q�i < 0g, and suppose it is p. Let the complement of the variable yp be tp.Suppose the updated column vector of tp in the canonical tableau forw zI �M q + �q� (5:7)with respect to the complementary basic vector y be (a1p; : : : ; anp)T . Since M is PSD,by the results in Chapter 3, app <= 0.If app < 0, performing a single principal pivot step in position p in the presentcomplementary basic vector y, leads to a new complementary basic vector which will befeasible for some values of � > � under nondegeneracy. We repeat this whole processwith that complementary basic vector.If app = 0, to increase the value of � beyond �, we enter into a special comple-mentary pivot phase described below.The Complementary Pivot Phase to Increase the Value of �We enter this phase when we obtain a complementary basic vector y = (y1; : : : ; yn),where yj 2 fwj ; zjg for each j = 1 to n, with �nite upper characteristic value �, andapp = 0, as discussed above.In the present canonical tableau, transfer the column of the parameter � from theright hand side to the left hand side, and treat � now as a variable. This leads toBasicVariables y t �y I : : : �q� q (5:8)In this tableau, perform a pivot step in the column of �, with row p as the pivot row,this is possible since �q�p > 0. This leads to the following tableau.



292 Chapter 5. The Parametric Linear Complementarity ProblemTableau 5.1BasicVariables y1 : : : yp�1 � yp+1 : : : yn yp t1 : : : tny1::yp�1 I : : : ~q�yp+1::ynTableau 5.1 is the canonical tableau with respect to the basic vector (y1; : : : ; yp�1;�; yp+1; : : : ; yn). As de�ned in Chapter 2, this is an ACBV (almost complementarybasic vector). Here, � plays the same role as the arti�cial variable z0 in Chapter 2.There is one di�erence. In Chapter 2, z0 was a nonnegative arti�cial variable, here �is a variable which is a natural parameter, and it can take either negative or positivevalues.From the manner in which Tableau 5.1 is obtained, it is clear that the value of �in the basic solution corresponding to Tableau 5.1 is ~qp = �qp=q�p = �. Treat Tableau5.1 as the original tableau for this phase. The word basis in this phase refers to thematrix of columns from Tableau 5.1, corresponding to the basic variables in any basicvector for Tableau 5.1. This phase requires moving among ACBVs in which � willalways be the pth basic variable. Let B be the basis corresponding to such an ACBV,and let q̂ = B�1~q, � = B�1. This ACBV is said to be feasible for this phaseif q̂i >= 0 for all i 6= p and lexico feasible for this phase if (q̂i; �i.) � 0 for alli 6= p. Let B be such a basis, let q̂ = B�1~q, � = B�1 and suppose it is required tobring the column of a nonbasic variable, say xs, into the basis B. Let (â1s; : : : ; âns)Tbe the updated column of xs (it is, B�1 (column of xs in Tableau 5.1)). The lexicominimum ratio test for this phase determines the dropping variable to be the rthbasic variable, where r is the i which attains the lexico minimum f(q̂i; �i.)=âis : i suchthat i 2 f1; : : : ; p� 1; p+ 1; : : : ; ng and âis > 0g. The minimum ratio for this pivotstep, is de�ned to be (q̂r=ârs), it is always >= 0. The initial ACBV in Tableau 5.1 islexico feasible in the sense de�ned here, and all the ACBVs obtained during this phasewill have the same property.Now, bring the variable tp into the initial ACBV (y1; : : : ; yp�1; �; yp+1; : : : ; yn),determining the dropping variable by the lexico minimum ratio test as discussed above.Continue this phase using the complementary pivot rule, that is, the enteringvariable in any step, is always the complement of the dropping basic variable in theprevious step. We prove below that the value of � in the basic solution keeps onincreasing in this phase.At some stage, let (�1; : : : ; �p�1; �; �p+1; : : : ; �n) be the ACBV with the values ofthe basic variables in the corresponding BFS to be q̂ = (q̂1; : : : ; q̂n)T . So the value



5.1. Parametric Convex Quadratic Programming 293of � in this solution is q̂p. Let vs denote the entering variable into this ACBV, asdetermined by the complementary pivot rule. Let (â1s; : : : ; âns)T be the pivot column(updated column of vs), and let � denote the minimum ratio, as de�ned above, for thisstep. We prove below that âps <= 0. The solution�i = q̂i � �âis; i 2 f1; : : : ; p� 1; p+ 1; : : : ; ngvs = �all other variables = 0is a complementary feasible solution of the original parametric LCP when � = q̂p��âps,for 0 <= � <= �. As the value of � keeps on increasing during this phase, this processkeeps getting solutions of the original parametric LCP for higher and higher values of�, as the phase progesses.This phase only terminates when an ACBV, say, (�1; : : : ; �p�1; �; �p+1; : : : ; �n) isreached satisfying the property that if � denotes the entering variable into this ACBV,as determined by the complementary pivot rule, and (a�1; : : : ; a�n)T is the pivot column(updated column of �), then a�i <= 0 for all i 2 f1; : : : ; p � 1; p + 1; : : : ; ng. This issimilar to ray termination of Chapter 2. Let q� = (q�1 ; : : : ; q�n)T be the present updatedright hand side constants vector. If a�p < 0, then the solution�i = q�i � �a�i ; i 2 f1; : : : ; p� 1; p+ 1; : : : ; ng� = �all other variables = 0is a complementary solution of the original parametric LCP when � = q�p � �a�p, forall � >= 0. In this case, this solution therefore, provides the solution of the parametricLCP for all � >= q�p , terminate.If a�p = 0 when this termination occurs, the original parametric LCP is infeasiblewhenever � > q�p (this fact is proved below), terminate.Procedure to Decrease the Value of �Suppose we have a complementary basic vector y = (y1; : : : ; yn), for which the lowercharacteristic value is �, �nite. Let � = B�1 be the inverse of the complementarybasis corresponding to y, and q = �q, q� = �q�. Assuming that y is lexico feasible for� = �, we have (qi + �q�i ; �i.) � 0 for all i. Determine the i that attains the lexicomaximum f�(qi; �i.)=(q�i ) : i such that q�i > 0g, and suppose it is p. Let the updatedcolumn of the complement of yp in the canonical tableau of (5.7) with respect to y be(a1p; : : : ; anp)T . If app < 0, perform a single principal pivot step in position p in thepresent complementary basic vector y, and continue in the same way. If app = 0, todecrease � below �, enter into a special complementary pivot phase. This phase beginswith performing a pivot step in the column of � in (5.8) with row p as the pivot row,to transform the column of � in (5.8) into �I.p (the usual pivot step would transform



294 Chapter 5. The Parametric Linear Complementarity Problemthe column of � in (5.8) into +I.p), leading to an ACBV as before. Except for thischange, the complementary pivot procedure is carried out exactly as before. In all thecanonical tableaus obtained in this phase, � remains the pth basic variable, with itsupdated column as �I.p. The value of � keeps on decreasing as this phase progresses,and termination occurs when ray termination, as described earlier, occurs. During thisprocedure, the complementary solutions of the original parametric LCP for di�erentvalues of � are obtained using the same procedure as discussed earlier, from the basicsolution of the system in Tableau 5.1 corresponding to the ACBV at each stage.Proof of the AlgorithmHere we prove the claims made during the complementary pivot phase for increasingthe value of �.Theorem 5.2 Let (�1; : : : ; �p�1; �; �p+1; : : : ; �n) be an ACBV obtained during thisphase. Let q̂ = (q̂1; : : : ; q̂n)T be the updated right hand side constants vector with re-spect to this ACBV. Let vs denote the entering variable into this ACBV as determinedby the complementary pivot rule. Let (â1s; : : : ; â1n)T be the updated column of vs.Then âps <= 0, and the value of � increases or remains unchanged when vs enters thisACBV.Proof. We will �rst prove that âps <= 0. The �rst ACBV in this phase was (y1; : : : ;yp�1; �; yp+1; : : : ; yn) and the entering variable into it is tp. From the manner in whichthis phase was initiated, we know that the updated column of tp in the canonicaltableau of (5.7) with respect to y, (a1p; : : : ; anp), has its pth entry app = 0. Thusthe pth entry in the column of tp in Tableau 5.1 is also zero, and when tp enters theACBV in Tableau 5.1, no change occurs in its row p, which veri�es the statement ofthis theorem for the initial ACBV in this phase. We will now show that it holds in allsubsequent ACBVs obtained in this phase too.Let (�1; : : : ; �n) denote the ACBV just before the current ACBV (�1; : : : ; �p�1; �;�p+1; : : : ; �n). Suppose the statement of the theorem holds true in all steps of thisphase until the ACBV �. We will now prove that this implies that the statement ofthis theorem must also hold for the complementary pivot step of bringing vs into thisACBV (�1; : : : ; �p�1; �; �p+1; : : : ; �n).Let us denote the complement of vs. Since vs is the entering variable chosen bythe complementary pivot rule, us must have just dropped out of the basic vector �leading to the present basic vector (�1; : : : ; �p�1; �; �p+1; : : : ; �n). Let ur denote theentering variable into the ACBV � that replaced us from it. Suppose the pivot row forentering ur into � was row p0 (so, us must have been the p0th basic variable in �). Letthe updated entries in the canonical tableau of Tableau 5.1 with respect to the ACBV�, in rows p and p0 be as given below.Variable ! �1 : : : �p0 = us : : : �p = � �p+1 : : : �n ur vs : : :row p0 0 : : : 1 : : : 0 0 : : : 0 �1 �2 : : :row p 0 : : : 0 : : : 1 0 : : : 0 �3 �4 : : :



5.1. Parametric Convex Quadratic Programming 295� = (�1; : : : ; �n) is an ACBV with �p = �, and ur is the entering variable into it chosenby the complementary pivot rule. These facts imply that (�1; : : : ; �p�1; ur; �p+1; : : : ; �n)becomes a complementary basic vector when the variables are properly ordered. Itcannot be a basic vector unless �3 6= 0. So, �3 6= 0. Also since the statement of thetheorem holds for the ACBV �, we have �3 <= 0, so �3 < 0. Also, since ur is the enteringvariable into the ACBV � and row p0 is the pivot row for this pivot step, we must have�1 > 0. The pivot step in the column of ur with �1 as the pivot element, transforms�4 into �4 � �3�2�1 , by de�nition this is âps, and we want to show that this is <= 0. Asmentioned earlier, (�1; : : : ; �p�1; ur; �p+1; : : : ; �n) is a permutation of a complementarybasic vector. So in the canonical tableau with respect to �, if we perform a pivotstep in the column of ur, with �3 as the pivot element (row p as the pivot row) andrearrange the rows and columns properly, we get the canonical tableau with respectto a complementary basic vector. This pivot step transforms the element �2 in thecolumn of vs into �2 � �4�1�3 , this will be the entry in the column of vs in row p0, whichis the row in which us is the basic variable. M is PSD, by the results of Chapter 3every PPT of a PSD matrix is PSD, and by the results in Chapter 1 every diagonalentry in a PSD matrix is >= 0, these facts imply that this element �2 � �4�1�3 <= 0. This,and �3 < 0, �1 > 0 established earlier imply that âps = �4 � �3�2�1 <= 0.In all the pivot steps in this phase, the pivot elements are > 0, and all the updatedright hand side constants with the possible exception of the pth, stay >= 0. These facts,and the fact that âps <= 0 imply that when vs enters the ACBV (�1; : : : ; �p�1; �; �p+1;: : : ; �n), the value of �, the pth basic variable, either increases or stays the same (butnever decreases).Thus if the statement of the theorem holds for the ACBV �, it must hold forthe ACBV (�1; : : : ; �p�1; �; �p+1; : : : ; �n) following it. We have already established thetheorem for the initial ACBV in this phase. Hence, by induction, the theorem holdsin all ACBVs obtained during this phase.So, the value of �, the pth basic variable in the ACBV, increases during this phase.From the arguments used in Chapter 2, it is clear that the adjacency path of ACBVsin this phase continues unambiguously, and no ACBV can reappear. Since there areonly a �nite number of ACBVs, these facts imply that this phase must terminate withthe special type of ray termination discussed here, after at most a �nite number ofsteps.We will now prove the claims made when ray termination occurs in this phase.Theorem 5.3 Let (�1; : : : ; �p�1; �; �p+1; : : : ; �n) be the terminal ACBV in thecomplementary pivot phase to increase �. Let � denote the entering variable into thisACBV chosen by the complementary pivot rule, and let (a�1; : : : ; a�n)T be the updatedcolumn of � with respect to this ACBV. Let q� = (q�1 ; : : : ; q�n)T be the updated righthand side constants vector with respect to this terminal ACBV in this phase. If a�p = 0,the original parametric LCP has no solution when � > q�p .



296 Chapter 5. The Parametric Linear Complementarity ProblemProof. Let the complement of � be u0. By the arguments used earlier, (�1; : : : ; �p�1;u0; �p+1; : : : ; �n) must be a permutation of a complementary basic vector. So, perform-ing a pivot step in the canonical tableau with respect to the ACBV (�1; : : : ; �p�1; �;�p+1; : : : ; �n) with u0 as the entering variable and row p as the pivot row, leads to acanonical tableau with respect to a complementary basic vector, with some rows andcolumns rearranged. Since a�p = 0, this pivot step would not alter the column vectorof �, and hence it remains as (a�1; : : : ; a�n)T <= 0 with a�p = 0. M is PSD, and everyPPT of a PSD matrix is PSD. These facts together with Result 1.6 imply that theupdated row corresponding to u0 in the canonical tableau (5.7) with respect to thecomplementary basic vector which is a permutation of (�1; : : : ; �p�1; u0; �p+1; : : : ; �n),has all nonnegative entries on the left hand side. When � > q�p , the updated righthand side constant in this row will be < 0. This implies that the system (5.7) cannothave a nonnegative solution when � > q�p , that is, that the original parametric LCPhas no solution when � > q�p .
5.2 Exercises5.3 Let M , q, q�, a be given matrices of orders n�n, n� 1, n� 1, n� 1 respectively.Assume that M is a P -matrix. Let (w(�); z(�)) be the solution of the parametric LCP(q + �q�;M) as a function of �. Let � = maximum f� : z(�) <= ag. Also, let �̂ =maximum f� : z(�) <= a, for all � satisfying 0 <= � <= �g. Discuss an e�cient algorithmfor �nd �, given M , q, q�, a. Also, derive necessary and su�cient conditions on thisdata for �̂ = � to hold. (I. Kaneko [5.9] and O. De Donato and G. Maier [1.4]).5.4 Let M = 8>>>>>: 2 1 �1�1 3 00 1 49>>>>>; ; q(�) = 8>>>>>: 1 � �2 + �3 �2�9>>>>>; :Solve the parametric LCP (q(�);M) for all real values of �.5.5 Let q = (�1;�2;�3)T and M be the matrix given in Exercise 5.4. Solve the LCP(q;M) by Principal Pivoting Method I.5.6 Prove that the value of z0 (arti�cial variable) is strictly monotone decreasing inthe complementary pivot method when applied on the LCP (q;M) associated with aP -matrix.Prove that the same thing is true when the LCP (q;M) is one corresponding toan LP.



5.2. Exercises 297Is it also true when the LCP is one corresponding to a convex quadratic programin which the matrix D is PSD and not PD?5.7 Consider the following problemminimize z(x) = cx+ �q(1=2)(xTDx)subject to Ax >= bx >= 0where D is a square symmetric PD matrix of order n, � > 0, A is an m � n matrixand b 2 Rm. Let K denote the set of feasible solutions of this problem.i) Show that z(x) is a convex function which is a homogeneous function of degree1.ii) If � < p2cD�1cT , prove that every optimum solution of this problem mustbe a boundary point of K.iii) If 0 62 K and if the problem has an optimum solution, prove that there existsa boundary point of K which is an optimum solution of the problem.iv) Develop an e�cient procedure for solving this problem.v) Solve the problem minimize � x1 � x2 +q(x21 + x22)=2subject to � x1 � 3x2 >= �14�x1 + x2 >= �2x1; x2 >= 0using the method developed in (iv). (C. Sodini [5.15]).5.8 Consider the following problemminimize f(x) = (c0 + cx+ (1=2)xTDx)=(d0 + dx)psubject to Ax >= bx >= 0where D is a square symmetric PD matrix of order n, p is 1 or 2 and d0 + dx > 0over x 2 K = fx : Ax >= b; x >= 0g. Develop an approach for solving this problem.(S. Schaible [5.14]; A. Cambini, L. Martein and C. Sodini [5.4]).5.9 Consider the following problemminimize Q�(x) = cx+ �2 xTDxsubject to Ax >= bx >= 0



298 Chapter 5. The Parametric Linear Complementarity Problemwhere D is a PSD matrix of order n, and � is a nonnegative parameter. It is requiredto solve this problem for all � >= 0. Formulate this problem as a parametric LCP ofthe form (q + �q�;M), � >= 0, and discuss how to solve it.Note 5.1 This problem arises in the study of portfolio models. The linear function(�cx) may represent the expected yield, and the quadratic term 12xTDx may be thevariance of the yield (the variance measures the extent of random 
uctuation in theactual yield from the expected). Q�(x) is a positive weighted combination of the twoobjectives which are to be minimized in this model.5.10 If q is nondegenerate in the LCP (q;M) (i. e., if every solution (w; z) to thesystem of equations, w �Mz = q, makes at least n variables nonzero), prove that thenumber of solutions of the LCP (q;M) is �nite.5.11 Let C1 be the set of solutions ofw �Mz = qw; z >= 0wjzj = 0; j = 2 to n:Prove that C1 is the union of disjoint paths in Rn.5.12 Consider the LCP (q;M). De�ne S(q) = f(w; z) : (w; z) is a solution of the LCP(q;M)g. Prove that if there exists a q 2 Rn such that S(q) is a nonempty unboundedset, then S(0) contains a nonzero point, that is, the LCP (0;M) has a nonzero solution.5.3 References5.1 R. Benveniste, \One Way to Solve the Parametric Quadratic Programming Prob-lem", Mathematical Programming, 16 (1979) 63{80.5.2 M. J. Best, \An Algorithm for the Solution of the Parametric Quadratic Pro-gramming Problem", CORR Report 82-24, Faculty of Mathematics, Universityof Waterloo, July 1982.5.3 J. C. G. Boot, \On Sensitivity Analysis in Convex Quadratic ProgrammingProblems", Operations Research, 11 (1963) 771{786.5.4 A. Cambini, L. Martein and C. Sodini, \An Algorithm for two particular non-linear fractional programs", Technical Report, Dipartimento di Matematica,Universita di Pisa, Italy, 1983.5.5 R. W. Cottle, \Monotone Solutions of the Parametric Linear ComplementaryProblem", Mathematical Programming, 3 (1972) 210{224.
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Chapter 6
COMPUTATIONAL COMPLEXITY OFCOMPLEMENTARY PIVOT METHODS

In this Chapter, we discuss the worst case behavior of the computational growthrequirements of the complementary and principal pivot methods for solving LCPs, asa function of n, the order, and the size of the LCP. These results are from K. G. Murty[6.5]. We construct a class of LCPs with integer data, one of order n for each n >= 2,and prove that the pivotal methods discussed in Chapters 2, 4, and 5 require 2n� 1 or2n pivot steps to solve the problem of order n in the class. The size of the nth problemin this class, de�ned to be the total number of bits of storage needed to store all thedata in the problem in binary form is <= 4n2 + 3n. These results establish that in theworst case, the computational growth requirements of complementary pivot methodsare not bounded above by any polynomial in the order or size of the LCP.To study the worst case computational complexity of complementary pivot meth-ods, we look at the following question: What is the maximum number of complemen-tary cones through which a straight line in Rn can cut across? For a problem of ordern, the answer turns out to be 2n, that is, there may exist straight lines which cut acrossthe interiors of every one of the 2n complementary cones.Let fM(n) = (emij) be the lower triangular matrix of order n, de�ned by emij = 1for i = 1 to n, emij = 0 for all j > i, and emij = 2 for all j < i. See (1.15), page19. Since fM(n) is lower triangular, all principal subdeterminants of fM(n) are equalto 1, and hence fM(n) is a P -matrix. Since fM(n) + (fM(n))T is a matrix all of whoseentries are 2, it is singular, and clearly it is a PSD matrix. Hence fM(n) is a P -matrix,PSD matrix (and hence a copositive plus matrix), but not a PD matrix. Let en be thecolumn vector in Rn all of whose entries are equal to 1. Let:



Chapter 6. Computational Complexity of Complementary Pivot Methods 301~q(n) =(2n; 2n�1; : : : ; 2)Tq̂(n) =(�2n;�2n � 2n�1;�2n � 2n�1 � 2n�2; : : : ;� 2n � 2n�1 � : : :� 22 � 2)Ta(s) =2s � 1; for any s >= 2L(n) =fx : x = ~q(n) + 
(�en) : 
 a real parameterg (6:1)
Theorem 6.1 . The straight line L(n) cuts across the interior of every one of the 2ncomplementary cones in the class C(fM(n)) for any n >= 2.Proof. Consider the class of parametric LCPs (~q(n)+
(�en);fM(n)) for n >= 2, where
 is a real valued parameter. Consider the case n = 2 �rst. The following can be veri�edin this case : Tableau 6.1Complementary Cone Portions of L(2) correspondingcorresponding to the to values of the Parametr 
Complementary Basic Vector which lie in this Complementary Cone(w1; w2) 2 = 
(w1; z2) 2 <= 
 <= 4(z1; z2) 4 <= 
 <= 6(z1; w2) 6 <= 
Also whenever 
 is an interior point of one of these intervals, all the basic variables arestrictly positive in the complementary BFS of (~q(2) + 
(�en);fM(2)); and this impliesthat the point ~q(2) + 
(�en) corresponding to that value of 
 is in the interior ofthe corresponding complementary cone. Hence, the statement of this Theorem is truewhen n = 2. We now make an induction hypothesis.Induction Hypothesis: The theorem is true for the LCP of order n � 1 in theclass. Speci�cally, the complementary basic vectors for the parametric LCP (~q(n �1) + 
(�en);fM(n� 1)) can be ordered as a sequence v0; v1; : : : ; va(n�1), such that thecomplementary cone corresponding to the complementary basic vector vr contains theportion of the straight line L(n�1) corresponding to 
 <= 2 if r = 0; 2r <= 
 <= 2(r+1),if 1 <= r <= 2n�1 � 2; and 2n � 2 <= 
 if r = 2n�1 � 1. Also the straight line L(n� 1)cuts across the interior of each of these complementary cones.Now consider the parametric LCP of order n in the class, namely (~q(n)+ 
(�en);fM(n)), the original tableau for which is Tableau 6.2



302 Chapter 6. Computational Complexity of Complementary Pivot MethodsTableau 6.2w1 w2 : : : wn z1 z2 : : : zn1 0 : : : 0 �1 0 : : : 0 2n � 
0 1 : : : 0 �2 �1 : : : 0 2n�1 � 
:: :: :: :: :: :: ::0 1 : : : 1 �2 �2 : : : �1 2� 
The principal subproblem of this in the variables (w2; : : : ; wn), (z2; : : : ; zn), is the sameas the parametric LCP of order n�1 in the class we are discussing, with the exceptionthat the variables in it are called as w2; : : : ; wn; z2; : : : ; zn. By induction hypothesis,the complementary basic vectors of this principal subproblem can be ordered in asequence as v0; v1; : : : ; va(n�1), where v0 = (w2; : : : ; wn), v1 = (w2; : : : ; wn�1; zn), etc.such that the complementary cone for this principal subproblem, corresponding tothe complementary basic vector vr, contains the portion of the straight line L(n� 1)corresponding to 
 <= 2 if r = 0; 2r <= 
 <= 2(r + 1) if 1 <= r <= 2n�1 � 2, and 
 >=2n � 2 if r = 2n�1 � 1; and as long as 
 is in the interior of one of these intervals, thecorresponding point on L(n� 1) is in the interior of the corresponding complementarycone. Notice that in the original problem in Tableau 6.2, q1(
) = 2n � 
 remainsnonnegative for all 
 <= 2n and strictly positive for all 
 < 2n. This, together with theresult for the principal subproblem, implies that the complementary cone correspondingto the complementary basic vector Vr = (w1; vr) of the original problem (Tableau 6.2)contains the portion of the line L(n) corresponding to values of 
 satisfying 
 <= 2, ifr = 0; 2r <= 
 <= 2r + 2, if 1 <= r <= �1 + 2n�1 = a(n� 1). It also implies that in eachcase, the straight line L(n) cuts across the interior of these complementary cones.Now perform a single principal pivot step in Position 1 in the original problem inTableau 6.2. This leads to Tableau 6.3Tableau 6.3w1 w2 : : : wn z1 z2 : : : zn q�1 0 : : : 0 1 0 : : : 0 
 � 2n�2 1 : : : 0 0 �1 : : : 0 (�2n+1 + 
) + 2n�1�2 0 : : : 0 0 �2 : : : 0 (�2n+1 + 
) + 2n�2:: :: :: :: :: :: ::�2 0 : : : 1 0 �2 : : : �1 (�2n+1 + 
) + 2Let �� = �2n+1 + 
 and treat � as the new parameter. As 
 increases from 2n to2n+1 � 2, � decreases from 2n to 2. As a function of �, the vector of the right handside constants in Tableau 6.3 is (2n � �; 2n�1 � �; : : : ; 2� �)T .



6.1. Computational Complexity of the Parametric LCP Algorithm 303Now look at the principal subproblem of the parametric LCP in Tableau 6.3 inthe variables w2; : : : ; wn; z2; : : : ; zn. This principal subproblem considered with � asthe parameter can be veri�ed to be the same as the parametric LCP of order n � 1in the class we are discussing, with the exception that the variables in it are called asw2; : : : ; wn; z2; : : : ; zn, and the parameter is �.Using arguments similar to those as above on these problems, and translatingeverything to the original parameter 
 again, we conclude that the complementarycone corresponding to the complementary basic vector Vr = (z1; vb(r)) of the originalproblem, where b(r) = 2n � r � 1, contains the portion of the straight line L(n)corresponding to values of 
 satisfying 2r <= 
 <= 2r+2, if 2n�1 <= r <= 2n� 2; and 
 >=2n+1 � 2, if r = 2n � 1.Thus if v0; : : : ; va(n�1) is the ordered sequence of complementary basic vectorsfor the principal subproblem of the parametric LCP in Tableau 6.2 in the variablesw2; : : : ; wn; z2; : : : ; zn; let the ordered sequence of complementary basic vectors for theparametric LCP in Tableau 6.2 beV0 =(w1; v0); (w1; v1); : : : ; (w1; va(n�1));(z1; va(n�1)); (z1; va(n�1)�1); : : : ; (z1; v0) = Va(n): (6:2)Then the induction hypothesis implies the result that the complementary cone corre-sponding to the complementary basic vector Vr contains the portion of the straightline L(n) corresponding to 
 <= 2, if r = 0; 2r <= 
 <= 2r + 2, if 1 <= r <= 2n � 2; 
 >=2n+1 � 2, if r = 2n � 1. Also in each case, the straight line cuts across the interiorof the complementary cone. Hence the induction hypothesis implies that the state-ment of Theorem 6.1 also holds for the parametric LCP of order n in the class we arediscussing. The statement of Theorem 6.1 has already been veri�ed to be true fromn = 2. Hence it is true for all n >= 2.
6.1 Computational Complexity of theParametric LCP AlgorithmTheorem 6.2 Consider the class of parametric LCPs (~q(n) + 
(�en);fM(N)), forn >= 2. The parametric LCP algorithm discussed in Chapter 5 requires 2n pivot stepsto solve the nth problem in the class for all real values of the parameter 
.Proof. Let V0; V1; : : : ; Va(n) be the sequence of complementary basic vectors for theparametric LCP of order n in this class obtained in the proof of Theorem 6.1. From theproof of Theorem 6.1, we conlcude that the complementary basic vector Vr is feasibleto the parametric LCP (~q(n) + 
(�en);fM(n)) in the interval 
 <= 2 if r = 0; 2r <= 
 <=2r+2, if 1 <= r <= 2n�2; 
 >= 2n+1�2, if r = 2n�1. Hence, when the parametric LCP



304 Chapter 6. Computational Complexity of Complementary Pivot Methodsalgorithm is applied to solve (~q(n) + 
(�en);fM(n)) for all values of the parameter 
,it terminates only after going through all the complementary basic vectors, V0; V1; : : : ;Va(n); and thus requires a(n) + 1 = 2n pivot steps.Example 6.1See Example 5.1 in Chapter 5. There the parametric LCP (~q(3) + 
(�e3);fM(3)) issolved for all values of the parameter 
 (there the parameter is denoted by � intead 
)using the parametric LCP algorithm and verify that it took 23 = 8 pivot steps in all.
6.2 Geometric Interpretation of a Pivot Step in theComplementary Pivot MethodLet M be a given square matrix of order n, and q a column vector in Rn. Consider theLCP (q;M). The original tableau for solving it by the complementary pivot methodis (2.3) of Section 2.2.1.Let (y1; : : : ; yr�1; yr+1; : : : ; yn; z0) be a basic vector obtained in the process ofsolving this LCP by the complementary pivot method where yj 2 fwj ; zjg for all j.Let A.j denote the column vector associated with yj in (2.3) for each j. If �q = (�q1; : : : ;�qn)T is the update right hand constants vector in the canonical tableau of (2.3) withrespect to the basic vector (y1; : : : ; yr�1; yr+1; : : : ; yn; z0), then �q >= 0 (since this basicvector must be a feasible basic vector) and we haveq = A.1�q1 + : : :+ A.r�1�qr�1 +A.r+1�qr + : : :+A.n�qn�1 + (�en)�qn (6:3)�qn is the value of z0 in the present BFS. If �qn = 0, the present BFS is a complementaryfeasible solution and the method would terminate. So assume �qn > 0 and denote itby the symbol ~z0. Then (6.3) implies that q + ~z0en 2 PosfA.1; : : : ; A.r�1; A.r+1; : : : ;A.ng. The present left out complementary pair is (wr; zr), and one of the variablesfrom this pair will be choosen as the entering variable at this stage, let us denote itby yr 2 fwr; zrg and let A.r denote the column vector associated with yr in (2.3).If yr replaces z0 from the basic vector in theis step, we get a complementary feasiblebasic vector at the end of this pivot step, and the method terminates. Suppose thedropping variable is not z0, but some yi for i 2 f1; : : : ; r� 1; r+ 1; : : : ; ng. Let ẑ0 > 0be the value of z0 in the new BFS obtained after this pivot step. Then using the samearguments as before we conclude that q + ẑ0en 2 PosfA.1; : : : ; A.i�1; A.i+1; : : : ; A.ng.Under these conditions, clearly (y1; : : : ; yn) is itself a complementary basic vector,and letK = Pos(A.1; : : : ; A.n) be the complementary cone associated with it. The nete�ect in this pivot step is therefore that of moving from the point q + ~z0en contained



6.2. Geometric Interpretation of a Pivot Step 305on the facet PosfA.1; : : : ; A.r�1; A.r+1; : : : ; A.ng of K to the point q + ẑ0en on thefacet PosfA.1; : : : ; A.i�1; A.i+1; : : : ; A.ng of K, along the half-line fx : x = q + �en;� a nonnegative real numberg. See Figure 6.1. The complementary pivot methodcontinues in this manner walking along the half-line fx : x = q + �en; � >= 0g cuttingacross di�erent complementary cones, until at some stage it enters a complementarycone containing the point q on this half-line.We will now use this geometric interpretation, to establish the computationalcomplexity of the complementary pivot method in the worst case.
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A 1 , . . . , ,A i -1Pos{
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A r-1Pos{A 1 , . . . , ,
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~Point              on the facet
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A A ri

Figure 6.1 Geometric interpretation of a pivot step in the complementarypivot method as a walk from one facet of a complementary cone to another facetof the same cone along the half-line fx : x = q+ �en; � >= 0g as � varies from ~z0to ẑ0.



306 Chapter 6. Computational Complexity of Complementary Pivot Methods6.3 Computational Complexity of theComplementary Pivot MethodTheorem 6.3 For any n >= 2, the complementary pivot method requires 2n pivotsteps before termination when applied on the LCP (q̂(n);fM(n)).Proof. Notice that ~q(n) + 
(�en) = q̂(n) + �en where � = 2n+1 � 
. Hence thestraight line fx : x+ q̂(n) + �en; � a real numberg is the same as the line L(n) de�nedin equation (6.1) but in the reverse direction.The original tableau for applying the complementary pivot method to solve theLCP (q̂(n);M(n)) is shown in Tableau 6.4.Tableau 6.4w1 w2 : : : wn z1 z2 : : : zn z0 q1 0 : : : 0 �1 0 : : : 0 �1 �2n0 1 : : : 0 �2 �1 : : : 0 �1 �2n � 2n�1:: :: :: :: :: :: :: ::0 0 : : : 1 �2 �2 : : : �1 �1 �2n � 2n�1 � : : :� 2The initial basic vector obtained in the complementary pivot method is (w1; : : : ; wn�1;z0) and in the solution corresponding to this basic vector, the value of z0 is 2n +2n�1 + : : :+ 2 = 2n+1 � 2. The entering variable into the basic vector at this initialstage is zn.Let V0; : : : ; Va(n) be the ordering of the complementary basic vectors for this prob-lem, obtained in the proof of Theorem 6.1. V0 = (w1; : : : ; wn), V1 = (w1; : : : ; wn�1;zn), etc. Let Kr be the complementary cone corresponding to the complementary ba-sic vector Vr for the LCP (q̂(n);fM(n)). Using the geometric interpretation discussedabove, the e�ect of the initial pivot step of bringing zn into the basic vector (w1; : : : ;wn�1; z0) can be interpreted as a walk through the complementary cone K1, beginningwith the point q̂(n)+ �1en (where �1 = 2n+1� 2) on the facet of K1 corresponding tothe Pos cone of the columns of w1; : : : ; wn�2; wn�1 in Tableau 6.4, to the point q̂(n) +�2en (where �2 = 2n+1 � 4) on the facet of K1 corresponding to the Pos cone of thecolumns of w1; : : : ; wn�2; zn in Tableau 6.4 along the half-line fx : x = q̂(n) + �en;� >= 0g. Here �1, �2 are the values of z0 in the basic solution of Tableau 6.4 correspond-ing to the basic vectors (w1; : : : ; wn�1; z0) and (w1; : : : ; wn�2; zn; z0) respectively. Thusthe initial pivot step of introducing zn into the basic vector (w1; : : : ; wn�1; z0) can beinterpreted as the walk across the complementary cone K1, starting at the value � =�1 to the value � = �2 along the half-line fx : x = q̂(n)+�en; � >= 0g. Similarly the rthpivot step performed during the complementary pivot method applied on this problem,can be interpreted as the walk through the complementary cone Kr along the half-line



6.4. Computational Complexity of Principal Pivoting Method I 307fx : x = q̂(n) + �en; � >= 0g, for r >= 2. Since the straight line fx : x = q̂(n) + �en;� a real numberg is the same as the line L(n) de�ned in equation (6.1), from the re-sults in the proof of Theorem 6.1 and the geometric interpretation of the pivot steps inthe complementary pivot method discussed above, we reach the following conclusions:the complementary pivot method starts with a value for z0 of 2n+1 � 2 in the initialstep. All pivot steps are nondegenerate and the value of z0 decreases by 2 in everypivot step. Hence the method terminates when the value of z0 becomes zero after the(2n�1)th pivot step. This last pivot step in the method corresponds to a walk into thecomplementary cone Ka(n) associated with the complementary basic vector Va(n) =(z1; w2; : : : ; wn) along the half-line fx : x = q̂(n) + �en; � >= 0g. Hence the terminalbasic vector obtained in the complementary pivot method applied on this problem willbe (z1; w2; : : : ; wn) and it can be veri�ed that the solution of the LCP (q̂(n);fM(n))is (w = (0; 2n�1; : : : ; 2), z = (2n; 0; : : : ; 0)). Therefore counting the �rst pivot step inwhich the canonical tableau with respect to the initial basic vector (w1; : : : ; wn�1; z0)is obtained, the complementary pivot method requires 2n pivot steps for solving theLCP (q̂(n);fM(n)), for any n >= 2.Example 6.2See Example 2.10 in Section 2.2.7 where the LCP (q̂(3);fM(3)) of order 3 is solved bythe complementary pivot method and verify that it required 23 = 8 pivot steps beforetermination.
6.4 Computational Complexity ofPrincipal Pivoting Method ITheorem 6.4 Principal pivoting Method I requires 2n� 1 pivot steps before termi-nation, when applied on the LCP (�en;fM(n)), for any n >= 2.Proof. Proof is by induction on n. The original tableau for this problem is shown inTableau 6.5 Tableau 6.5w1 w2 : : : wn z1 z2 : : : zn q1 0 : : : 0 �1 0 : : : 0 �10 1 : : : 0 �2 �1 : : : 0 �1:: :: :: :: :: :: ::0 0 : : : 1 �2 �2 : : : �1 �1



308 Chapter 6. Computational Complexity of Complementary Pivot MethodsIt can be veri�ed that (z1; w2; : : : ; wn) is a complementary feasible basis for Tableau6.5 and the solution of this LCP is (w1; : : : ; wn) = (0; 1; : : : ; 1), (z1; : : : ; zn) = (1; 0; : : : ;0). In Example 4.1 of Section 4.1 the LCP (�e3;fM(3)) was solved by Principal Piv-oting Method I, and it required 23 � 1 = 7 pivot steps, thus verifying the theorem forn = 3. The theorem can also be veri�ed to be true when n = 2. We now set up aninduction hypothesis.Induction Hypothesis: When applied on the LCP (�en�1;fM(n�1)), the PrincipalPivoting Method I requires 2n�1 � 1 pivot steps before termination.We will now prove that the induction hypothesis implies that the Principal Pivot-ing Method I requires 2n � 1 pivot steps before termination when apllied on the LCP(�en;fM(n)) of order n.When it is applied on the LCP in Tableau 6.5 the initial basic vector in PrincipalPivoting Method I is (w1; : : : ; wn). The entering variable into this initial complemen-tary basic vector is zn. Since fM(n) is a P -matrix, by the results in Section 4.1, themethod terminates when all the updated right hand side constants become nonnega-tive.By the pivot row choice rule used in Principal Pivoting Method I, the questionof using Row 1 in Tableau 6.5 as the pivot row does not arise until a complementarybasic vector satisfying the property that the entries in Rows 2 to n of the updatedright hand side constant vectors corresponding to it are all nonnegative, is reached.So until such a complementary basic vector is reached, the pivot steps choosen areexactly those that will be choosen in solving the principal subproblem of Tableau 6.5in the variables (w2; : : : ; wn); (z2; : : : ; zn). This principal subproblem is actually theLCP (�en�1;fM(n� 1)) of order n� 1, with the exception that the variables in it arecalled (w2; : : : ; wn); (z2; : : : ; zn). By the induction hypothesis, to solve this principalsubproblem, Principal Pivoting Method I takes 2n�1 � 1 pivot steps. By the resultsdiscussed above (z2; w3; : : : ; wn) is the unique complementary feasible basic vector forthis principal subproblem.Hence when Principal Pivoting Method I is applied on Tableau 6.5, after 2n�1 �1 pivot steps it reaches the complementary basic vector (w1; z2; ; w3; : : : ; wn). Thecanonical tableau of Tableau 6.5 corresponding to the complementary basic vector(w1; z2; w3; : : : ; wn) is given in Tableau 6.6.



6.4. Computational Complexity of Principal Pivoting Method I 309Tableau 6.6 Canonical Tableau after 2n�1 � 1 Pivot Steps are carried out,beginning with Tableau 6.5 in Principal Pivoting Method I.Basic w1 w2 w3 : : : wn z1 z2 z3 : : : zn qVariablew1 1 0 0 : : : 0 �1 0 0 : : : 0 �1z2 0 �1 0 : : : 0 2 1 0 : : : 0 1w3 0 �2 1 : : : 0 2 0 �1 : : : 0 1:: :: :: :: :: :: :: :: :: ::wn 0 �2 0 : : : 1 2 0 �2 : : : �1 1Since the update right hand side constant in Row 1 is �1 < 0, the method nowcontinues by making a single principal pivot step in position 1 in Tableau 6.6 (thisreplaces w1 in the basic vector by z1). The pivot element is inside a box. This leadsto the canonical tableau in Tableau 6.7.Tableau 6.7 Canonical Tableau after 2n�1 Pivot Steps are Carried Out, begin-ning with Tableau 6.5 in Principal Pivoting Method I.Basic w1 w2 w3 : : : wn z1 z2 z3 : : : zn qVariablez1 �1 0 0 : : : 0 1 0 0 : : : 0 1z2 2 �1 0 : : : 0 0 1 0 : : : 0 �1w3 2 �2 1 : : : 0 0 0 �1 : : : 0 �1:: :: :: :: :: :: :: :: :: ::wn 2 �2 0 : : : 1 0 0 �2 : : : �1 �1Since some of the updated right hand side constants in Tableau 6.7 are still negative,the method continues. By the arguments mentioned above, when Principal PivotingMethod I is continued from Tableau 6.7, z1 remains the basic variable in the �rst rowuntil another complementary basic vector satisfying the property that the entries inRows 2 to n in the updated right hand side constants vector corresponding to it areall nonnegative, is again reached. It can be veri�ed that the principal subproblemobtained by eliminating Row 1 and the columns corresponding to the complementarypair of variables w1, z1 in Tableau 6.7 and interchanging the columns of the variablesw2 and z2; is exactly the LCP (�en�1;fM(n�1)) with the exception that the variablesin it are called (z2; w3; : : : ; wn); (w2; ; z3; : : : ; zn). When Principal Pivoting Method I iscontinued from Tableau 6.7 the pivot steps obtained are exactly those that occur when



310 Chapter 6. Computational Complexity of Complementary Pivot Methodsthis principal subproblem is solved by Principal Pivoting Method I, until this principalsubproblem is solved. Since this principal subproblem is the LCP (�en�1;fM(n�1)), bythe induction hypothesis, this leads to an additional 2n�1�1 pivot steps from Tableau6.7. Since the variables in this principal subproblem are (z2; w3; : : : ; wn), (w2; z3; : : : ;zn), in that order, by the results mentioned earlier, (w2; w3; : : : ; wn) is the uniquecomplementary feasible basic vector for this principal subproblem. So after continuingfor an additional 2n�1 � 1 pivot steps from Tableau 6.7, Principal Pivoting MethodI reaches the complementary basic vector (z1; w2; w3; : : : ; wn), which was veri�ed tobe a complementary feasible basic vector for the LCP in Tableau 6.5 and then themethod terminates. So it took 2n�1 pivot steps to reach Tableau 6.7 and an additional2n�1�1 pivot steps afterwards, before termination. Thus it requires a total of 2n�1+2n�1 � 1 = 2n � 1 pivot steps before termination, when applied on the LCP of ordern in Tableau 6.5. Thus under the induction hypothesis, the statement of the theoremalso holds for n. The statement of the theorem has already been veri�ed for n = 2; 3.Hence, by induction, Theorem 6.4 is true for all n >= 2.Exercise6.1 Prove that the sequence of complementary basic vectors obtained when PrincipalPivoting Method I is applied on the LCP in Tableau 6.5 is exactly the sequence V0; V1;: : : ; Va(n), obtained in the proof of Theorem 6.1. (Hint: Use an inductive argument asin the proof of Theorem 6.4).So far, we have discussed the worst case computational complexity of comple-mentary and principal pivot methods, which can handle a large class of LCPs. Theseresults may not apply to other special algorithms for solving LCPs (q;M), in whichthe matrix M has special structure. An example of these is the algorithm of R. Chan-drasekaran which can solve the LCP (q;M) when M is a Z-matrix (a square matrixM = (mij) is said to be a Z-matrix if mij <= 0 for all i 6= j) discussed in Section 8.1.This special algorithm for this special class of LCPs has been proved to terminate inat most n pivot steps.The matrix fM(n) used in the examples contructed above is lower triangular, it isa P -matrix, a nonnegative matrix, it is copositive plus and also PSD. So it has all thenice properties of matrices studied in LCP literature. In spite of it, complementarypivot methods take 2n�1 or 2n pivot steps to solve the LCP of order n in the examplesconstructed above, all of which are associated with the matrix fM(n).We have shown that the computational requirements of the well known comple-mentary and principal pivot methods exhibit an exponential growth rate in terms ofthe order of the LCP. Our analysis applies only to the worst case behavior of the meth-ods on specially constructed simple problems. The performance of the algorithms onaverage practical problems using practical data may be quite di�erent. The analysis



6.5. Exercises 311here is similar to the analysis of the worst case computational requirements of thesimplex method for solving linear programs in Chapter 14 of [2.26].The class of LCPs (q;M) where M is a PD and symmetric matrix is of particularinterest because of the special structure of these problems, and also because theyappear in many practical applications. It turns out that even when restricted to thisspecial class of LCPs, the worst case computational requirements of complementarypivot methods exhibit an exponential growth rate in terms of the order of the LCP.See reference [6.3] of Y. Fathi and Exercises 6.2 to 6.5.As mentioned in Section 2.8 the exponential growth of the worst case computa-tional complexity as a function of the size of the problem does not imply that thesealgorithms are not useful for solving large scale practical problems. The exponentialgrowth has been mathematically established on specially constructed problems witha certain pathological structure. This pathological structure does not seem to appearoften in practical applications. As discussed in Section 2.8 and in Reference [2.36],the probabilistic average (or expected) computational complexity of some versions ofthe complementary pivot algorithm grows at most quadratically with n. Empiricalcomputational tests seem to indicate that the number of pivot steps needed by thesealgorithms before termination grows linearly with n on an average.6.5 Exercises6.2 For n >= 2, let M(n) = �fM(n)��fM(n)�T .
M(n) = 8>>>>>>>>>>>>>>>>:

1 2 2 : : : 2 22 5 6 : : : 6 62 6 9 : : : :: :::: :: :: :: ::2 6 :: : : : 1 + 4(n� 2) 2 + 4(n� 2)2 6 :: : : : 2 + 4(n� 2) 1 + 4(n� 1)
9>>>>>>>>>>>>>>>>;Prove that M(n) is PD and symmetric. Solve the LCP (�e3;M(3)) by PrincipalPivoting Method I and verify that it takes 23 � 1 = 7 pivot steps before termination.Solve The LCP ((�4;�7)T ;M(2)) by the complementary pivot method and verifythat it takes 22 = 4 pivot steps before termination. Solve the parametric LCP ((4 �
; 1� 
)T ;M(2)) by the parametric LCP algorithm and verify that it produces all the22 = 4 complementary basic vectors of this problem before solving the problem for allthe values of the parameter 
.(Y. Fathi [6.3])6.3 Prove that Principal Pivoting Method I requires 2n � 1 steps before terminationwhen applied on the LCP (�en;M(n)), for any n >= 2.(Y. Fathi [6.3])



312 Chapter 6. Computational Complexity of Complementary Pivot Methods6.4 Prove that there exists a column vector q(n) 2 Rn (actually an uncountable num-ber of such q(n)s exist) such that the straight line fx : x = q(n)�
en; 
 a real numbergcuts across the interior of every one of the 2n complementary cones in the class C(M(n))for any n >= 2.(Y. Fathi [6.3])6.5 Prove that the parametric algorithm obtains all the 2n complementary basic vectorsbefore termination, when applied to solve the LCP (q(n)�
en;M(n)) for all 
 for anyn >= 2, where q(n) is the column vector in Rn constructed in Exercise 6.4.(Y. Fathi [6.3])6.6 Prove that the complementary pivot method requires 2n pivot steps before termi-nation when applied on the LCP (q(n);M(n)), for n >= 2, where q(n) is the columnvector in Rn constructed in Exercise 6.4.(Y. Fathi [6.3])6.7 Construct a class of LCPs with integer data, containing one problem of order nfor each n >= 2, each associated with a PD matrix, such that the number of pivot stepsrequired by Graves' principal pivoting method (Section 4.2) to solve the nth problemin this class is an exponentially growing function of n.6.8 Let q(n) = (2n + 2; 2n + 4; : : : ; 2n + 2j; : : : ; 2n + 2n�1;�2n)T and
M(n) = 8>>>>>>>>>>>>>>>>>>>>>>>>:

1 2 2 : : : 2 �20 1 2 : : : 2 �2:: 0 1 : : : 2 �2:: :: 0 : : : :: :::: :: 0 : : : :: :::: :: :: :: ::0 0 0 : : : 1 �20 0 0 : : : 0 1
9>>>>>>>>>>>>>>>>>>>>>>>>;Prove that the Dantzig-Cottle principal pivoting method of Section 4.3 requires 2n�1steps to solve the LCP (q(n);M(n)).(A. Gana [6.4])6.9 Show that the variable dimension algorithm of Secton 2.6 requires 2n � 1 steps tosolve the LCP �~q(n); (fM(n))T �.(A. Gana [6.4])



6.6. References 3136.10 De�ne the matrix M = (mij) of order n� n by the followingmii = 1 for all i = 1 to nmij = 2 if j > i and i+ j is odd= �1 if j > i and i+ j is even= �1 if j < i and i+ j is odd= 2 if j < i and i+ j is even.For example, the matrix M de�ned above, is the following for n = 4M = 8>>>>>>>>: 1 2 �1 2�1 1 2 �12 �1 1 2�1 2 �1 19>>>>>>>>; :Show that M is a P -matrix and a PSD matrix.Let e be the column vector of all 1s in Rn. Consider the LCP (�e;M), where Mis the matrix de�ned above. Show that the complementary feasible basic vector forthis problem is (w1; z2; : : : ; zn) if n is even(z1; z2; : : : ; zn) if n is odd.Study the computational complexity of the various algorithms for solving LCPs dis-cussed so far, on the LCP (�e;M), where M is the matrix de�ned above.(R. Chandrasekaran, J. S. Pang and R. Stone)
6.6 References6.1 J. R. Birge and A. Gana, \Computational Complexity of Van der Heyden's Vari-able Dimension Algorithm and Dantzig-Cottle's Principal Pivoting Method forSolving LCPs", Mathematical Programming, 26 (1983) 316{325.6.2 R. W. Cottle, \Observations on a Class of Nasty Linear Complementary Prob-lems", Discrete Applied Mathematics, 2 (1980) 89{111.6.3 Y. Fathi, \Computational Complexity of LCPs Associated with Positive De�niteSymmetric Matrices", Mathematical Programming, 17 (1979) 335{344.6.4 A. Gana, \Studies in the Complementary Problem", Ph.D. Dissertation, Depart-ment of Industrial and Operations Engineering, University of Michigan, AnnArbor, Michigan (1982).6.5 K. G. Murty, \Computational Complexity of Complementary Pivot Methods",Mathematical Programming Study 7, (1978) 61{73.



Chapter 7
NEAREST POINT PROBLEMS ONSIMPLICIAL CONES

Let ��� = fB.1; : : : ; B.ng be a given linearly independent set of column vectors in Rn,and let b 2 Rn be another given column vector. Let B = (B.1 :: : : : :: B.n). For x 2Pos(���), � = B�1x >= 0, is known as the combination vector corresponding to x.We consider the problem of �nding the nearest point (in terms of the usual Euclideandistance) in the simplicial cone Pos(���) to b. This problem will be denoted by thesymbol [���; b] or [B; b], and will be called a nearest point problem of order n. Theoptimum solution of this problem is unique, and if b 62 Pos(���) the solution lies on theboundary of Pos(���). If this point is x�, then �� = B�1x� is known as the optimumcombination vector for [���; b]. This problem is equivalent to the quadratic program:Minimize (b � B�)T (b � B�) over � = (�1; : : : ; �n)T >= 0. This is the quadraticprogram: Minimize �bTB� + 12�T (BTB)�, subject to � = (�1; : : : ; �n)T >= 0. Thesolution of this can be obtained by solving the following LCP :u� (BTB)� = �BT bu >= 0; � >= 0uT� = 0where u = (u1; : : : ; un)T is a column vector of variables in Rn. Let D = BTB. Since Bis nonsingular, D is positive de�nite. This LCP has a unique complementary solution,and if this solution is (u�; ��), then �� is the optimum solution for the quadraticprogram, and hence the optimum combination vector for the nearest point problem[B; b]. Also consider the following LCPw �Mz = qw >= 0; z >= 0wT z = 0 (7:1)



Chapter 7. Nearest Point Problems on Simplicial Cones 315where M is a positive de�nite symmetric matrix of order n. Let F be a nonsingularmatrix such that FTF = M (for example, the transpose of the Cholesky factor ofM). Now using earlier results, we conclude that if (w�; z�) is the unique solutionof (7.1), then z� is the optimum combination vector for the nearest point problem[F ;�(F�1)T q]. Conversely if z� is the optimum combination vector for the nearestpoint problem [F ;�(F�1)T q], then (w� = Mz�+ q; z�) is the unique solution of (7.1).This clearly establishes that corresponding to each nearest point problem, there is anequivalent LCP associated with a positive de�nite symmetric matrix and vice versa.This equivalence relationship between the two problems will be used here to developan algorithm for solving them. In the sequel (q;M) denotes the LCP (7.1) where M isa positive de�nite symmetric matrix of order n. B denotes a square matrix of order nsatisfying BTB = M (as mentioned earlier, B could be chosen as the Cholesky factorof M). If we are given the LCP (7.1) to solve, we will choose BT to be the Choleskyfactor of M , unless some other matrix satisfying BTB = M is available, and b =�(B�1)T q, and ���= fB.1; : : : ; B.ng. For solving either the nearest point problem [���; b]or the LCP (q;M), the algorithm discussed here based on the results in [3.51,7.2] ofK. G. Murty and Y. Fathi, operates on both of them (it carries out some geometricwork on the nearest point problem, and some algebraic work on the LCP).Example 7.1Letq = 8>>>>>: 14�11�7 9>>>>>; ; M = 8>>>>>: 3 �2 �1�2 2 1�1 1 19>>>>>; ; B = 8>>>>>: 1 0 01 �1 0�1 1 19>>>>>; ; b = 8>>>>>:�3�479>>>>>; :The LCP (q;M) is w1 w2 w3 z1 z2 z3 q1 0 0 �3 2 1 140 1 0 2 �2 �1 �110 0 1 1 �1 �1 �7wj ; zj >= 0; and wjzj = 0 for all jIt can be veri�ed that BTB = M and b = �(B�1)T q. So, the above LCP is equivalentto the problem of �nding the nearest point in Pos(B) to b.It can be veri�ed that the solution of the LCP (q;M) is (w1; w2; w3; z1; z2; z3) =(3; 0; 0; 0; 4; 3). This implies that the vector �� = (0; 4; 3)T is the optimum combinationvector for the nearest point problem [B; b]; that is, 4B.2 + 3B.3 = (0;�4; 7)T is thenearest point in Pos(B) to b. Conversely, given that �x = (0;�4; 7)T is the nearestpoint in Pos(B) to b, we get z� = B�1�x = (0; 4; 3)T , and w� = Mz� + q = (3; 0; 0)T ,and (w�; z�) is the solution of the LCP (q;M).



316 Chapter 7. Nearest Point Problems on Simplicial ConesSome ResultsLet S = fB.j1 ; : : : ; B.jrg ����. De�neI(S) = Index set of S = fj1; : : : ; jrgI(S) = f1; : : : ; ng n I(S)H(S) = 8<:y : y = Xj2I(S) 
jB.j ; 
j real number for all j 2 I(S)9=;B(S) = The n by r matrix whose columns are B.j1 ; : : : ; B.jrw(S) = (wj1 ; : : : ; wjr)Tz(S) = (zj1 ; : : : ; zjr)Tq(S) = (qj1 ; : : : ; qjr )TM(S) = B(S)TB(S); the principal submatrix of M corresponding to I(S) ;H(S) as de�ned above is the linear hull of S, it is the subspace of Rn spanned by thecolumn vectors in S. If S = ;, de�ne H(S) = Pos(S) = f0g. For any S ����, Pos(S)is a face of Pos(���). The problem of �nding the nearest point in Pos(S) to b (in termsof the usual Euclidean distance) will be denoted by [S; b]. If S 6= ;, the nearest pointin H(S) to b is denoted by b(S), and this point is known as the projection or theorthogonal projection of b in H(S).Theorem 7.1 Let S ���� and S 6= ;. Then b(S) = B(S)�B(S)TB(S)��1B(S)T b.Proof. Let S = fB.j1 ; : : : ; B.jrg and let 
 = (
1; : : : ; 
r)T . The problem of �ndingthe projection of b in H(S) is the unconstrained minimization problem: Minimize(b � B(S)
)T (b � B(S)
): 
 2 Rr, and the optimum solution of this unconstrainedminimization problem is 
 = �B(S)TB(S)��1(B(S))T b. Hence, b(S) = B(S)
 =B(S)�B(S)TB(S)��1(B(S))T b.Example 7.2Let B be the matrix de�ned in Example 7.1, and b the vector from the same example.So B = 8>>>>>: 1 0 01 �1 0�1 1 19>>>>>; ; b = 8>>>>>:�3�479>>>>>;Let S = fB.1; B.3g. So in this case I(S) = index set of S = f1; 3g. So H(S) is thesubspace f
1(1; 1;�1)T + 
2(0; 0; 1)T : 
1; 
2 real numbersg of R3. The matrix B(S)here is B(S) = 8>>>>>: 1 01 0�1 19>>>>>; ; M(S) = �B(S)�TB(S) = 8>: 3 �1�1 19>;



Chapter 7. Nearest Point Problems on Simplicial Cones 317The projection b(S) here can be veri�ed to be b(S) = B(S)8>>:�7272 9>>; = ��72 ;�72 ; 7�T .Since b(S) = B(�72 ; 0; 72)T , it is not in the cone Pos(B).Theorem 7.2 For S ����, the nearest point in Pos(S) to b is the same as the nearestpoint in Pos(S) to b(S).Proof. The case S = ; is trivially veri�ed to be true. So assume S 6= ;. For x 2 H(S)by Pythagoras theorem jjb� xjj2 = jjb� b(S)jj2 + jjb(S)� xjj2. Since Pos(S) � H(S),this equality obviously holds for all x 2 Pos(S). Hence the theorem follows.Theorem 7.3 Let S ����, S 6= ;. The optimum solution of [S; b] is in the relativeinterior of Pos(S) if and only if b(S) is in the relative interior of Pos(S).Proof. b(S) is in the relative interior of Pos(S) if and only if b(S) = B(S)
, where
 > 0. As long as b(S) 2 Pos(S), b(S) is the optimum solution of [S; b], and hencein this case the statement of the theorem is true. If b(S) 62 Pos(S), by Theorem 7.2,the optimum solutions of [S; b] and [S; b(S)] are the same. [S; b(S)] is the nearest pointproblem in the subspace H(S), whose order is the same as the dimension of H(S), andhence in this case the optimum solution of [S; b(S)] lies on the relative boundary ofPos(S).De�nition | Projection FaceLet S ����. Pos(S) is a face of Pos(���) of dimension jSj. Pos(S) is said to be aProjectionface of Pos(���), if b(S) 2 Pos(S).Example 7.3Let B, b be as in in Example 7.2. As computed there, the projection of b in the linearhull of fB.1; B.3g is not in the face PosfB.1; B.3g, since it is �72B.1 + 72B.3, not anonnegative combination of B.1, B.3. So, the face PosfB.1; B.3g is not a projectionface.On the other hand, consider the face PosfB.2; B.3g. The projection of b in thelinear hull of fB.2; B.3g can be veri�ed to be 4B.2 + 3B.3 = (0;�4; 7)T which is inPosfB.2; B.3g. So PosfB.2; B.3g is a projection face of Pos(B).Theorem 7.4 Let x� = B�� be the optimum solution of [���; b]. Let I(S) = fj1; : : : ;jrg = fj : j such that ��j > 0g, and S = fB.j : j 2 I(S)g. Then Pos(S) is a projectionface of Pos(���).Proof. Obviously x� 2 Pos(S). Since x� is the nearest point in Pos(���) to b, andsince Pos(S) � Pos(���), clearly x� is the nearest point in Pos(S) to b. However, bythe de�nition of S, x� is in the relative interior of Pos(S). Hence, by Theorem 7.3, x�must be the projection of b in H(S). Since x� 2 Pos(S), this implies that Pos(S) is aprojection face of Pos(���).



318 Chapter 7. Nearest Point Problems on Simplicial ConesExercises7.1 Prove that the problem of �nding the nearest point in the face Pos(S) of Pos(���) tob or b(S), is equivalent to the principal subproblem of the LCP (7.1) in the variablesw(S), z(S). Also show that if (ŵ(S) = q(S) +M(S)ẑ(S); ẑ(S)) is the solution of thisprincipal subproblem, then B(S)ẑ(S) is the nearest point in Pos(S) to b or b(S); andconversely. Also prove that the face Pos(S) of Pos(���) is a projection face i� z(S) is acomplementary feasible basic vector for this principal subproblem.7.2 If S ���� is such that Pos(S) is a projection face of Pos(���), prove that b(S) is thenearest point in Pos(���) to b i� (w(���nS); z(S)) is a complementary feasible vector for(7.1).De�nitions and NotationLet Kj denote the facet Pos(B.1; : : : ; B.j�1; B.j+1; : : : ; B.n) of Pos(���) for j = 1 to n.Let x = �1B.1 + : : :+ �nB.n 2 Pos(���). It follows that �j = 0 if and only if x 2 Kj ,and �j > 0 if and only if x 62 Kj, for all j = 1 to n. Given the two points b 2 Rnand �x 2 Rn such that b 6= �x, let the open ball B(b; �x) = fx : jjb � xjj < jjb � �xjjg.Consider the hyperplane T(b; �x) = fx : (x� �x)T (b� �x) = 0g. The open half space fx :(x� �x)T (b� �x) > 0g is called the near side of T(b; �x), while the closed half space fx :(x � �x)T (b � �x) <= 0g is called the far side of T(b; �x). If the point �x is chosen suchthat 0 2 T(b; �x), then �xT (B � �x) = 0 and therefore for such �x we have: T(b; �x) = fx :xT (b� �x) = 0g, near side of T(b; �x) = fx : xT (b� �x) > 0g, far side of T(b; �x) = fx :xT (b� �x) <= 0g. For points �x satisfying 0 2 T(b; �x), we de�ne the set N(�x) byN(�x) = fj : j such that BT.j(b� �x) > 0g :So N(�x) is the set of subscripts of the column vectors in ��� which are on the near sideof T(b; �x).Let V j = 0 if bTB.j <= 0, or = B.j(bTB.j)jjB.j jj2 if bTB.j > 0. Vj is the nearest point onthe ray of B.j to b, for all j = 1 to n. Also let l be such that jjV l�bjj = minfjjV j�bjj :j = 1 to ng. Break ties for the minimum in this equation arbitrarily. If V l 6= 0, it isthe orthogonal projection of b on the linear hull of B.l.Example 7.4Let B, b be as given in Example 7.2. That is,B = 8>>>>>: 1 0 01 �1 0�1 1 19>>>>>; ; b = 8>>>>>:�3�479>>>>>;



Chapter 7. Nearest Point Problems on Simplicial Cones 319So bTB.1 = �14 < 0, bTB.2 = 11 > 0, bTB.3 = 7 > 0. So if V j is the nearest pointto b on the ray of B.j , we have V 1 = 0, V 2 = (0;�112 ; 112 )T , V 3 = (0; 0; 7)T . Also, weverify that the nearest point among V 1, V 2, V 3 to b is V 2, so l as de�ned above, is 2in this problem.If we take �x = V 2, since �x is the nearest point on the ray of B.2 to b, the ray ofB.2 is a tangent line to the ball B(b; �x) at its boundary point �x. See Figure 7.1. Sothe tangent plane T(b; �x) to B(b; �x) at its boundary point �x contains the ray of B.2.So in this example N(�x) = fj : j such that (b� �x)TB.j > 0g = f3g. So the vector B.3is on the near side of T(b; �x), and the vector B.1 is on the far side of T(b; �x), in thisexample.
B 1

B 2

B 3

x̂

bO

Figure 7.1Theorem 7.5 If V l = 0, the nearest point in Pos(���) to b is 0.Proof. In this Case bTB.j <= 0 for all j = 1 to n. Hence the hyperplane fx : bTx = 0gfor which the ray of b is the normal at 0, separates b and Pos(���). So 0 is the nearestpoint in Pos(���) to b.Example 7.5Let B = 8>>>>>: 1 0 01 �1 0�1 1 19>>>>>; ; b = 8>>>>>:�10�19>>>>>; :



320 Chapter 7. Nearest Point Problems on Simplicial ConesWe have bTB.j = 0;�1;�1 respectively for j = 1; 2; 3. So, the nearest point on the rayof B.j is V j = 0 for all j = 1; 2; 3. Hence in this case 0 is the nearest point in Pos(B)to b.Thus 0 is the nearest point to b in Pos(B) i� bTB.j <= 0 for all j = 1 to n. So, inthe sequel, we will assume that bTB.j > 0 for at least one j, and under this condition,V l as de�ned above is not zero.Theorem 7.6 A point �x 2 Pos(���) is the nearest point in Pos(���) to b if and only if0 2 T(b; �x) and(b� �x)TB.j <= 0, for all j = 1 to n. (7:2)Proof. Suppose �x is the nearest point in Pos(���) to b. So, �x is the orthogonal projectionof b on the full line generated by �x, and hence 0 2 T(b; �x). Also, the hypothesis impliesthat the hyperplane T(b; �x) strictly separates B(b; �x) and Pos(���). So (b� �x)TB.j <= 0for all j = 1 to n.Conversely suppose �x 2 Pos(���) satis�es 7.2. These conditions imply that T (b; �x)is the tangent hyperplane to the closure of B(b; �x) at its boundary point �x, and thatT(b; �x) separates the closure of B(b; �x) and Pos(���). So, under these conditions, �x isthe nearest point in Pos(���) to b.Example 7.6Let B, b be as given in Example 7.4, that isB = 8>>>>>: 1 0 01 �1 0�1 1 19>>>>>; ; b = 8>>>>>:�3�479>>>>>; :If �x = V 2 = (0;�112 ; 112 )T , we veri�ed as in Example 7.4 that (b� �x)TB.3 = (32) > 0,and hence �x is not the nearest point in Pos(B) to b.Let x̂ = (0;�4; 7)T , the orthogonal projection of b in the linear hull of fB.2;B.3g, which is the nearest point in the face PosfB.2; B.3g of Pos(B) to b, obtainedin Example 7.3. Since x̂ is the orthogonal projection of b in a subspace, the tangentplane T(b; �x) contains this subspace (in this case T(b; �x) is the linear hull of fB.2; B.3gitself) and hence the origin 0. Also, it can be veri�ed that (b� x̂)TB.j = �3; 0; 0 <= 0,for j = 1; 2; 3. So N(x̂) = ; and x̂ is the nearest point in Pos(B) to b in this example.See Figure 7.2.
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B 1

x̂
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Figure 7.2 x̂ is the nearest point in Pos(B) to b.Let �� be the unknown optimum combination vector for [���; b]. Let J = fj :��j > 0g. J is called the set of critical indices for the LCP (q;M) and for thecorresponding nearest point problem [���; b]. It is clear that J is also the set of all jsuch that zj is strictly positive in the unique solution of the LCP (q;M). Notice thatif (w; z) is the unique solution of the LCP (q;M), then wj = 0 for all j 2 J and zj = 0for all j 62 J, or equivalently if yj = zj for all j 2 J, wj for all j 62 J, then (y1; : : : ; yn)is a complementary feasible basic vector for this LCP. So if the set J can be found, thebasic solution of (7.1) corresponding to the basic vector (y1; : : : ; yn) de�ned above isthe unique solution of this problem. Also by earlier results, the solution to the nearestpoint problem [���; b] is the orthogonal projection of b on the linear hull of fB.j : j 2 Jg.Hence if J is known, the solution of the LCP (q;M) and correspondingly the solutionto the associated nearest point problem [���; b] can be easily found.Even if a single critical index is known, this information can be used to reduce(q;M) to an LCP of order n� 1 as shown in the following theorem.



322 Chapter 7. Nearest Point Problems on Simplicial ConesTheorem 7.7 If a single critical index is known, (q;M) can be reduced to an LCPof order n� 1.Proof. Without loss of generality suppose we know that 1 is a critical index. Thenperform a single principal pivot step in (7.1) in position 1. Suppose this leads tow1 w2 : : : wn z1 z2 : : : zn�m11 0 : : : 0 1 �m12 : : : �m1n �q1�m21 1 : : : 0 0 �m22 : : : �m2n �q2:: :: :: :: :: :: ::�mn1 0 : : : 1 0 �mn2 : : : �mnn �qnLet M = (mij : 2 <= i; j <= n) be the matrix of order n � 1, and �q = (�q2; : : : ; �qn)T ,from the above Tableau. Eliminating the columns of w1, z1, and the �rst row from itleads to the principal subproblem in variables ! = (w2; : : : ; wn) and � = (z2; : : : ; zn),which is an LCP of order n � 1, denoted by (�q;M). Since M is positive de�nite andsymmetric, so is M. If (y2; : : : ; yn), where yj 2 fwj ; zjg, is a complementary feasiblebasic vector for (�q;M), then, since 1 2 J, (z1; y2; : : : ; yn) is a complementary feasiblebasic vector for the original (q;M). Thus to solve (q;M), if we know that 1 2 J, itis enough if we solve the principal subproblem (�q;M) of order n � 1. Therefore thefact that 1 2 J has made it possible for us to reduce the LCP (q;M) of order n, into(�q;M) of order n� 1.We can also argue geometrically that the knowledge of a critical index reduces thedimensionality of the nearest point problem. If 1 is a critical index, then the nearestpoint to b in Pos(���) is also the nearest point to b in Pos(���[f�B.1g). De�ne �b =b� B.1(bTB.1)jjB.1jj2 , �B.j = B.j � B.1(B.1)TB.jjjB.1jj2 , for j = 2; : : : ; n. Let ��� = f �B.2; : : : ; �B.ng. For2 <= j <= n, �B.j is orthogonal to B.1 and the cone Pos(���[f�B.1g) is the direct sumof the full line generated by B.1 and the simplicial cone Pos(���). Solving [���;�b] is an(n � 1) dimensional nearest point problem. If �x� is its solution, as embedded in Rn,then x� = �x� + B.1(bTB.1)jjB.1jj2 solves [���; b].We will develop an algorithm for �nding a critical index. When it is obtained, wecan reduce (q;M) into a linear complementarity problem of lower order and apply thesame approach on it.Example 7.7Consider the LCP (q;M) discussed in Example 7.1. In Example 7.9 we will establishthe fact that 3 is a critical index for this LCP. Performing a principal pivot step in



Chapter 7. Nearest Point Problems on Simplicial Cones 323position 3 in this LCP leads to the following :w1 w2 w3 z1 z2 z31 0 1 �2 1 0 70 1 �1 1 �1 0 �40 0 �1 �1 1 1 7wj ; zj >= 0 for all j: wjzj = 0 for all jSince 3 is a critical index, we eliminate w3, z3 and the last row from the problem,leading to the principal subproblemw1 w2 z1 z21 0 �2 1 70 1 1 �1 �4wj ; zj >= 0 for all j: wjzj = 0 for all jIt can be veri�ed that (w1; z2) is a complementary feasible basic vector for this principalsubproblem. So, (w1; z2; z3) is a complementary feasible basic vector for the originalLCP (q;M).Theorem 7.8 Given 0 6= �x 2 Pos(���) satisfying 0 2 T(b; �x), if for some i 2 f1; : : : ;ng, we have(i) (b� �x)TB.i > 0, and either(ii) jj�x� bjj <= jjV i � bjj and f�x;B.ig is linearly independent, or(ii)0 bTB.i <= 0;then, the projection of b onto the linear hull of f�x;B.ig is in the relative interior ofPosf�x;B.ig.Proof. Since �x is the closest point in T(b; �x) to b and since 0 2 T(b; �x), �x is the closestpoint on the ray of �x to b.If (ii)' holds, then V i = 0 and hence in this case we have jj�x� bjj < jjV i� bjj, andclearly f�x;B.ig is linearly independent. So under these conditions (ii)' implies (ii).By linear independence, Posf�x;B.ig is a two dimensional simplicial cone. Let pbe the closest point in Posf�x;B.ig to b. By (i), B.i is on the near side of T(b; �x), andhence B(b; �x)\ Posf�x;B.ig 6= ;. This implies that p is closer than �x to b; and by (ii),p must be closer than V i to b. So p is not contained on the rays of �x or B.i, and hencep must be in the relative interior of Posf�x;B.ig.Theorem 7.9 Let ; 6= S � ��� be such that �x = b(S) 2 Pos(S). Then 0 2 T(b; �x).Also, in this case if N(�x) \ I(S) = ;, then N(�x) = ;, and �x is the nearest point inPos(���) to b.



324 Chapter 7. Nearest Point Problems on Simplicial ConesProof. Under the hypothesis T(b; �x) contains H(S) and hence 0 2 T(b; �x). Also, bythe properties of orthogonal projection, the line joining b and �x is orthogonal to H(S),and hence (b � �x)TB.j = 0 for all j 2 I(S). So N(�x) \ I(S) = ; implies N(�x) = ; inthis case. By Theorem 7.6 these facts imply that �x is the nearest point in Pos(���) tob.Example 7.8Consider B, b given in Exercise 7.6. Let S = fB.2; B.3g, b(S) = x̂ = (0;�4; 7)T given inExample 7.6 (computed in Example 7.3) and x̂ 2 Pos(S). In Example 7.6 we computedthat N(x̂) = ; and so N(x̂) \ I(S) = ;. This implies that x̂ is the nearest point inPos(B) to b.Theorem 7.10 Let �x 2 Pos(���) be such that 0 2 T(b; �x). If there exists an index jsuch that (b� �x)TB.i <= 0 for all i 6= j, then Kj \B(b; �x) = ;.Proof. Clearly under these conditions xT (b� �x) <= 0 for all x 2 Kj ; however xT (b��x) > 0 for all x 2 B(b; �x). Hence Kj \B(b; �x) = ;.Theorem 7.11 Let �x 2 Pos(���) be such that 0 2 T(b; �x). If there exists an index jsuch that (b� �x)TB.i <= 0 for all i 6= j and (b� �x)TB.j > 0, then j is a critical indexof [���; b].Proof. By Theorem 7.6, �x is not the nearest point in Pos(���) to b. Let x̂ be the nearestpoint in Pos(���) to b. Then x̂ 2 B(b; �x). By Theorem 7.10 Kj \ B(b; �x) = ;. Hencex̂ 62 Kj and thus j is a critical index of [���; b].Example 7.9Consider B, b given in Example 7.4. If �x = V 2, we veri�ed in Example 7.4 thatN(�x) =f3g. This implies that 3 is a critical index of [B; b].Here we describe a routine for selecting a critical index. This routine terminatesonce a critical index is identi�ed. Later on we will discuss the algorithm for solvingthe LCP (q;M) where M is a PD symmetric matrix, or the associated nearest pointproblem, using this routine.Routine for Selecting a Critical IndexThis routine operates on the nearest point problem [���; b] which is equivalent to thegiven LCP (q;M). Clearly if b 2 Pos(���), the nearest point in Pos(���) to b is the point



Chapter 7. Nearest Point Problems on Simplicial Cones 325b itself; so we assume that b 62 Pos(���) in the sequel. As mentioned earlier, we alsoassume that V l 6= 0 (as otherwise, 0 is the nearest point in Pos(���) to b).The routine maintains a nonempty subset of ��� called the current set denoted byS, and a point called the current point denoted by �x. �x 2 Pos(S) always. As thesethings change from step to step, the symbols S, �x may represent di�erent things indi�erent steps.Initial Step: Set �x = V l, and compute N(�x). If N(�x) = ;, �x is the nearest point inPos(���) to b, terminate. If N(�x) is a singleton set, say i1, i1 is a critical index of [���; b],terminate this routine. If the cardinality of N(�x) is greater than or equal to 2, chooseg 2 N(�x); compute the orthogonal projection b̂ of b onto the linear hull of f�x;B.gg.Replace �x by b̂. Set S = fB.l; B.gg. Go to Step 1.Step 1: Let S, �x be the current entities. Compute N(�x). If N(�x) = ;, �x is thenearest point in Pos(���) to b, terminate. If N(�x) is a singleton set, say i1, i1 is a criticalindex of [���; b], terminate this routine. If the cardinality of N(�x) is greater than orequals 2, go to Step 2 if N(�x) \ I(S) 6= ;, or to Step 3 if N(�x) \ I(S) = ;.Step 2: Choose a g 2 N(�x) \ I(S). Compute b̂, the orthogonal projection of b ontothe linear hull of f�x;B.gg. Replace S by S [ fB.gg, and �x by b̂. Go back to Step 1.Step 3: Compute b(S). If b(S) 2 Pos(S), replace �x by b(S) and go to Step 1. Ifb(S) 62 Pos(S), go to Step 4.Step 4: Let the current point �x = P(�jB.j : j 2 I(S)), where �j >= 0 for allj 2 I(S). Let b(S) = P[
jB.j : j 2 I(S)]. Since b(S) 62 Pos(S), 
j < 0 for somej 2 I(S). An arbitrary point on the line segment joining �x to b(S) can be written asQ(�) = (1��)�x+�b(S), 0 <= � <= 1; or equivalently Q(�) =P[(((1��)�j+�
j)B.j) :j 2 I(S)]. As � increases from 0 to 1, Q(�) moves from �x to b(S). Let � = �� be thelargest value of � for which Q(�) is in Pos(S). So Q(��) is on the boundary of Pos(S)and Q(�) 62 Pos(S) for � > ��. So �� = maxf� : (1� �)�j + �
j >= 0; for all j 2 I(S)g.The point (1 � ��)�x + ��b(S) = Q(��) is the last point in the cone Pos(S) on the linesegment joining �x and b(S), as you move away from �x along this line segment. SeeFigure 7.3.Let k be such that (1� ��)�k + ��
k = 0. If there is more than one index in I(S)with this property, choose one of the them arbitrarily and call it k. Q(��) is the nearestpoint to b(S) on the line segment joining �x to b(S) that lies in Pos(S). So Q(��) 2Pos(S n fB.kg). Delete B.k from S. Also delete k from I(S) and include it in I(S).Replace �x by Q(��) and go to Step 3.
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Figure 7.3DiscussionIf termination does not occur in the Initial Step, when we move to Step 1 we will havejj�x � bjj < jjV l � bjj by Theorem 7.8, and this property will continue to hold in allsubsequent steps, since jj�x � bjj never increases in the routine. Clearly �x 2 Pos(S)always. These facts imply that once the algorithm enters Step 1, the cardinality of Swill always be greater than or equal 2.While executing Step 4, if �� turns out to be zero, there is no change in the point �x,but the cardinality of the set S decreases by 1 at the end of this step. Thus a sequenceof consecutive moves in the algorithm of the form Step 3! Step 4! Step 3 : : :, mustterminate after at most (n � 2) visits to Step 4, with �x set equal to b(S) for someprojection face Pos(S) in Step 3, and then the routine moves to Step 1. When thishappens, while executing Step 1, by Theorem 7.9 either the routine itself terminates;or else Step 2 must be taken implying a strict decrease in jj�x� bjj by Theorem 7.8 withthe new �x via Step 2, and thus the projection face Pos(S) cannot repeat.Whenever the routine visits Step 1, the current point �x is the orthogonal projectionof b onto a subspace of dimension 2 or more, and hence the property 0 2 T(b; �x) willhold then. Clearly, this property also holds in the Initial Step.In the Initial Step, or in Step 1, if N(�x) = ;, �x is the nearest point in Pos(���) to bby Theorem 7.9. In these steps, if N(�x) is a singleton set, the element in it is a critical



Chapter 7. Nearest Point Problems on Simplicial Cones 327index for [���; b] by Theorem 7.11.Since there are but a �nite number of projection faces, these facts imply that ifthe routine does not terminate in the Initial Step, it terminates after a �nite numberof steps while executing Step 1.When termination occurs in Step 1, it either �nds the nearest point in Pos(���)to b, in which case the problem is completely solved, or it �nds a critical index ofthe problem. In the latter case an LCP of order n � 1 can be constructed and thesame routine can be applied to this smaller problem, as discussed in Theorem 7.7.The solution to the original problem then can be obtained using the solution of thissmaller problem, as discussed in Theorem 7.7. Hence the unique solution of (q;M) canbe obtained after at most n applications of the routine discussed above on LCPs ofdecreasing orders, each one associated with a positive de�nite symmetric matrix. Wewill now provide a summary of the whole algorithm.Algorithm for Solving the LCP (q;M) When M is PD SymmetricStep 0: Let (q;M) be the LCP and [B; b] the corresponding nearest point problem.Check if B�1b >= 0. If it is, b 2 Pos(B) and b itself is the nearest point in Pos(B) tob. In this case z is a complementary feasible basic vector to the LCP (q;M) and thesolution for it is (w = 0; z = M�1q). If this condition is not satis�ed, continue.Check if bTB <= 0. If it is, the origin 0 is the nearest point in Pos(B) to b. In thiscase w is a complementary feasible basic vector to the LCP (q;M), that is, q >= 0, and(w = q; z = 0) is the solution of the LCP. If this condition is not satis�ed, continue.For j = 1 to n, de�neV j = ( 0 if bTB.j <= 0� bTB.jjjB.j jj2�B.j otherwise .Let V l be the nearest among V 1; : : : ; V n to b. Break ties for l arbitrarily. Go to Step1 with S = fB.lg, �x = V l, I(S) = flg.Step 1: Let �x be the current point and S the current subset of columns of B.Compute N(�x) = fj : (b� �x)TB.j > 0g.If N(�x) = ;, �x is the nearest point in Pos(B) to b. De�ne for j = 1 to nyj = � zj if j 2 I(S)wj otherwise .Then y = (y1; : : : ; yn) is a complementary feasible basic vector for the LCP (q;M) and( �w = M �z + q; �z = B�1�x) is the solution of the LCP. Terminate.If N(�x) is a singleton set, that is, if N(�x) = fj1g for some j1, j1 is a criticalindex. Using it, reduce the LCP to one of order one less as in Theorem 7.7, andobtain the corresponding nearest point problem of dimension one less either by �ndingthe Cholesky factor of the matrix associated with the reduced LCP or by using the



328 Chapter 7. Nearest Point Problems on Simplicial Conesgeometric procedure described following the proof of Theorem 7.7. With the reducedLCP and the reduced nearest point problem, go back to Step 0.If the cardinality of N(�x) is greater than or equal to 2, go to Step 2 if N(�x) \I(S) 6= ;, or to Step 3 otherwise.Step 2: Select a g 2 N(�x) \ I(S). Compute b̂, the orthogonal projection of b on thelinear hull of f�x;B.gg. Include B.g in S, g in I(S), and replace �x by b̂ and go back toStep 1.Step 3: Compute b(S), the orthogonal projection of b on the linear hull of S. Ifb(S) 2 Pos(S), replace �x by b(S), and go back to Step 1 leaving S, I(S) the same. Ifb(S) 62 Pos(S), go to Step 4.Step 4: Let �x = Pj2I(S) �jB.j and b(S) = Pj2I(S) 
jB.j . Now compute the value�� = min� �j(�j�
j) : j such that 
j < 0	, and let k be an index which attains thisminimum. Break ties for k arbitrarily. Replace �x by (1� ��)�x+��b(S). Delete B.k fromS and k from I(S), and go back to Step 3.For solving LCPs (7.1) in which M is a given positive de�nite symmetric matrix,or equivalently the nearest point problem [���; b] where ��� is a given basis for Rn; theapproach discussed here seems to be the most e�cient from a practical point of view.Empirical results on the computational e�ciency of this approach are reported inChapter 8.7.1 Exercises7.3 Let ���= fB.1; : : : ; B.ng be a basis for Rn and b be another point in Rn. Supposeit is required to �nd the nearest point in Pos(���) to b in terms of the L1-distance, alsoknown as the rectilinear distance. The rectilinear distance between two points x =(xj), y = (yj) in Rn is de�ned to be Pnj=1�jxj � yj j�. Show that this problem canbe formulated as an LP. Given the nearest point in Pos(���) to b in terms of the L1distance, can you draw from it any conclusions about the location of the nearest pointin Pos(���) to b in terms of the Euclidean distance? (explore questions like whether theylie in the same face etc.)7.4 Let ��� be a subset consisting of a �nite number of column vectors from Rn, whichis not linearly independent, and let b 2 Rn be another column vector. It is required to�nd the nearest point in Pos(���) to b. Modify the algorithm discussed above to solvethis problem.7.5 Let K � Rn be a given convex polyhedron, and let b 2 Rn be a given point. It isrequired to �nd the nearest point in K (in terms of the usual Euclidean distance) tob. K may be given in one of two forms:



7.1. Exercises 329(i) All the extreme points and extreme homogeneous solutions associated withK may be given, or(ii) The constraints which de�ne K may be given, for example K = fx : Ax >= p;Dx = dg where A, D, p, d are given.Modify the algorithm discussed above, to �nd the nearest point in K to b, when K isgiven in either of the forms mentioned above.7.6 Generalize the algorithm discussed above, to process the LCP (q;M) when M isPSD and symmetric.7.7 Let b 2 Rn, b > 0 and let K = fy : 0 <= y <= bg be a rectangle. For x 2 Rn letPK(x) be the nearest point (in terms of the usual Euclidean distance) to x in K. Forany x; y 2 Rn, prove the following:(1) The ith coordinate of PK(x) is min�maxf0; xig; bi	,(2) x <= y implies PK(x) <= PK(y),(3) PK(x)� PK(y) <= PK(x� y),(4) PK(x+ y) <= PK(x) + PK(y),(5) PK(x) + PK(�x) <= jxj = (jxj j), with equality holding if �b <= x <= b.(B. H. Ahn [7.1])7.8 Let f(x) be a real valued convex function de�ned on Rn. Let �x 2 Rn, � 2 R1be given. It is required to �nd a point that minimizes the distance jjx� �xjj over fx :f(x) <= �g. Develop an e�cient algorithm for this problem. What changes are neededin this algorithm if f(x) = (f1(x); : : : ; fm(x))T where each fi(x) is a real valued convexfunction de�ned on Rn, and � 2 Rm?7.9 Let B a square nonsingular matrix of order n. Let M = BTB. Let J � f1; : : : ;ng, with elements in J arranged in increasing order. Let MJJ denote the principalsubmatrix of M corresponding to the subset J. For any column vector q 2 Rn, let qJdenote the column vector of (qj : j 2 J) with the entries in qj arranged in the sameorder as the elements j are in J.It is required to �nd a point p in the interior of Pos(B) satisfying :Property 1: For every nonempty face F of Pos(B), the orthogonal projection of p inthe linear hull of F, is in the relative interior of F.Prove that p 2 Rn satis�es Property 1 i� (MJJ)�1qJ > 0 for all subsets J � f1;: : : ; ng, where q = BTp.If n = 2, prove that a point p satisfying Property 1 always exists. In this case,show that p can be taken to be any nonzero point on the bisector of the angle (that isless than 180�) created by the rays of B.1 and B.2 in R2.For general n, let A = B�1. Then fx : Ai.x = 0g is the hyperplane Hi which isthe linear hull of fB.1; : : : ; B.i�1; B.i+1; : : : ; B.ng. The generalization of �nding a point



330 Chapter 7. Nearest Point Problems on Simplicial Coneson the bisector of the angle between the rays of B.1, B.2 when n = 2, is to �nd a pointp, satisfying the property that the shortest distances from p to each of the hyperplanesHi, i = 1 to n, are all equal. A point like this would be a positive scalar multiple ofd = Be. Is the statement \if a point p satisfying Property 1 exists, d = p is one suchpoint" true?Show that if M = 8>>>>>>>>>>>>>>>>:
6 �4 1 0 0 0�4 6 �4 1 0 01 �4 6 �4 1 00 1 �4 6 �4 10 0 1 �4 6 �40 0 0 1 �4 6

9>>>>>>>>>>>>>>>>;and B is such that BTB = M , there exists no point p satisfying Property 1.Derive necessary and su�cient conditions on the matrix B to guarantee that apoint p satisfying Property 1 exists.(This problem came up in the algorithm discussed in Exercise 2.20. The numericalexample is due to J. S. Pang)7.10 LetM be a square matrix of order n, which is PSD, but not necessarily symmetric.Let cM = (M +MT )=2. Prove that xTcM and qTx are constants over the solution setof the LCP (q;M).7.11 fA.1; : : : ; A.n+1g is a set of column vectors in Rn such that fA.2 � A.1; : : : ;A.n+1 � A.1g is linearly independent. b is another column vector in Rn. Let K bethe n-dimensional simplex which is the convex hull of fA.1; : : : ; A.n+1g. Develop ane�cient algorithm of the type discussed in this chapter, for �nding the nearest point(in terms of the usual Euclidean distance) to b in K.7.12 Let ���= fA.1; : : : ; A.mg be a given �nite set of column vectors in Rn. Let K bethe convex hull of ���.Suppose x� is the point minimizing kxk over x 2 K. For any y 2 Rn, y 6= 0,de�neh(y) = maximum value of yTx, over x 2 Ks(y) = a point in ��� which maximizes yTx over x 2 K. So, h(y) = yT s(y).Incidentally, h(y), s(y) can be found by computing yTA.j for each j = 1 to m andchoosing s(y) to be an A.p where p is such that yTA.p = maximum fyTA.j : j = 1to mg.(i) Prove that x� can be expressed as a convex combination of at most n+ 1 vectorsfrom ���.(ii) If 0 62 K, prove that x� can be expressed as a convex combination of at most nvectors from ���.



7.1. Exercises 331(iii) For each x 2 K, prove that kxk2 + h(�x) >= 0. Also prove that kxk2 + h(�x) = 0for x 2 K i� x = x�.(iv) For any x 2 K, x 6= x�, prove that s(�x)� x is a descent direction for kxk.(v) For any x 2 K satisfying kxk2 + h(�x) > 0, prove that there must exist a pointx on the line segment joining x and s(�x) such that kxk < kxk.(vi) Consider the following algorithm for minimizing the norm kxk over x 2 K byR. O. Barr and E. G. Gilbert. If 0 2 ���, clearly x�, the point minimizing kxk overx 2 K, is 0 itself, so we assume that 0 62 ���. The algorithm operates with a subsetS � ��� satisfying jSj <= n+ 1 always, and S is the set of vectors of a simplex. Theset S changes from step to step. Let the index set of S be I(S) = fj : A.j 2 Sg.The algorithm needs a subroutine for minimizing kxk over a simplex. If ��� is theset of vertices of a simplex (i. e., K is a simplex) the problem is solved by calling thissubroutine once, terminate. So, we assume that K is not a simplex in the sequel.Let rank (���) = r. Initiate the algorithm with an arbitrary subset S of r + 1 orless vectors from ��� whose convex hull is a simplex (we can initiate the algorithm withS = fA.lg where l is such that kA.lk = minimum fkA.jk : j = 1 to mg).General Step: Let S be the current subset of vectors from ���, and I(S) its index set.Find x, the point of minimum norm kxk, in the convex hull of S (for executing this,you need a subroutine to minimize the norm kxk on a simplex).If x = 0, then 0 2 K, x� = 0, terminate the algorithm.If x 6= 0, compute kxk2+h(�x). If kxk2+h(�x) = 0, then x� = x, terminate thealgorithm.If x 6= 0 and kxk2 + h(�x) > 0, let x =P(ajA.j : j 2 I(S)). Since x is the pointof minimum norm in the convex hull of S and x 6= 0, x must be a boundary point ofthe convex hull of S, that is, aj = 0 for at least one j 2 I(S). Let J = fj : j 2 I(S)and aj = 0g. Replace S by fs(�x)g [ (S n fA.j : j 2 Jg), update I(S); and withthe new S, I(S), go to the next step. Prove that S always remains the set of verticesof a simplex in this algorithm, and that the algorithm �nds x� after at most a �nitenumber of steps.(See R. O. Barr, \An e�cient computational procedure for generalized quadratic pro-gramming problems", SIAM Journal on Control 7 (1969) 415{429; and R. O. Barr andE. G. Gilbert, \Some e�cient algorithms for a class of abstract optimization problemsarising in optimal control", IEEE Transactions on Automatic Control, AC-14 (1969)640{652. My thanks to S. Keerthi for bringing this and the next two problems to myattention).7.13 Let ��� = fA.1; : : : ; A.mg be a �nite set of column vectors from Rn; and b, anothergiven column vector in Rn. Discuss how the Barr-Gilbert algorithm presented inExercise 7.12, can be used to �nd the nearest point (in terms of the Euclidean distance)in the convex hull of ��� to b.



332 Chapter 7. Nearest Point Problems on Simplicial Cones7.14 Let ��� = fA.1; : : : ; A.mg, ��� = fB.1; : : : ; B.tg be two �nite sets of column vectorsfrom Rn. Let K, P denote the convex hulls of ���, ��� respectively. It is required to �ndx� 2 K, y� 2 P such thatkx� � y�k = minimum fkx� yk : x 2 K; y 2 Pg:Using the fact that K � P (de�ned in Appendix 2) is a convex set, discuss how theBarr-Gilbert algorithm presented in Exercise 7.12, can be used to �nd x�, y�.
7.2 References7.1 B. H. Ahn, \Iterative methods for linear complementarity problems with upper-bounds on primary variables",Mathematical Programming, 26 (1983) 295{315.7.2 K. G. Murty and Y. Fathi, \A Critical Index Algorithm for Nearest Point Prob-lems on Simplicial Cones", Mathematical Programming, 23 (1982) 206{215.7.3 P. Wolfe, \Algorithm for a Least Distance Programming Problem",MathematicalProgramming Study 1, (1974) 190{205.7.4 P. Wolfe, \Finding the Nearest Point in a Polytope",Mathematical Programming,11 (1976) 128{149.7.5 D. R. Wilhelmsen, \A Nearest Point Algorithm for Convex Polyhedral Cones andApplications to Positive Linear Approximations", Mathematics of Computa-tion, 30 (1976) 48{57.



Chapter 8
POLYNOMIALLY BOUNDEDALGORITHMSFOR SOME CLASSES OF LCPs

In this chapter we discuss algorithms for special classes of LCPs, whose computationalcomplexity is bounded above by a polynomial in either the order or the size of the LCP.We consider the LCP (q;M) where M is either a Z-matrix, or a triangular P -matrix,or an integer PSD-matrix.8.1 Chandrasekaran's Algorithm for LCPsAssociated with Z-MatricesConsider the LCP (q;M) of order n, where M is a Z-matrix. As discussed in Section3.4, M = (mij) is a Z-matrix if all its o� diagonal entries are nonpositive, that ismij <= 0 for all i 6= j. The algorithm discussed below by R. Chandrasekaran [8.2],terminates after at most n principal pivot steps, with either a solution of the LCP(q;M) or the conclusion that it has no solution.The AlgorithmThe initial tableau is (8.1) w zI �M q (8:1)Step 1: Start with the initial tableau and with w = (w1; : : : ; wn) as the initial com-plementary basic vector. If this is a feasible basis (i. e., if q >= 0) it is a complementaryfeasible basis, terminate. Otherwise, go to the next step.



334 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsGeneral Step: Let �q be the present update right hand side constants vector. If�q >= 0, the present basic vector is a complementary feasible basic vector, terminate.Otherwise select a t such that �qt < 0. Let �mtt be the present update entry in thetth row and the column vector of zt. At this stage, the present basic variable in rowt will be wt (this follows from statement 5 listed below). If �mtt >= 0, there existsno nonnegative solution for (8.1) and consequently the LCP (q;M) has no solution,terminate. Otherwise if �mtt < 0, perform a principal pivot step in position t and goto the next step.Using the fact that the initial matrixM is a Z-matrix, we verify that in the initialsystem (8.1), for any t = 1 to n, all the entries in row t are nonnegative with theexception of the entry in the column of zt. From the manner in which the algorithmis carried out, the following facts can be veri�ed to hold.1. All pivot elements encountered during the algorithm are strictly negative.2. For any t such that no pivot step has been performed in the algorithm so farin row t, all the entries in this row on the left hand portion of the presentupdated tableau are nonnegative, except, possibly the entry in the columnof zt. The infeasibility conclusion in the algorithm follows directly from thisfact.3. If s is such that a pivot step has been carried out in row s in the algorithm,in all subsequent steps, the updated entry in this row in the column of anynonbasic zi is nonpositive.4. Once a pivot step has been performed in a row, the updated right hand sideconstant in it remains nonnegative in all subsequent steps. This follows fromstatements 1 and 3.5. Once a variable zt is made a basic variable, it stays as a basic variable, andits value remains nonnegative in the solution, in all subsequent steps.6. All basic vectors obtained in the algorithm are complementary, and the algo-rithm terminates either with the conclusion of infeasibility or with a comple-mentary feasible basis.7. At most one principal pivot step is carried out in each position, thus thealgorithm terminates after at most n pivot steps. Thus the computationale�ort measured in terms of basic operations like multiplications, additions,comparisons of real numbers, is at most O(n3).From these facts we conclude that if the system \w �Mz = q, w >= 0, z >= 0"is feasible and M is a Z-matrix, then the LCP (q;M) has a complementary feasiblesolution and the above algorithm �nds it. Hence, when M is a Z-matrix, the LCP(q;M) has a solution i� q 2 Pos(I ... �M), or equivalently, every Z-matrix is a Q0-matrix.R. W. Cottle and R. S. Sacher, and J. S. Pang [8.7, 8.8] discuss several large scaleapplications of the LCP basid on this algorithm.



8.2. A Back Substitution Method for the LCPs 335Exercises8.1 Solve the LCP with the following data by Chandrasekaran's algorithm.M = 8>>>>>>>>>>>>: 1 �2 0 �2 �1�1 0 �1 �2 0�2 �3 3 0 00 �1 �1 �2 �1�2 0 �1 �2 3
9>>>>>>>>>>>>; ; q = 8>>>>>>>>>>>>:�4�4�2�1�2

9>>>>>>>>>>>>; :8.2 Is the complementary pivot method guaranteed to process the LCP (q;M) whenM is a Z-matrix ?8.3 Discuss an e�cient method for computing all the complementary solutions of theLCP (q;M) when M is a Z-matrix.
8.2 A Back Substitution Method for the LCPsAssociated with Triangular P-MatricesA square matrixM = (mij) of order n is said to be a lower triangular matrix ifmij = 0for all j >= i+1. It is upper triangular if MT is lower triangular. The square matrixMis said to be a triangular matrix if there exists a permutation of its rows and columnswhich makes it lower triangular. A triangular matrix satis�es the following properties.(i) The matrix has a row that contains a single nonzero entry.(ii) The submatrix obtained from the matrix by striking o� the row containinga single nonzero entry and the column in which that nonzero entry lies, alsosatis�es property (i). The same process can be repeated until all the rowsand columns of the matrix are struck o�.A lower triangular or an upper triangular matrix is a P -matrix i� all its diagonalentries are strictly positive. A triangular matrix is a P -matrix i� every one of itssingle nonzero entries identi�ed in the process (i), (ii) above is the diagonal entry inits row and is strictly positive. Thus a triangular matrix is a P -matrix i� there existsa permutation matrix Q such that QTMQ is a lower triangular matrix with positivediagonal entries.



336 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsExample 8.1Let M = 8>>>>>>>>: 1 0 0 22 1 0 22 2 1 20 0 0 19>>>>>>>>; ; Q = 8>>>>>>>>: 0 1 0 00 0 1 00 0 0 11 0 0 09>>>>>>>>; :Verify that QTMQ = fM(4) de�ned in equation (1.15) for n = 4, and hence M is atriangular P -matrix.If M is a triangular P -matrix, the LCP (q;M) can be solved by the following backsubstitution method.Identify the row in M = (mij) containing a single nonzero entry. Suppose it isrow t. If qt >= 0, make wt = qt, zt = 0 = �zt. On the other hand, if qt < 0, make wt = 0,zt = qt�mtt = �zt. Add �ztM.t to the right hand side constants vector q in (8.1), and theneliminate the columns of wt, zt and the tth row from (8.1), thus converting (8.1) intoa system of the same form in the remaining variables, on which the same process isrepeated.In this method, the value of one complementary pair of variables (wi; zi) arecomputed in each step, their values are substituted in the other constraints and theprocess repeated. The method �nds the complete solution in n steps.Example 8.2Consider the LCP (q;M) withM = 8>>>>>: 1 0 02 1 02 2 19>>>>>; ; q = 8>>>>>: �8�12�149>>>>>; :It can be veri�ed that this method leads to the values (w1; z1) = (0; 8), (w2; z2) =(4; 0), (w3; z3) = (2; 0) in that order, yielding the solution (w1; w2; w3; z1; z2; z3) =(0; 4; 2; 8; 0; 0). The same problem was solved by the complementary pivot algorithmin Example 2.10.
8.3 Polynomially Bounded Ellipsoid Algorithmsfor LCPs Corresponding toConvex Quadratic ProgramsIn the following sections we show that the ellipsoid algorithms for linear inequalities andLPs (see references [8.13], [2.26]) can be extended to solve LCPs associated with PSD



8.3. Polynomially Bounded Ellipsoid Algorithms for LCPs 337matrices with integer data, in polynomial time. As shown in Chapter 1 every convexquadratic programming problem can be transformed into an LCP associated with aPSD matrix, and hence the methods described here provide polynomially boundedalgorithms for solving convex quadratic programs with integer data. These algorithmsare taken from S. J. Chung and K. G. Murty [8.4]. Similar work also appeared in [8.14,8.1] among other references. If the data in the problem is not integer but rational, itcould be converted into an equivalent problem with integer data by multiplying all thedata by a suitably selected positive integer, and solved by the algorithms discussedhere in polynomial time.In Sections 8.1, 8.2 we discussed algorithm for special classes of LCPs in whichthe computational e�ort required to solve an LCP of order n is at most O(n3). Thesealgorithms do not require the data in the problem to be integer or rational, it couldeven be irrational as long as the matrix M satis�es the property of being a Z-matrixor triangular P -matrix as speci�ed and the required arithmetical operations can becarried out on the data with the desired degree of precision. Thus these algorithmsdiscussed in Section 8.1, 8.2 are extremely e�cient and practically useful to solveLCPs of the types discussed there. The ellipsoid algorithms discussed in the followingsections have an entirely di�erent character. They are polynomially bounded as longas M is an integer PSD-matrix, but their computational complexity is not boundedabove by a polynomial in the order of the problem, but by a polynomial in the sizeof the problem (the size of the problem is the total number of digits in all the datawhen it is encoded using binary encoding). From Chapter 6 we know that in theworst case, the complementary and principal pivoting method discussed earlier arenot polynomially bounded. However, in computational tests on practical, or randomlygenerated problems, the observed average computational e�ort required by ellipsoidmethod turned out to be far in excess of that required by complementary and principalpivoting methods. Also, in the ellipsoid methods, each computation has to be carriedout to a large number of digits of precision, making it very hard to implement themon existing computers.Thus the ellipsoid algorithms discussed in the following sections are not likelyto be practically useful, at least not in their present forms. The major importance ofthese ellipsoid methods is theoretical, they made it possible for us to prove that convexquadratic programs, or equivalently LCPs associated with PSD-matrices with integerdata, are polynomially solvable.Size of an LCPIn this and in subsequent sections, we use the symbol L to denote the size of theproblem istance, it is the total number of binary digits in all the data in the instance,assuming that all the data is integer. Given an integer �, the total number of binarydigits in it (i. e., the number of bits needed to encode it in binary form) is approximatelyd1 + log2(1 + j�j)e, the celing of �1 + log2(1 + j�j)�, that is, the positive integer just>= �1 + log2(1 + j�j)�. Since the data in an LCP (q;M) of order n is n, q, M , we can



338 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsde�ne the size of this LCP to beL = ��1 + log2n�+ nXi;j=1�1 + log2(1 + jmij j)�+ nXj=1�1 + log2(1 + jqj j)�� :An Ellipsoid in RnAn ellipsoid in Rn is uniquely speci�ed by its center p 2 Rn and a positive de�nitematrix D of order n. Given these, the ellipsoid corresponding to them is fx : (x �p)TD�1(x � p) <= 1g and is denoted by E(p;D). Notice that if D = I, the ellipsoidE(p;D) is the solid spherical ball with p as center and the radius equal to 1. WhenD is positive de�nite, for x; y 2 Rn, the function f(x; y) = (x � y)TD�1(x � y) iscalled the distance between x and y with D�1 as the metric matrix (if D = I,this becomes the usual Euclidean distance). The ellipsoid methods discussed in thefollowing sections obtain a new ellipsoid in each step by changing the metric matrix.Hence these methods belong to the family of variable metric methods. Also, theformula for updating the metric matrix from step to step is of the form Dr+1 = aconstant times (Dr + Cr), where Dj is the metric matrix in step j for j = r; r + 1;and Cr is a square matrix of order n and rank 1 obtained by multiplying a columnvector in Rn by its transpose. Methods which update the metric matrix by such aformula are called rank one methods in nonlinear programming literature. Rankone methods and variables metric methods are used extensively for solving convexunconstrained minimization problems in nonlinear programming. See references [10.2,10.3, 10.9, 10.13]. The ellipsoid methods discussed in the following sections belong tothese families of methods.
8.4 An Ellipsoid Algorithm for theNearest Point Problem on Simplicial ConesLet B = (bij) be a nonsingular square matrix of order n, and b = (bi) a column vectorin Rn. We assume that all the data in B, b is integer, and consider the nearest pointproblem [B; b] discussed in Chapter 7. This is equivalent to the LCP (�q;M) whereM = BTB, �q = �BT b, and so M , �q are integer matrices too, and M is PD andsymmetric. If b 2 Pos(B), then the point b is itself the solution of [B; b], and ( �w = 0;�z = B�1b) is the unique solution of the LCP (�q;M). So we assume that b 62 Pos(B)(this implies that b 6= 0). Here we present an ellipsoid algorithm for solving this nearestpoint problem [B; b] and the corresponding LCP (�q;M). We begin with some resultsnecessary to develop the algorithm.



8.4. An Ellipsoid Algorithm for the Nearest Point Problem 339De�nitionsLet " be a small positive number. Later on we specify how small " should be. LetK = �x : B�1x >= 0; BT (x� b) >= 0	E = �x : (x� b2 )T (x� b2) <= bT b4 	Bd(E) = Boundary of E = �x : (x� b2)T (x� b2 ) = bT b4 	E1 = �x : (x� b2 )T (x� b2 ) <= �"+q bT b4 �2�L1 = &�1 + log2n�+ nPi;j=1�1 + log2(jbij j+ 1)�+ nPi=1�1 + log2(jbij+ 1)�'L2 = n(n+ 1)(L1 + 1)L3 = �n(2n+ 1) + 1�L1�x = Nearest point in Pos(B) to bM = (mij) = BTB�q = (�qi) = �BT b�z = B�1�x�w = �q +M �z� = 342�L2 :Some Preliminary ResultsOur nearest point problem [B; b] is equivalent to the LCP (�q;M). Each mij or �qi is ofthe form 
1
2 + 
3
4 + : : :+ 
2n�1
2n, where the 
's are entries from B, b, and henceare integer. So we havelog2jmij j = log2(j
1
2 + : : :+ 
2n�1
2nj)< log2�(j
1j+ 2)(j
2j+ 2) + : : :+ (j
2n�1j+ 2)(j
2nj+ 2)�<= log2�(j
1j+ 2)(j
2j+ 2) : : : (j
2nj+ 2)�= 2nXt=1 log2(j
tj+ 2)<= 2nXt=1�1 + log2(j
tj+ 1)�<= L1 :So the total number of digits needed to specify the data in the LCP (�q;M) in binaryencoding is at most L2.From well known results the absolute value of the determinant of any squaresubmatrix of B is at most 2L1n . See Chapter 15 in [2.26]. So there exists a positiveinteger 
 < 2L1n such that all the data in the system
B�1x >= 0BT (x� b) >= 0 (8:2)



340 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsare integers. The absolute value of each entry in 
B�1 is < �2L1n �2 (since it is less thanor equal to a subdeterminant of B times 
). Hence the size of (8.2) the total numberof digits in the data in it, in binary encoding, is at most L3.Theorem 8.1 K has nonempty interior.Proof. Proving this theorem is equivalent to showing that there exists an x 2 Rnsatisfying each of the constraints in the de�nition of K as a strict inequality. Thisholds i� the system B�1x > 0BTx�BT bxn+1 > 0xn+1 > 0has a feasible solution (x; xn+1) = X. By Motzkin's theorem of the alternatives (The-orem 5 of Appendix 1) this system has a feasible solution X i� there exists no rowvectors �; � 2 Rn, � 2 R1 satisfying�B�1 + �BT = 0� �BT b+ � = 0(�; �; �) � 0 (8:3)From the �rst set of constraints in this system we have �BTB = �� <= 0. Since BTB isPD, we know that �BTB <= 0, � >= 0 implies that �, must be 0 in any feasible solutionof (8.3). This in turn implies that �, � will have to be zero too, a contradiction. So(8.3) has no feasible solution, hence K has a nonempty interior.Theorem 8.2 K \E = K \ Bd(E) = f�xg.Proof. By the results in Chapter 7, (w; �z) is the solution of the LCP (�q;M). So �z =B�1�x >= 0, 0 <= w = �q+M �z = �BT b+BTBB�1�x = BT (�x�b). Also (�x� b2 )T (�x� b2 )�( bT b4 ) = �xT �x� �xT b = �xT (�x� b) = �zTBT (�x� b) = �zTw = 0. So �x 2 K \ E.Conversely, suppose x̂ 2 K \ E. De�ne ẑ = B�1x̂, bw = BT (x̂� b). Since x̂ 2 Ewe have 0 >= (x̂ � b2 )T (x̂ � b2 ) � ( bT b4 ) = x̂T (x̂ � b) = ẑT bw. Since x̂ 2 K, we haveẑ >= 0, bw >= 0, and hence ẑT bw >= 0. These two together imply that ẑT bw = 0 and wecan verify that bw = BT (x̂ � b) = �q +Mẑ. These facts together imply that ( bw; ẑ) isthe solution of the LCP (�q;M). Since M is PD, by Theorem 3, the LCP (�q;M) hasa unique solution and so ( bw; ẑ) = (w; �z). So x̂ = �x. Thus K \ E = f�xg. Also, for allx 2 K we have (x� b2)T (x� b2 ) = xT (x� b) + ( bT b4 ) = (B�1x)TBT (x� b) + ( bT b4 ) >=( bT b4 ). This implies that K \ E = K \ Bd(E).Theorem 8.3 �x is an extreme point of K.Proof. Since M is PD, (w; �z), the unique solution of the LCP (�q;M) de�ned above,is a complementary BFS. So �z is an extreme point of fz : �Mz <= �q; z >= 0g = ���. Itcan be veri�ed that z 2 ��� i� x = Bz 2 K. So there is a unique nonsingular linear



8.4. An Ellipsoid Algorithm for the Nearest Point Problem 341transformation between ��� and K. This, and the fact that �z is an extreme point of ���implies that �x = B�1�z is an extreme point of K.Theorem 8.4 If ( ew = ( ewi); ~z = (~zi)) is any extreme point ofw �Mz = �qw >= 0; z >= 0 ; (8:4)then ewi, ~zi, is either 0 or > 2�L2 , for each i.Proof. As discussed above, L2 is the size of the system (8.4). This result follows fromthe results discussed in Chapter 15 of [2.26].Theorem 8.5 The Euclidean lenght of any edge of K is >= 2�L3 .Proof. If the edge is unbounded, the theorem is trivially true. Each bounded edge ofK is the line segment joining two distinct adjacent extreme points of K. Let x1, x2be two distinct adjacent extreme points of K. Since K is the set of feasible solutionsof (8.2), the results discussed in Chapter 15 of [2.26] imply that x1 = (u11v1 ; : : : ; un1v1 ),x2 = (u12v2 ; : : : ; un2v2 ) where all the uij 's are integers, v1, v2 are nonzero integers, alljuij j, jv1j, jv2j are <= 2L3n . Also, since x1 6= x2, these facts imply that there exists a jsatisfying jx1j � x2j j >= 2�L3 . This clearly implies that jjx1 � x2jj >= 2�L3 .Theorem 8.6 If " < 2�2(n+1)2L1 , the n-dimensional volume of K \ E1 >= "n2�(n+1)L3 .Proof. K \ Bd(E) = f�xg and K has a nonempty interior. So K \ E1 contains allthe points in K is an "-neighbourhood of �x, and hence has a nonempty interior and apositive n-dimensional volume.If one takes a sphere of radius �, a concentric sphere of radius � + ", and ahyperplane tangent to the smaller sphere at a boundary point x on it, then a tightupper bound on the distance between x and any point in the larger sphere on the sideof the hyperplane opposite the smaller sphere is p2�+ "2. Also the radius of E isq bT b4 < 2(L1�1). �x is an extreme point of K, and every edge of K through �x, has alength >= 2�L3 by Theorem 8.5. These facts and the choice of " here, together implythat every edge ofK through �x intersects the boundary of E1. Let V1; : : : ; Vn be pointsalong the edges of K through �x that intersect the boundary of E1, at a distance ofat most 1 but greater than " from �x, such that f�x; V1; : : : ; Vng is a�nely independent.The portion of the edge between �x and Vi lies inside E1 for at least a length of ". SeeFigure 8.1. If Vi(") is the point on the edge joining �x and Vi at a distance of " from�x, the volume of E1 \K is greater than or equal to the volume of the simplex whosevertices are �x, Vi(") for i = 1 to n. From the choice of Vi, Vi(")� �x = 
(Vi� �x) where



342 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPs
 >= ". So in this case the volume of E1 \K is greater than or equal to1n! ���determinant of �"(V1 � �x) :: : : : :: "(Vn � �x)����= "nn! j determinant of ((V1 � �x) :: : : : :: (Vn � �x))j= "nn! ���� determinant of 8>: 1 1 :: : : : :: 1�x V1 :: : : : :: Vn9>;����> "n2�(n+1)L3 :using the results from Chapter 15 in [2.26].
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Figure 8.1 The volume of E1 \K is greater than or equal to the volume ofthe shaded simplex.Theorem 8.7 Let x̂ 2 E1 \K, ẑ = B�1x̂, bw = BT (x̂� b). Then, for all j = 1 to njx̂j � �xj j <= 2L1p"jẑj � �zj j <= n22L1p"j bwj � wj j <= n22L1p"Proof. As mentioned earlier, the absolute value of any entry in B�1 is <= 2L1 , and thesame fact obviously holds for BT . The radius of E is bT b4 < 2L1�1. The results in thistheorem follow from these facts and the de�nitions of E, E1, bw, ẑ.



8.4. An Ellipsoid Algorithm for the Nearest Point Problem 343Theorem 8.8 Let x̂ 2 E1 \K and ẑ = B�1x̂. If " <= 2�2(n+1)2(L1+1), thenẑj <= (14 )2�L2 ; for j such that �zj = 0ẑj >= (34 )2�L2 = �; for j such that �zj > 0 .Proof. This follows from Theorems 8.7 and 8.4.The AlgorithmFix " = 2�2(n+1)2(L1+1). Consider the following system of constraints.�B�1x <= 0; BT (x� b) <= 0 (8:5)�x� b2�T �x� b2� <=  "+rbT b4 !2 (8:6)Any point x̂ 2 Rn satisfying both (8.5) and (8.6) is in K\E1. We use an ellipsoidmethod to �rst �nd such a point x̂. Then using x̂ we compute �x in a �nal step.De�ne x1 = b2 , A1 = I�" + q bT b4 �2, where I is the unit matrix of order n,N = 8(n+ 1)4(L1 + 1). Go to Step 2.General Step r + 1Let xr, Ar, Er = E(xr; Ar) be respectively the center, positive de�nite symmetricmatrix, and the ellipsoid at the beginning of this step. If xr satis�es both (8.5), (8.6),terminate the ellipsoid method, call xr as x̂ and with it go to the �nal step describedbelow. If xr violates (8.5) select a constraint in it that it violates most, breaking tiesarbitrarily, and suppose it is ax <= d. If xr satis�es (8.5) but violates (8.6), �nd thepoint of intersection �r, of the line segment joining x1 and xr with the boundary of E1.So �r = �x1 + (1� �)xr where � = 1� "+p bT b4jjxr�x1jj . Find the tangent plane of E1 at itsboundary point �r, and �nd out the half-space determined by this hyperplane whichdoes not contain the point xr. Suppose this half-space is determined by the constraint\ax <= d". See Figure 8.2.Now de�ne
r = d� axrpaAraTxr+1 = xr � �1� 
rn1 + n � AraTpaAraTAr+1 = (1� 
2r )n2n2 � 1 �Ar � � 2n+ 1��1� �
r1� 
r � (AraT )(AraT )TaAraT � (8:7)



344 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPswhere the square root of a quantity always represents the positive square root of thatquantity. With xr+1, Ar+1, Er+1 = E(xr+1; Ar+1) move to the next step in theellipsoid method.After at most N steps, this ellipsoid method will terminate with the point xr inthe terminal step lying in E1 \K. Then go to the �nal step discussed below.
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Figure 8.2 Construction of \ax <= d" when xr satis�es (8.5) but violates(8.6).Final Step : Let the center of the ellipsoid in the terminal step be x̂ (this is thepoint xr in the last step r of the ellipsoid method). Let ẑ = B�1x̂. Let J = fj : jsuch that ẑj >= �g. Let yj = zj if j 2 J, wj if j 62 J and let y = (y1; : : : ; yn). Theny is a complementary feasible basic vector for the LCP (�q;M), and the BFS of (8.4)corresponding to y is the solution of this LCP. If this solution is (w; �z), �x = B�z is thenearest point in Pos(B) to b.De�nition We denote by e, the base of natural logarithms. e = 1 +P1n=1 1n! , it isapproximately equal to 2.7.Proof of the AlgorithmLet xr, Ar, Er = E(xr; Ar), be the center, positive de�nite symmetric matrix,and the ellipsoid at the beginning of step r+1. The inequality \ax <= d" is choosen inthis step r+1 in such a way that xr violates it. In the hyperplane \ax = d" decrease duntil a value d1 is reached such that the translate \ax = d1" is a tangent plane to the



8.4. An Ellipsoid Algorithm for the Nearest Point Problem 345ellipsoid Er, and suppose the boundary point of Er where this is a tangent plane is �r.Then Er+1 = E(xr+1; Ar+1) is the minimum volume ellipsoid that contains Er \ fx :ax <= dg, the shaded region in Figure 8.3, it has �r as a boundary point and has thesame tangent plane at �r as Er. From the manner in which the inequality \ax <= d"is selected, it is clear that if Er � E1 \K, then Er+1 � E1 \K. Arguing inductivelyon r, we conclude that every ellipsoid Er constructed during the algorithm satis�esEr � E1 \K. From Theorem 8.6, the volume of E1 \K is >= 2�4n(n+1)2(L1+1). Fromthe results in Chapter 15 of [2.26] we know that the volume of Er gets multiplied bya factor of e� 12(n+1) or less, after each step in the ellipsoid method. E1 is a ball whoseradius is (" +q bT b4 ), and bT b < 22L1 . So the volume of E1 is at most 22nL1 . Thealgorithm terminates in step r, if the center xr satis�es (8.5), (8.6) and that is, it is apoint in E1 \K. If termination does not occur up to step N = 8(n+ 1)4(L1 + 1), thevolume of EN is at most 22L1ne� N2(n+1) < 2�4n(n+1)2(L1+1). From the fact that thevolume of E1 \K > 2�4n(n+1)2(L1+1) this is a contradiction to EN � E1 \K. So forsome r <= N , we will have xr 2 E1\K, and in that step the ellipsoid method terminates.The validity of the remaining portion of the algorithm follows from Theorem 8.7, 8.8,2.9. Since the ellipsoid method terminates after at most N = 8(n+ 1)4(L1 + 1) steps,the algorithm is obviously polynomially bounded.
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ax = dFigure 8.3 Construction of the new ellipsoid Er+1In practice, it is impossible to run the algorithm using exact arithmetic. To runthe algorithm using �nite precision arithmetic, all computations have to be carried out



346 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsto a certain number of signi�cant digits as discussed in [8.13], and the ellipsoid haveto be expanded by a small amout in each iteration (this is achieved by multiplying thematrix Ar in each step by a number slightly larger than one in each step). As pointedout in [2.26] if each quantity is computed correct to 61nL1 bits of precision, and Dr+1multiplied by (1 + 116n2 ) before being rounded, all the results continue to hold.Computational ComparisonY. Fathi [8.10] did a comparative study in which this ellipsoid algorithm has beencompared with the algorithm discussed in Chapter 7 for the nearest point problem.We provide a summary of his results here. In the study the matrix B was generatedrandomly, with its entries to be integers between �5 and +5. The b-vector was alsogenerated randomly with its entries to be integers between �20 and +20. Insteadof using computer times for the comparison, he counted the number of iterations ofvarious types and from it estimated the total number of multiplication and divisionoperations required before termination on each problem. Problems with n = 10, 20,30, 40, 50 were tried and each entry in the table is an average for 50 problems. Doubleprecision was used. It was not possible to take the values of " and � as small asthose recomended in the algorithm. Mostly he tried "; � = 0:1 (the computationale�ort before termination in the ellipsoid algorithms reported in the table below refersto "; � = 0:1), and with this, sometimes the complementary basic vector obtainedat termination of the algorithm turned out to be infeasible (this result is called anunsuccessful run). He noticed that if the values of these tolerances were decreased,the probability of an unsuccessful run decreases; but the computational e�ort requiredbefore termination increases very rapidly.Average Number of Multiplication and DivisionOperations Required Before Termination inn The Algorithm of Chapter 7 The Ellipsoid Algorithm10 Too small 33,30320 16,266 381,06030 42,592 1,764,09240 170,643 5,207,18050 324,126 11,286,717These empirical results suggest that the ellipsoid algorithm cannot compete with thealgorithm discussed in Chapter 7 for the nearest problem, in practical e�ciency. Thesame comment seems to hold for the other ellipsoid algorithms discussed in the follow-ing sections.



8.5. An Ellipsoid Algorithm for LCPs Associated with PD Matrices 3478.5 An Ellipsoid Algorithm for LCPsAssociated with PD MatricesIn this section M = (mij) denotes a given PD matrix of order n (symmetric or not)with integer entries, and q = (qi) denotes a given nonzero integer column vector in Rn.We consider the LCP (q;M).De�nitionsLet " be a small positive number. Later on we specify how small " should be. LetK = fz : Mz + q >= 0; z >= 0g.(w = M �z + q; �z) = unique solution of the LCP (q;M).f(z) = zT (Mz + q).E = fz : f(z) <= 0g.Bd(E) = Boundary of E = fz : f(z) = 0g.L = l(1 + log2n) +Pi;j�1 + log2(jmij j+ 1)�+Pi �1 + log2(jqij+ 1)�mE" = fz : zT (Mz + q) <= "g for " > 0.E0 = fz : zT z <= 22Lg.Since M is a PD matrix, E de�ned above is an ellipsoid.Some Preliminary ResultsTheorem 8.9 The set K = fz :Mz + q >= 0; z >= 0g has nonempty interior.Proof. Remembering that M is a PD matrix, the proof of this theorem is similar tothe proof of Theorem 8.1 of Section 8.4.Theorem 8.10 E \K = Bd(E) \K = f�zg.Proof. This follows directly from the de�nitions.Theorem 8.11 �z is an extreme point of K. Also, every extreme point z of K otherthan �z satis�es f(z) > 2�2L.Proof. Since (w; �z) is a BFS of: w �Mz = q, w >= 0, z >= 0; �z is an extreme point ofK. Also, L is the size of this system. Since (w; �z) is the unique solution of the LCP(q;M), at every extreme point z of K other than �z, we must have f(z) > 0. Usingarguments similar to these in Theorem 8.4 of Section 8.4, we conclude that for eachi, either zi is 0 or > 2�L, and Mi.z + qi is 0 or > 2�L, at every extreme point z ofK. Combining these results we conclude that every extreme point z of K other than�z satis�es f(z) > 2�2L.



348 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsTheorem 8.12 For 0 < " <= 2�2L, the n-dimensional volume of E0 \ E" \ K is>= "n2�3(n+1)L.Proof. Obviously �z 2 E" \K, and by Theorem 8.11, no other extreme point z of Klies in E" \K for 0 < " <= 2�2L. So for every value of " in the speci�ed range, everyedge of K through �z intersects E". Also, since K has a nonempty interior by Theorem8.9, E" \K has a positive n-dimensional volume, K might be unbounded, but by theresults in Chapter 15 of [2.26], at every extreme point of K, both zi and Mi.z + qi are<= 2Ln for each i. Let bK = fz : 0 <= zj <= 2Ln ; 0 <= Mj.z + qj <= 2Ln ; for j = 1 to ng. Bythe above facts, every edge of bK through z is either an edge K (if it is a bounded edgeof K), or a portion of an edge of K (if it is an unbounded edge of K). Let z1; : : : ; zn beadjacent extreme points of �z in bK, such that f�z : z1; : : : ; zng is a�nely independent.The above facts imply that all these points �z, zt, t = 1 to n are in E0. Since M is PD,f(z) is convex. Let � = "2�2L. So for each t = 1 to n, f(�z+�(zt� �z)) <= (1��)f(�z)+�f(zt) = �f(zt) = �Pni=1 zti (Mi.zt + qi) <= �Pni=1�2Ln ��2Ln � <= ". This implies thatthe line segment [�z; �z + �(zt � �z)] completely lies inside E0 \ E" \K. So the volumeof E0 \E" \K >= the volume of the simplex whose vertices are �z, �z + �(zt � �z), t = 1to n, which is= 1n! �� determinant of ��(z1 � �z) :: : : : :: �(zt � �z)���>= �n2�(n+1)L; by results similar to those in the proof of Theorem 8.6>= "n2�(3n+1)L :Theorem 8.13 Let "0 = 2�(6L+1). For any point ẑ 2 E0 \E"0 \K, we have:either ẑi <= p"0 < 2�3Lor Mi.ẑ + qi <= p"0 < 2�3L :Proof. For any i, if both ẑi andMi.ẑ+qi are> p"0, then ẑ(Mẑ+q) > "0, contradictionto the fact that ẑ 2 E0 \ E"0 \K.Theorem 8.14 Let ẑ by any point in E0 \ E"0 \K. De�neyi = �wi if ẑi < 2�3Lzi if ẑi >= 2�3L .Then (y1; : : : ; yn) is a complementary feasible basic vector for the LCP (q;M).Proof. Let J1 = fi : ẑi >= 2�3Lg, J2 = fi : ẑi < 2�3Lg. So J1 \ J2 = ; and J1 [ J2 =f1; : : : ; ng, and by Theorem 8.13, Mi.ẑ + qi < 2�3L for i 2 J1.In [8.11] P. G�acs and L. Lov�asz proved the following lemma :



8.5. An Ellipsoid Algorithm for LCPs Associated with PD Matrices 349Consider the system of constraintsAi.x <= bi; i = 1 to m (8:8)with integer data, and let l be the size of this system. Suppose x̂ is a solution ofAi.x <= bi + 2�l; i = 1 to msuch that Ai.x >= bi, i = 1 to k, and let fAp1.; : : : ; Apr.g � fA1.; : : : ; Ak.g be such thatit is linearly independent and it spans fA1.; : : : ; Am.g linearly. Let �x be any solutionof the system of equations Apt.x = bpt ; t = 1 to r :Then �x is a solution (8.8). See also Chapter 15 in [2.26]. We will use this lemma inproving this theorem. Consider the system :�Mi.z <= qi + 2�3L; i = 1 to n�zi <= 0 + 2�3L; i = 1 to nMi.z <= �qi + 2�3L; i 2 J1zi <= 0 + 2�3L; i 2 J2 : (8:9)We know that ẑ solves this system and in addition ẑ also satis�es Mi.ẑ >= �qi, i 2 J1and ẑ >= 0, i 2 J2. Also, since M is PD, the set fMi. : i 2 J1g[fI.i : i 2 J2g is linearlyindependent and linearly spans all the row vectors of the constraint coe�cient matrixof the system (8.9). From the lemma of P. G�acs and L. Lov�asz mentioned above, thesefacts imply that if ~z is a solution of the system of equations :Mi.z = �qi; i 2 J1zi = 0; i 2 J2 (8:10)then ~z also satis�es : �Mi.z <= qi; i = 1 to n�zi <= 0; i = 1 to nSo ~z >= 0, ew = M ~z + q >= 0 and since ~zi = 0 for i 2 J2 and Mi.z + qi = 0 for i 2 J1we have f(~z) = 0 (since J1 \ J2 = ; and J1 [ J2 = f1; : : : ; ng). So ( ew; ~z) is thesolution of the LCP (q;M). Since ~z is the solution of (8.10), ( ew; ~z) is the BFS of thesystem: w �Mz = q, w >= 0; z >= 0; corresponding to the basic vector y. So y is acomplementary feasible basic vector for the LCP (q;M).The AlgorithmFix " = "0 = 2�(6L+1). So E0 = E(0; 22LI). De�ne N = 2(n + 1)2(11L + 1) in thissection. With z0 = 0, A0 = 22LI, E(z0; A0) go to Step 1.



350 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsGeneral Step r + 1 : Let zr, Ar, Er = E(zr; Ar); be respectively the center, PDsymmetric matrix, and the ellipsoid at the beginning of this step. If zr satis�es :�Mz � q <= 0�q <= 0 (8:11)zT (Mz + q) <= " (8:12)terminate the ellipsoid algorithm, call zr as ẑ and go to the �nal step describedbelow. If zr violates (8.11), select a constraint in it that it violates most, breaking tiesarbitrarily, and suppose it is \az <= d". If zr satis�es (8.11) but violates (8.12), let�r be the point of intersection of the line segment joining the center of the ellipsoidE"0 (this is, z0 = ��M+MT2 ��1( q2)) and zr with the boundary E"0 . Therefore �r =�z0+(1��)zr, where � is the positive root of the equation (�z0+(1��)zr)TM(�z0+(1� �)zr) + q = "0. Let az = d by the equation of the tangent hyperplane to E"0 at�r, where the equation is written such that the half-space az <= d does not contain zr.De�ne 
r+1, Ar+1, as in (8.7) andzr+1 = zr � �1� 
rn1 + n �� AraTpaAraT �With zr+1, Ar+1, Er+1 = E(zr+1; Ar+1), move to the next step in the ellipsoid algo-rithm.After at most N steps, this ellipsoid algorithm will terminate with the point zr inthe terminal step lying in E0 \E"0 \K. Then go to the �nal step described below.Final Step: Let the center of the ellipsoid in the terminal step by ẑ. Using ẑ, �ndthe complementary BFS as outlined in Theorem 8.14.Proof of the AlgorithmThe updating formulas used in this ellipsoid algorithm are the same as those used inthe algorithm of Section 8.4. Hence using the same arguments as in Section 8.4, wecan verify that Er � E0 \ E"0 \K for all r. The volume of E0 is < 22Ln. After eachstep in the ellipsoid algorithm, the volume of the current ellipsoid Er gets multipliedby a factor of e� 12(n+1) or less. So if the ellipsoid algorithm does not terminate evenafter N steps, the volume of EN <= e�(n+1)(11L+1)22Ln < 2�L(9n+1)�n, contradictionto the fact that EN � E0 \ E"0 \K and Theorem 8.12. So for some r <= N , we willhave zr 2 E0 \ E"0 \K, and in that step the ellipsoid algorithm terminates. Hencethe algorithm is obviously polynomially bounded.Comments made in Section 8.4 about the precision of computation required, re-main valid here also.



8.6. An Ellipsoid Algorithm for LCPs Associated with PSD Matrices 3518.6 An Ellipsoid Algorithm for LCPsAssociated with PSD MatricesIn this section we consider the LCP (q;M) where M denotes a given PSD matrix oforder n (symmetric or not) with integer entries, and q denotes a given integer columnvector in Rn.De�nitionsLet K, E, Bd(E), L, E" be as de�ned in Section 8.5. Let E0 = fz : zT z <= 22(L+1)g.Since M is only PSD here, K may have no interior, in fact K may even be empty. AlsoE, E" may not be ellispoids. Let en = (1; : : : ; 1)T 2 Rn.Some Preliminary ResultsTheorem 8.15 In this case the LCP (q;M) has a solution i� K 6= ;. If K 6= ;,there exists a solution, (w; �z), to the LCP (q;M) where �z is an extreme point of K.When K 6= ;, the LCP (q;M) may have many solutions, but the set of all solutions isa convex set which is E \K = Bd(E) \K.Proof. Since M is PSD, the fact that (q;M) has a solution i� K 6= ; follows fromTheorem 2.1. When K 6= ;, the complementary pivot algorithm produces a solution(w; �z), to the LCP (q;M) which is a BFS and this implies that �z is an extreme pointof K. The set of all solutions of the LCP (q;M) is obviously Bd(E)\K, and from thede�nition of K, and E here it is clear that in this case Bd(E) \K = E \K, and sinceboth E and K are convex sets (E is convex because M is PSD), this set is convex.Theorem 8.16 When K 6= ;, E0 \ E" \K contains all the extreme points z of Ksuch that (w = Mz + q; z) is a solution of the LCP (q;M).Proof. By the results discussed in Chapter 15 of [2.26] if (w; �z) is solution of (q;M)which is BFS, then z 2 E0. The rest follows from Theorem 8.15.In this case E0 \E" \K may not contain all the z which lead to solutions of theLCP (q;M), Theorem 8.16 only guarantees that E0 \E" \K contains all the z whichare extreme points of K that lead to solutions of (q;M). Since M is PSD, the set ofsolutions of the LCP (q;M) may in fact be unbounded and hence all of it may not liein E0.Theorem 8.17 If zi is positive in some solution of (q;M), then its complement wiis zero in all solutions of (q;M). Similarly if wi is positive in some solutions of (q;M),then zi is zero in all solutions of (q;M).



352 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsProof. By Theorem 8.15, the set of all solutions of (q;M) is convex set. So if (w1; z1),(w2; z2) are two solutions of (q;M) satisfying the properties that z1i > 0 and w2i > 0,then the other points on the line segment joining (w1; z1), (w2; z2) cannot be solutionsof (q;M) (because they violate the complementarity constraint wizi = 0) contradictingthe fact that the set of solutions of (q;M) is a convex set.Theorem 8.18 If ~z is an extreme point of K, for each i either ~zi = 0 or 2�L <= ~zi <=2Ln . Also either Mi.~z+ qi is zero or 2�L <= Mi.~z+ qi <= 2Ln . Also at every extreme point~z of K that does not lead to a solution of (q;M), we will have f(~z) = ~zT (Mz + q) >2�2L.Proof. Similar to the proof of Theorem 8.11 in Section 8.5.Theorem 8.19 K 6= ; i� the set of solutions ofMz + q >= �2�10Lez >= �2�10Le (8:13)has a nonempty interior.Proof. By the results of P. G�acs and L. Lov�asz in [8.11] (also see Chapter 15 in [2.26]),(8.13) is feasible i�K 6= ;. Also any point in K is an interior point of the set of feasiblesolutions of (8.13).Let K1 denote the set of feasible solutions of (8.13).Theorem 8.20 Let "0 = 2�(6L+1). For any point ẑ 2 E0 \ E"0 \K1, we have foreach i = 1 to n, either ẑi < 2�3L, or Mi.ẑ + qi < 2�3L.Proof. Suppose that ẑi >= 2�3L and Mi.ẑ + qi >= 2�3L. Since ẑ 2 E"0 , ẑT (Mẑ + q) <=2�(6L+1). Then we have Pnt=1;t6=i ẑt(Mt.ẑ + qt) <= 2�(6L+1) � 2�6L <= �2�(6L+1). Butfrom (8.13) and the de�nition of E0 we arrive at the contradictionPnt=1;t6=i ẑt(Mt.ẑ+qt)>= �(n� 1)2�10L(22L+1 + 2L) > �2�(6L+1).Theorem 8.21 Let "0 = 2�(6L+1). If K 6= ;, the n-dimensional volume of E0 \E"0 \K1 is >= 2�11nL.Proof. Assume K 6= ;. So (q;M) has a solution. Let (w; �z) be a complementary BFSof (q;M). So, by Theorem 8.16, �z 2 Bd(E)\K. For � > 0 de�ne the hypercube; C� =fz : z 2 Rn; jzj��zj j <= �2 for all j = 1 to ng. Then, clearly, the n-dimensional volume ofC� is �n. We will now prove thatC� � K1\E0\E"0 for � <= 2�11L. Since the radius ofE0 is 2L+1, C� � E0 by the de�nition of C� and the fact that jj�zjj < 2L from Theorem8.18. Let ẑ be any point in C�. Since �zi >= 0, Mi.�z+ qi >= 0 for all i = 1 to n, we have;ẑi >= �zi � �2 >= ��2 >= �2�10L; Mi.ẑ + qi >= Mi.�z + qi � �2 Pnj=1 jmij j >= �2�(11L+1) �



8.6. An Ellipsoid Algorithm for LCPs Associated with PSD Matrices 3532L >= �2�10L. So C� � K1. Also, since �zT (M �z + q) = 0 (since (w = M �z + q; �z)solves (q;M)), we have: ẑT (Mẑ+ q) = (ẑ� �z)T (M �z+ q+MT �z)+ (ẑ� �z)TM(ẑ� z) <=�2n(2L + 2L2L) + (�2 )2Pi;j jmij j <= 2�(11L+1)n22L+2 + n22L�2(11L+1) <= "0. Thisimplies that C� � E"0 . Hence C� � K1 \ E0 \ E"0 . Now letting � = 2�11L, thevolume of C� is 2�11L, and these facts imply the theorem.Let ẑ be any point in E0 \E"0 \K1. De�neJ�1 = fi :Mi.ẑ + qi <= 0g ; J+1 = fi : 0 < Mi.ẑ + qi <= 2�3Lg ;J�2 = fi : ẑi <= 0g ; J+2 = fi : 0 < ẑi <= 2�3Lg :Then by Theorem 8.20, J�1 [ J+1 [ J�2 [ J+2 = f1; : : : ; ng. Furthermore, ẑ is a solutionof : �Mi.z <= qi + 2�3L; i = 1 to n�zi <= 2�3L; i = 1 to nMi.z <= �qi + 2�3L; for i 2 J+1zi <= 2�3L; for i 2 J+2 (8:14)Theorem 8.22 Let ẑ be any point in E0 \ E"0 \ K1. Let I be the unit matrixof order n. Using the constructive procedure described by P. G�acs and L. Lov�asz in[8.11] (see also Theorem 15.7, Chapter 15 of [2.26]) obtain a new solution, which wewill denote by the same symbol ẑ, such that if J�1 , J+1 , J�2 , J+2 are the index setscorresponding to this new ẑ, then the new ẑ also satis�es (8.14), and there exists alinearly independent subset, D � fMi. : i 2 J�1 [ J+1 g [ fIi. : i 2 J�2 [ J+2 g such thatD spans linearly fMi. : i = 1 to ng [ fIi. : i = 1 to ng. Furthermore, if �z is a solutionof : �Mi.z = qi; for i such that Mi. 2 Dzi = 0; for i such that Ii. 2 Dthen (w = M �z + q; �z) is a solution of the LCP (q;M).Proof. This theorem follows from the results of P. G�acs and L. Lov�asz in [8.11] (orTheorem 15.7, Chapter 15 in [2.26]) applied on (8.14). We know that ẑ satis�es :�Mi.ẑ >= qi; for i 2 J�1Mi.ẑ >= �qi; for i 2 J+1�ẑi >= 0; for i 2 J�2ẑi >= 0; for i 2 J+2By these results, �z is a solution of �Mz <= q�z <= 0 :Furthermore, �z satis�es : Mi.�z = �qi; for i 2 J�1 [ J+1�zi = 0; for i 2 J�2 [ J+2



354 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsby the spanning property of D and these results. Also, since f1; : : : ; ng is the unionof J�1 , J+1 , J�2 , J+2 , at least one of wi or zi is zero for each i = 1 to n. All these factstogether clearly imply that (w; �z) is a solution of the LCP (q;M).The AlgorithmApply the ellipsoid algorithm discussed in Section 8.5 to get a point ẑ in E0 \ E"0 \K1, initiating the algorithm with z0 = 0, A0 = 22(L+1)I, E0 = E(z0; A0). In thiscase K could be ;. This could be recognized in the ellipsoid algorithm in two di�erentways. For any r, if the quantity 
r in step r of the ellipsoid algorithm turns out to be<= �1, it is an indication that the set E0 \E"0 \K1 = ;, terminate, in this case K = ;and the LCP (q;M) has no solution (for a proof of this see Chapter 15 of [2.26]). If
r > �1, compute xr+1, Ar+1 and continue. The volume of E0 here is < 22n(L+1),and if K 6= ;, the volume of E0 \ E"0 \K1 is > 2�11nL by Theorem 8.21. Hence ifK 6= ;, this ellipsoid algorithm will terminate in at most 2(n+1)2(13L+1) steps witha point ẑ 2 E0 \ E"0 \K1. So, if the ellipsoid algorithm did not �nd a point in E0 \E"0 \ K1 even after 2(n + 1)2(13L + 1) steps, we can conclude that K = ;, that is,that the LCP (q;M) has no solution. On the other hand, if a point ẑ in E0 \ E"0 \K1 is obtained in the ellipsoid algorithm, then using it, obtain a solution (w; �z) of theLCP (q;M) as discussed in Theorem 8.22.
8.7 Some NP-Complete Classes of LCPsThe ellipsoid algorithm discussed in Section 8.4, 8.5, 8.6 can only process LCPs asso-ciated with PSD matrices (the class of these LCP is equivalent to the class of convexquadratic programs). In [8.6, 8.15] it was shown that certain LCPs satisfying specialproperties can be solved as linear programs, and these LCPs are therefore polynomiallysolvable using the ellipsoid algorithm (see Chapter 15 in [2.26]) on the resulting linearprograms.For the general LCP, the prospects of �nding a polynomially bounded algorithmare not very promising, in view of the result in [8.3] where it is shown that this problemis NP-complete. See reference [8.12] for the de�nition of NP-completeness. Let a1; : : : ;an; a0 be positive integers and let Mn+2 and q(n+ 2) be the following matrices :Mn+2 = 8>>>>>:�In 0 0eTn �n 0�eTn 0 �n9>>>>>; ; q(n+ 2) = 8>>>>>>>>>>>>: a1::an�a0a0

9>>>>>>>>>>>>;



8.7. Some NP-completeClasses of LCPs 355where In denotes the unit matrix of order n, and en is the column vector in Rn allof whose entries are 1. Also consider the 0-1 equality constrained Knapsack feasibilityproblem : nPi=1 aixi = a0xi = 0 or 1 for all i = 1 to n . (8:15)If ( ew; ~z) is a solution of the LCP (q(n + 2);Mn+2), de�ne ~xi = ~ziai , i = 1 ton, and verify that ~x = (~x1; : : : ; ~xn)T is a feasible solution of the Knapsack problem(8.15). Conversely of x̂ = (x̂1; : : : ; x̂r)T is a feasible solution of (8.15), de�ne bwn+1 =ẑn+1 = bwn+2 = ẑn+2 = 0 and ẑi = aix̂i, bwi = ai(1 � x̂i), i = 1 to n; and verify that( bw = ( bw1; : : : ; bwn+2); ẑ = (ẑ1; : : : ; ẑn+2)) is a solution of the LCP (q(n + 2);Mn+2).Since the problem of �nding whether a feasible solution for (8.15) exists is a wellknown NP-complete problem (see [8.12]), the problem of checking whether the LCP(q(n+2);Mn+2) has a solution isNP-complete. Also, since the matrixMn+2 is negativede�nite, the class of LCPs associated with negative de�nite or negative semide�nitematrices are NP-hard. Also Mn+2 is lower triangular. This shows that the class ofLCPs associated with lower or upper triangular matrices is NP-hard, if negative entriesappear in the main diagonal.Let M be a given negative de�nite matrix with integer entries, and let q 2 Rn bea given integer column vector. In this case the LCP (q;M) may not have a solution;and even if it does, the solution may not be unique. From the results in Chapter 3we know that the number of distinct solutions of the LCP (q;M) in this case is �nite.De�ne : K = fz : z >= 0; Mz + q >= 0gE = fz : zT (Mz + q) >= 0gSince M is negative de�nite, E is an ellipsoid. Let Bd(E) = boundary of E =fz : zT (Mz + q) = 0g.Clearly any point z 2 Bd(E) \K satis�es the property that (w = Mz + q; z) isa solution of the LCP (q;M) and vice versa. So solving the LCP (q;M) is equivalentto the probem of �nding a point in Bd(E) \ K. However, in this case K � E, andin general, Bd(E) \K � E \K. See Figure 8.4. So the nice property that E \K =Bd(E) \ K which held for LCPs associated with PSD matrices does not hold hereanymore, which makes the LCP associated with a negative de�nite matrix much harder.In this case (i. e., withM being negative de�nite), it is possible to �nd a point in E\Kusing an ellipsoid algorithm (actually since K � E here, a point in K can be foundby the ellipsoid algorithm of Chapter 15 of [2.26] and that point will also lie in E),but the point in E \K obtained by the algorithm may not be on the boundary of E,and hence may not lead to a solution of the LCP (q;M). In fact, �nding a point inBd(E) \K is a concave minimization problem, and that's why it is NP-hard.The status of the LCPs (q;M) where M is a P-but not PSD matrix, is unresolved.In this case the LCP (q;M) is known to have a unique solution by the results inChapter 3, but the sets fz : zT (Mz + q) <= 0g are not ellipsoids. The interestingquestion is whether a polynomially bounded algorithm exists for solving this special



356 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPsclass of LCPs. This still remains an open question. It is also not known whether theseLCPs are NP-hard.
KK

E E

Figure 8.4 When M is negative de�nite, E and K may be as in one of the�gures given here. Points of K on the boundary of E, if any, lead to solutionsof the LCP (q;M).8.8 An Ellipsoid Algorithm forNonlinear ProgrammingIn [8.9] J. Ecker and M. Kupferschmid discussed an application of the ellipsoid algo-rithm to solve NLPs of the following form :minimize f0(x)subject to fi(x) <= 0; i = 1 to mwhere all the fi(x) are di�erentiable functions de�ned on Rn, and we assume thatn > 1.For the convergence of the ellipsoid algorithm, we need to specify an initial el-lipsoid whose intersection with a neighborhood of an optimum solution has positiven-dimensional volume. This requirement prevents the algorithm from being used in asimple way for problems having equality constraints, but the penalty transformationdiscussed in Section 2.7.6 can be used for them.It is assumed that lower and upper bounds are avaible on each variable. l, u arethese lower and upper bound vectors. The initial ellispoid is chosen to be the oneof smallest volume among those ellipsoids with center x0 = l+u2 and containing fx :l <= x <= ug. Let this be E0 = fx : (x� x0)TD�10 (x� x0) <= 1g = E0(x0; D0), whereD0 = n4 8>>>>>>>>>>>>>>>>:
(u1 � l1)2 0 0 : : : 00 (u2 � l2)2 0 : : : 00 0 . . . : : : 0... ... ... . . . ...0 0 0 : : : (un � ln)2

9>>>>>>>>>>>>>>>>; :



8.8. An Ellipsoid Algorithm for Nonlinear Programming 357Suppose we have Er(xr; Dr). If xr is infeasible, choose a violated constraint, say theith, where fi(xr) > 0. In case xr is infeasible, the index i of the selected constraintis that of the �rst violated constraint encountered under a search of the constraintsin cyclical order beginning with the constraint selected in the previous step. If xr isfeasible and rf0(xr) = 0, terminate, xr is optimal to NLP (under convexity assuptions,it is a stationary point otherwise). If xr is feasible and rf0(xr) 6= 0, choose the indexi to be zero.Having selected the index i (corresponding to a violated constraint if xr is in-feasible, or the objective function if xr is feasible and rf0(xr) 6= 0), let Hr be thehyperplane Hr = fx : �(rfi(xr))(x� xr) = 0g :The hyperplane Hr supports the contour fi(x) = fi(xr) and divides the ellipsoid inhalf. The center xr+1 of the next ellipsoid Er+1 and the PD matrix Dr+1 used inde�ning Er+1 are determined by the updating formulaeh = rfi(xr)jjrfi(xr)jjd = �DrhT+phDrhTxr+1 = xr + dn+ 1Dr+1 = n2n2 � 1�Dr � 2n+ 1ddT� :The best point obtained during the algorithm and its objective value are main-tained. Various stopping rules can be employed, such as requiring the di�erence be-tween successive best values to be su�ciently small, etc.The method is best suited for solving the NLP above, when all the functions fi(x)are convex. If a nonconvex function is used to generate the hyperplane Hr that cutsEr in half, the next ellipsoid may not contain the optimal point, and the algorithmmay converge to a point that is not even stationary.In computational tests carried out by J. G. Ecker and M. Kupferschmid [8.9], thismethod performed very well.



358 Chapter 8. Polynomially Bounded Algorithms for Some Classes of LCPs

f x(  ) = 0

f x(  ) = 0

f x(  ) = 0

Er +1

r +1

rx

2

1

3

x
Er

Figure 8.5 Construction of the new ellipsoid when xr is infeasible. The arrowon constraint surface fi(x) = 0 indicates the feasible side, that is satisfyingfi(x) <= 0. f1(x) <= 0 is violated at xr and is selected.8.9 Exercises8.4 Let A, D, b, d be given matrices of orders m1 � n, m2 � n, m1 � 1, m2 � 1respectively with integer entries. Let F be a given PD symmetric matrix of order nwith integer entries. De�ne. K1 = fx : Ax >= bgK2 = fx : Dx >= dgE = fx : xTFx <= 1g :Construct polynomially bounded algorithms for checking whether(i) K1 � K2(ii) E � K1.Does a polynomially bounded algorithm exists for checking whether K1 � E ?Why ?8.5 Consider the quadratic programminimize cx+ 12xTDxsubject to x <= b



8.10. References 359where b > 0 and D is a Z-matrix of order n. Express the KKT optimality conditionsfor this problem in the form of a special type of linear complementarity problem, anddevelop a special direct method for solving it, based on Chandrasekaran's algorithmdiscussed in Section 8.1.(J. S. Pang [8.17])8.6 Study the computational complexity of the problem of checking whether the ellip-soid E = fx : (x� �x)TD(x� �x) <= 1g where D is given integer PD symmetric matrixand �x is a given noninteger rational point, contains an integer point.8.7 Show that the LCP (q;M) is equivalent to the following piecewise linear concavefunction minimization problem.minimize nPj=1 (minimumf0;Mj.z � zj + qjg+ zj)subject to Mz + q >= 0z >= 0:(O. L. Mangasarian)
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Chapter 9
ITERATIVE METHODS FOR LCP's

9.1 IntroductionThe name iterative method usually refers to a method that provides a simple formulafor computing the (r + 1)th point as an explicit function of the rth point: xr+1 =f(xr). The method begins with an initial point x0 (quite often x0 can be chosenarbitrarity, subject to some simple constraints that may be speci�ed, such as x0 >= 0,etc.) and generates the sequence of points fx0; x1; x2; : : :g one after the other usingthe above formula. The method can be terminated whenever one of the points in thesequence can be recognized as being a solution to the problem under consideration.If �nite termination does not occur, mathematically the method has to be continuedinde�nitely. In some of these methods, it is possible to prove that the sequence fxrgconverges in the limit to a solution of the problem under consideration, or it may bepossible to prove that every accumulation point of the sequence fxrg is a solution ofthe problem. In practice, it is impossible to continue the method inde�nitely. In suchcases, the sequence is computed to some �nite length, and the �nal solution acceptedas an approximate solution of the problem.In this chapter we consider the LCP (q;M) which is to �nd w; z 2 Rn satisfyingw �Mz = qw; z >= 0wT z = 0 (9:1)



362 Chapter 9. Iterative Methods for LCPswhereM , q are given matrices of orders n�n and n�1, respectively. We discuss severaliterative methods for solving this LCP (q;M). All the methods that we have discussedso far for solving this problem (the pivotal methods and the ellipsoid methods) havethe �nite termination property. In contrast, the iterative methods discussed here donot in general terminate in a �nite number of steps (even though the special structureof the problem discussed in Section 9.2, makes it possible to construct a modi�cationof the iterative method discussed there that terminates after a �nite amount of work).However, these iterative methods have the advantage of being extremely simple andeasy to program (much more so than all the methods discussed so far in this book)and hold promise for tackling very large problems that have no special structure (otherthan possibly symmetry and/or positive de�niteness as required by the algorithm).Most of the algorithms for solving nonlinear programming problems are iterative innature (see references [10.9, 10.13, 10.33]) and the iterative methods discussed here canbe interpreted as specializations of some nonlinear programming algorithms applied tosolve a quadratic program equivalent to the LCP.The word sequence here usually refers to an in�nite sequence. An in�nite se-quence of points fxr : r = 1; 2; : : :g in Rn is said to converge in the limit to the givenpoint x� if, for each " > 0, there exists a positive integer N such that kxr � x�k < "for all r >= N . As an example the sequence in R1, fxr : where xr = 1r ; r >= 1 andintegerg converges to zero. However, the sequence fxr : where xr = 1r if r = 2s forsome positive integer s, and xr = 1 if r = 2s+ 1 for some positive integer sg does notconverge. A point x� 2 Rn, is said to be a limit point or an accumulation pointfor the in�nite sequence fxr : r = 1; 2; : : :g of points in Rn, if for every " > 0 andpositive integer N , there exists a positive integer r > N such that kxr�x�k < ". If x�is a limit point of the sequence fxr : r = 1; 2; : : :g, then there exists a subsequence ofthis sequence, say fxrk : k = 1; 2; : : :g, which converges in the limit to x�, where frk :k = 1; 2; : : :g is a monotonic increasing sequence of positive integers. If the sequencefxr : r = 1; 2; : : :g converges in the limit to x�, then x� is the only limit point for thissequence. A sequence that does not converge may have no limit point (for example,the sequence of positive integers in R1 has no limit point) or may have any numberof limit points. As an example, consider the sequence of numbers in R1, fxr : wherexr = 1r , if r = 2s for some positive integer s, otherwise xr = 1 + 1r , if r = 2s + 1 forsome non-negative integer sg. This sequence has two limit points, namely 0 and 1.The subsequence fx2s : s = 1; 2; : : :g of this sequence converges to the limit point 0,while the subsequence fx2s+1 : s = 1; 2; : : :g converges to the limit point 1.The discussion in this section also needs knowledge of some of the basic propertiesof compact subsets of Rn. See [9.21].



9.2. An Iterative Method for LCPs Associated with PD Symmetric Matrices 3639.2 An Iterative Method for LCPsAssociated with PD Symmetric MatricesThe method discussed in this section is due to W. M. G. Van Bokhoven [9.22]. Weconsider the LCP (q;M) whereM is assumed to be a PD symmetric matrix. For q >= 0,(w = q; z = 0) is the unique solution of the LCP (q;M). So we only consider the caseq 6>= 0. For any vector x = (xj) 2 Rn we denote by jxj the vector (jxjj) in this section.The symbol I denotes the identity matrix of order n. We will now discuss the mainresult on which the method is based.Theorem 9.1 Let M be PD and symmetric. The LCP (q;M) is equivalent to the�xed point problem of determining x 2 Rn satisfyingf(x) = x (9:2)where f(x) = b+Bjxj, b = �(I +M)�1q, B = (I +M)�1(I �M).Proof. In (9.1) transform the variables by substituingwj = jxj j � xj ; zj = jxjj+ xj ; for each j = 1 to n (9:3)We verify that the constraints wj >= 0, zj >= 0 for j = 1 to n automatically hold, from(9.3). Also substituing (9.3) in \w �Mz � q = 0", leads to f(x) � x = 0. Further,wjzj = 0 for each j = 1 to n, by (9.3). So any solution x of (9.2) automatically leads toa solution of the LCP (q;M) through (9.3). Conversely suppose (w; z) is the solutionof the LCP (q;M). Then x = 12 (z � w) can be veri�ed to be the solution of (9.2).Some Matrix Theoretic ResultsIf A is square matrix of order n, its norm, dented by kAk, is de�ned to be the Supremumof fkAxkkxk : x 2 Rn; x 6= 0g. From this de�nition, we have kAxk <= kAk.kxk for allx 2 Rn. See references [9.9, 9.10, 10.33].Since M is symmetric and PD, all its eigenvalues are real and positive (see refer-ences [9.8, 9.9, 9.10, 10.33] for de�nition and results on eigenvalues of square matrices).If �1; : : : ; �n are the eigenvalues of M , then the eigenvalues of B = (I +M)�1(I �M)are given by �i = (1��i)(1+�i) , i = 1 to n; and hence all �i are real and satisfy j�ij < 1 forall i (since �i > 0). Since B is also symmetric we have kBk = Maximumfj�ij : i = 1to ng < 1.The Iterative Scheme for Solving (9.2)The scheme begins with an initial point x1 2 Rn chosen arbitrarily (say x1 = 0). Forr >= 2 de�ne xr+1 = f(xr) = b+Bjxrj : (9:4)



364 Chapter 9. Iterative Methods for LCPsThe equation (9.4) de�nes the iterative scheme. Beginning with the initial pointx1 2 Rn chosen arbitrarily, generate the sequence fx1; x2; : : :g using (9.4) repeatedly.This iteration is just the successive substitution method discussed in Section 2.7.2 forcomputing the Brouwer's �xed point of f(x). We will now prove that the sequencegenerated fx1; x2; : : :g converges in the limit to the unique �xed point x� of (9.2).Convergence TheoremsTheorem 9.2 When M is PD and symmetric, the sequence of points fxrg de�nedby (9.4) converges in the limit to x�, the unique solution of (9.2), and the solution (w�;z�) of the LCP (q;M) can be obtained from x� from the transformation (9.3).Proof. For any x; y 2 Rn we have kf(x)�f(y)k = kB(jxj�jyj)k <= kBk.k(jxj�jyj)k <kx � yk, since k(jxj � jyj)k <= kx � yk and kBk < 1 as discussed above. So f(x) is acontraction mapping (see reference [9.20]) and by Banach contraction mapping theoremthe sequence fxrg generated by (9.4) converges in the limit to the unique solution x�of (9.2). The rest follows from Theorem 9.1.We will denote kBk by the symbol �. We known that � < 1, and it can actuallybe computed by well known matrix theoretic algorithms.Theorem 9.3 If x� is the unknown solution of (9.2), kx�k >= kbk(1+�) .Proof. From (9.2) kx�k = k(b + Bjx�j)k >= kbk � k(Bjx�j)k >= kbk � �kx�k. Sokx�k >= kbk(1+�) .Theorem 9.4 Let xr be the rth point obtained in the iterative scheme (9.4) and letx� be the unique solution of (9.2). Then for r >= 1, kx� � xr+1k <= � �r1���kx2 � x1k.Proof. We have x� � xr+1 = f(x�) � f(xr). So kx� � xr+1k = kf(x�) � f(xr)k <=�kx� � xrk (by the argument used in the proof of Theorem 9.2, since kBk = �).Applying the same argument repeatedly we getkx� � xr+1k <= �rjx� � x1k : (9:5)Now, for r > 2 we have xr+1 � xr = f(xr) � f(xr�1). So we have kxr+1 � xrk =kf(xr)� f(xr�1)k <= �kxr � xr�1k. Using this argument repeatedly, we getkxr+1 � xrk <= �r�1kx2 � x1k; for r > 2 : (9:6)We also have x� � x1 = x� � x2 + (x2 � x1). So we have kx� � x1k <= kx� � x2k +kx2 � x1k. Using this same argument repeatedly, and the fact that the x� = limitxt as t tends to 1, (and therefore limit kx� � xtk as t tends to 1 is 0), we getkx� � x1k <= P1t=1 kxt+1 � xtk <= kx2 � x1k�P1t=0 �t� (from (9.6)) = kx2�x1k(1��) . Usingthis in (9.5) leads to kx� � xr+1k <= � �r1���kx2 � x1k for r >= 1.



9.2. An Iterative Method for LCPs Associated with PD Symmetric Matrices 365Theorem 9.5 If x1 = 0, we have kx� � xr+1k <= �r� kbk1���.Proof. Follows from Theorem (9.4).Theorem 9.6 If x1 = 0, we have for r >= 1, kxr+1k >= kbk� 11+� � �r1���.Proof. We know that kx�k�kxr+1k <= kx��xr+1k. So kxr+1k >= kx�k�kx��xr+1k.The result follows from this and Theorems 9.3, 9.5.How to Solve the LCP (q,M) in a Finite Number of StepsUsing the Iterative Scheme (9.4)Initiate the iterative scheme (9.4) with x1 = 0. Then for r > 1 from Theorem 9.6, weknow that there must exist an i satisfyingjxr+1i j >= kbkpn� 11 + � � �r1� �� : (9:7)But from Theorem 9.5, for the same i, we must have jx�i � xr+1i j <= kbk� �r1���. So ifr is such that 1pn� 11+� � �r1��� > �r(1��) , that is r > N = �log� (1��)(1+pn)(1+�)�=log�� forthe same i satisfying (9.7) we must have both xr+1i and x�i nonzero, and both havethe same sign. Hence, after N + 1 iterations of (9.4) we know at least one i for whichx�i is nonzero, and its sign. If x�i is known to be negative, from (9.3), the variablewi is positive in the solution of the LCP (q;M) (and consequently zi = 0). On theother hand, if x�i is known to be positive, from (9.3), the variable zi is positive andconsequently wi = 0 in the solution of the LCP (q;M). Using this information, theLCP (q;M) can be reduced to another LCP of order (n� 1) as discussed in Chapter7. Since N de�ned above is �nite and can be computed once the matrix B is known,after a �nite number of steps of the iterative scheme (9.4), we can identify a basicvariable in the complementary feasible basic vector for the LCP (q;M), and reducethe remaining problem into an LCP of order (n � 1), and repeat the method on it.The same thing is repeated until a complementary feasible basic vector for the LCP(q;M) is fully identi�ed. In [9.22] W. M. G. Van Bokhoven has shown that the totalnumber of steps that the iterative method has to be carried out before a basic variablein the complementary feasible basic vector for any of the principal subproblems in thisprocess is identi�ed, is at most N , where N is the number depending on the originalmatrixM , given above. So after at most nN steps of the iterative scheme (9.4) appliedeither on the original problem or one of its principal subproblems, a complementaryfeasible basic vector for the LCP (q;M) will be identi�ed.



366 Chapter 9. Iterative Methods for LCPsExercise9.1 Consider the LCP (q;M) whereM = 8>: 0 AT�A 0 9>;which comes from transforming an LP into an LCP. Here M is neither PD nor evensymmetric, but is PSD. Show that (I +M)�1 exists in this case. De�ne, as beforeb = �(I +M)�1q, B = (I +M)�1(I �M). Apply the transformation of variables asin (9.3) in this LCP, and show that it leads to the �xed point problem (9.2). Considerin this following iterative scheme for solving this �xed point problem in this case.x1 = 0xr+1 = b+ xr +Bjxrj2 : (9:8)Show that if the LCP (q;M) has a solution, then the sequence fxrg generated by (9.8)converges to a solution of the �xed point problem and that the limit of this sequenceleads to a solution of the LCP (q;M) in this case through the transformation (9.3).(W. M. G. Van Bokhoven [9.22]).
9.3 Iterative Methods for LCPsAssociated with General Symmetric MatricesIn this section we consider the LCP (q;M), in which the only assumption made isthat M is a symmetric matrix. The method and the results discussed here are dueto O. L. Mangasarian [9.12], even through in some cases these turn out to be gener-alizations of the methods developed in references [10.33]. We begin with some basicde�nitions. We assume that q 6>= 0, as otherwise (w = q; z = 0) is a solution of theLCP (q;M).A square matrix P = (pij) is said to be strictly lower triangular if pij = 0 fori <= j. It is said to be strictly upper triangular if pij = 0 for all i >= j. Given asquare matrixM = (mij) it can be written as the sum of three matricesM = L+G+U ,whereL = 8>>>>>>>>>>>>>>>>:

0 0 : : : 0 0m21 0 : : : 0 0m31 m32 . . . 0 0... ... ... ...mn1 mn2 : : : mn;n�1 0
9>>>>>>>>>>>>>>>>; ; G = 8>>>>>>>>>>:m11 0 : : : 00 m22 : : : 0... ... . . . ...0 0 : : : mnn9>>>>>>>>>>; ;



9.3. Iter. Methods for LCPs Assoc. with General Symmetric Matrices 367U = 8>>>>>>>>>>>>>>: 0 m12 m13 : : : m1;n�1 m1;n0 0 m23 : : : m2;n�1 m2;n... ... ... . . . ... ...0 0 0 : : : 0 mn�1;n0 0 0 : : : 0 0
9>>>>>>>>>>>>>>;The matrices L, G, U de�ned above, are respectively known as the strictly lowertriangular part, the diagonal part and the strict upper triangular part of thegiven square matrix M . If M is symmetric we will have LT = U .Let z = (xj) 2 Rn be any column vector. We denote by x+ = (x+j ) where x+j =Maximum f0; xjg, for each j = 1 to n. The vector x+ can be veri�ed to be the nearestpoint in the nonnegative orthant to x.The Iterative MethodLet x0 >= 0 be an arbitrarily chosen initial point in the nonnegative orthant of Rn.The iterative method is de�ned by the formulazr+1 = ��zr � !Er(Mzr + q +Kr(zr+1 � zr))�+ + (1� �)zr (9:9)for r = 0; 1; : : :, where �, ! are parameters satisfying 0 < � <= 1, ! > 0, whosevalues have to be chosen; for each r, Kr is a strictly lower triangular or strictly uppertriangular matrix, and Er is a positive diagonal matrix, which together satisfyEr > �IyT �(�!Er)�1 +Kr � M2 �y > 
kyk2; for all y 2 Rn (9:10)for some positive numbers �, 
. Also fEr : r = 0; 1; : : :g, fKr : r = 0; 1; : : :g arebounded sequences of matrices. When Kr is strictly lower triangular, (9.9) yields,zr+11 = ��zr1 � !Er11(M1.zr + q1)�+ + (1� �)zr1 ; andzr+1j = ��zrj � !Erjj(Mj.zr + qj + j�1Xl=1 Krjl(zr+1l � zrl ))�+ + (1� �)zrj ; for j = 2 to n;where Erjj is the jth diagonal entry in the diagonal matrix Er and Krjl is the (j; l)thentry in Kr. So in this case zr+1j can be computed, very conveniently, in the speci�corder j = 1; 2; : : : ; n. If Kr is strictly upper triangular, (9.9) yieldszr+1n =��zrn � !Ernn(Mn.zr + qn)�+ + (1� �)zrn; andzr+1j =��zrj � !Erjj(Mj.zr + qj + nXl=j+1Krjl(zr+1l � zrl ))�++(1� �)zrj ; for j = n� 1 to 1;and so in this case zrj+1 can be computed very conveniently in the speci�c order j =n; n� 1; : : : ; 2; 1.



368 Chapter 9. Iterative Methods for LCPsHow is the Iterative Method Obtained ?The formula (9.9) for the iterative method is obtained by considering the quadraticprogramming problem Minimize f(z) = 12zTMz + qT zSubject to z >= 0 (9:11)In this section f(z) denotes the function de�ned in (9.11). Remembering that M isa symmetric matrix, it can be veri�ed that every KKT point for (9.11) leads to asolution of the LCP (q;M) and vice versa. The iteration (9.9) comes from an SOR(Successive Overrelaxation) type of gradient-projection algorithm for solving (9.11).We will discuss the choice for the parameters �, ! and the matrices Er, Kr in (9.9),later on. We will now characterize the convergence properties of the iterative methodde�ned by (9.9).Convergence TheoremsTheorem 9.7 Let E be a diagonal matrix with positive diagonal entries. Then(w = M �z + q; �z) is a solution of the LCP (q;M) i� �z satis�es�z � !E(Mz + q)�+ � z = 0; for some or all ! > 0 : (9:12)Proof. Suppose (w = M �z + q; �z) is a solution of the LCP (q;M). Let ! > 0 bearbitrary. If j is such that �zj = 0, Mj.�z + qj >= 0, we have (�zj � !Ejj(Mj.�z + qj))+ ��zj = (�!Ejj(Mj.�z + qj))+ = 0. If j is such that Mj.�z + qj = 0 and �zj >= 0, we have(�zj � !Ejj(Mj.�z + qj))+ � �zj = �zj � �zj = 0. So in this case �z satis�es (9.12).Conversely suppose �z 2 Rn satis�es (9.12). Then �z = (�z � !E(M �z + q))+ >= 0.Also, if for some j, we haveMj.�z+qj < 0, then from (9.12), 0 = ��zj�!Ejj(Mj.�z+qj)�+� �zj = �!Ejj(Mj.�z+qj), a contradiction. SoM �z+q >= 0 too. Now, for any j between1 to n, if �zj � !Ejj(Mj.�z + qj) >= 0, we have 0 = (�zj � !Ejj(Mj.�z + qj))+ � �zj =�!Ejj(Mj.�z + qj), and hence we must have Mj.�z + qj = 0. On the other hand if �zj �!Ejj(Mj.�z + qj) < 0, we have 0 = (�zj � !Ejj(Mj.�z + qj))+ � �zj = ��zj , and hence wemust have �zj = 0. Thus depending on whether �zj �!Ejj(Mj.�z+ qj) in nonnegative ornegative, we must have Mj.�z + qj or �zj equal to zero. So �zT (M �z + q) = 0. Togetherwith the nonnegativity proved above, we conclude that (w = M �z + q; �z) is a solutionof the LCP (q;M).Theorem 9.8 Let E be a diagonal matrix with positive diagonal entries and letz 2 Rn. Then (z+ � z)TE�1(z+ � y) <= 0 for all y >= 0.Proof. We have (z+ � z)TE�1(z+ � y) = Pnj=1((z+j � zj)(z+j � yj)=Ejj). Here Ejjis the jth diagonal entry of the matrix E. If j is such that zj >= 0, then z+j � zj = 0.If j is such that zj < 0, then (z+j � zj)(z+j � yj)=Ejj = zjyj=Ejj <= 0 since yj >= 0. So(z+� z)TE�1(z+�y) is the sum of non-postive quantities, and hence is non-positive.



9.3. Iter. Methods for LCPs Assoc. with General Symmetric Matrices 369Theorem 9.9 Let fzr : r = 1; 2; : : :g be the sequence of points obtained underthe iterative scheme (9.9). If �z is an accumulation point of this sequence, then (w =M �z + q; �z) is a solution of the LCP (q;M).Proof. Since the initial point z0 >= 0, and from (9.9) we conclude that zr >= 0 for allr = 1; 2; : : :. From strightforward manipulation it can be veri�ed thatf(zr+1)� f(zr) == �!Er(Mzr + q)�T (!Er)�1(zr+1 � zr)+ (zr+1 � zr)TM (zr+1�zr)2= � zr+1�(1��)zr� � zr + !Er(Mzr + q+Kr(zr+1 � zr))�T (!Er)�1(zr+1 � zr)++ (zr+1 � zr)�M2 � (�!Er)�1 �Kr�(zr+1 � zr)= �� zr+1�(1��)zr� � (zr � !Er(Mzr + q+Kr(zr+1 � zr)))�T (!Er)�1� zr+1�(1��)zr� � zr�++ (zr+1 � zr)T �M2 � (�!Er)�1 �Kr�(zr+1 � zr)
(9:13)

From (9.9) we know that zr+1�(1��)zr� = �zr�!Er(Mzr+ q+Kr(zr+1� zr))�+. Also� > 0. Using these, and Theorem 9.8, we conclude that the �rst term in the right handside of (9.13) is <= 0. So f(zr+1)�f(zr) <= (zr+1�zr)T �M2 �(�!Er)�1�Kr�(zr+1�zr).So, f(zr)� f(zr+1) >= (zr+1 � zr)T �(�!Er)�1 +Kr � M2 �(zr+1 � zr)>= 
kzr+1 � zrk2 (9:14)The last inequality (9.14) follows from the conditions (9.10). Since 
 > 0, (9.14) impliesthat f(zr) � f(zr+1) >= 0. Hence ff(zr) : r = 1; 2; : : :g is a monotone non-increasingsequence of real numbers.Let �z be an accumulation point of fzr : r = 0; 1; : : :g. So there exists a sequenceof positive integers such that the subsequence of zr with r belonging to this sequenceof integers converges to �z. Since fEr : r = 0; 1; : : :g, fKr : r = 0; 1; : : :g are boundedsequences of matrices, we can again �nd a subsequence of the above sequence of positiveintegers satisfying the property that both the subsequences of Er and Kr with rbelonging to this subsequence converge to limits. Let frt : t = 1; 2; : : :g be this �nalsubsequence of positive integers. So limit zrt as t tends to 1 is �z. Also limits of Ert ,Krt as t tends to 1 exist, and denote these limits respectively by E and K. Sinceeach Er is a diagonal matrix satisfying Er >= �I, for some positive � for all r, weknow that E = limits Ert as t tends to 1, is itself a diagonal matrix with positivediagonal entries. Since f(z) is continuous, we have f(�z) = limit f(zrt) as t tends to+1. Since ff(zr) : r = 0; 1; : : :g is non-increasing sequence of real numbers, and



370 Chapter 9. Iterative Methods for LCPsits subsequence ff(zrt) : t = 1; 2; : : :g converges to the limit f(�z), we conclude thatff(zr) : r = 0; 1; : : :g is a non-increasing sequence of real numbers bounded belowby f(�z). Hence the sequence ff(zr) : r = 0; 1; : : :g itself converges. This and (9.14)together imply that 0 = limt!+1�f(zrt)� f(z1+rt)� >= limt!+1 
kz1+rt � zrtk2 >= 0. Fromthis and the fact that the sequence fzrt : t = 1; 2; : : :g converges to �z, we conclude thatthe sequence fz1+rt : t = 1; 2; : : :g also converges to �z. These facts imply that0 = limt!+1 kz1+rt � zrtk= � limt!+1 k(zrt � !Ert(Mzrt + q +Krt(z1+rt � zrt)))+ � zrtk= �k(�z � !E(M �z + q))+ � �zk :So we have (�z � !E(M�z + q))+ � �z = 0. So by Theorem 9.7, (w = M �z + q; �z) is asolution of the LCP (q;M).Theorem 9.9 does not guarantee that the sequence fzr : r = 0; 1; : : :g generatedby the iterative method (9.9) has any limit points. When additional conditions areimposed, it is possible to guarantee that this sequence has some limit points.Theorem 9.10 Let M be a symmetric and copositive matrix of order n. Supposefzs : s = 1; 2; : : :g is an unbounded sequence (i. e., limit kzsk as s tends to 1 is 1)satisfying zs >= 0 and f(zs) <= � for all s = 1; 2; : : :, where � is a constant. Then, thereexists a subsequence fzst : t = 1; 2; : : :g such that the sequence fyst : yst = zstkzstk ;t = 1; 2; : : :g converges to a point �y satisfying �y > 0, �yTM �y = 0, qT �y <= 0. If, inaddition, M is copositive plus, then �y also satis�es M �y = 0, and in this case either(9.15) or (9.16) have no solution z 2 Rn.Mz + q > 0 (9:15)Mz > 0 (9:16)Proof. Since kzsk diverges to +1, and zs >= 0, we have zs � 0 when s is su�cientlylarge. Eliminating some of the terms in the sequence fzs : s = 1; 2; : : :g at the beginningof it, if necessary, we can therefore assume that zs � 0 for all s in the sequence. Sokzsk > 0 and hence ys = zskzsk is de�ned for all s. The sequence fys : s = 1; 2; : : :g isan in�nite sequence of points lying on the boundary of the unit sphere in Rn (i. e.,satisfying kysk = 1 for all s), and hence if has a limit point �y, and there exists asubsequence fyst : t = 1; 2; : : :g coverging to �y. Clearly k�yk = 1, and since ys � 0 forall s, we have �y � 0. From the conditions satis�ed by the sequence fzs : s = 1; 2; : : :gwe have �kzstk2 >= f(zst)kzstk2 = 12(yst)TMyst + qT ystkzstk :Taking the limit in this as t tends to +1, we have 0 >= (12)�yTM �y, and since M iscopostive and �y � 0, this implies that �yTM �y = 0. Also, we have �kzstk >= f(zst )kzstk =



9.3. Iter. Methods for LCPs Assoc. with General Symmetric Matrices 371( 12)kzstk(yst)TMyst + qT yst >= qT yst , since M is copositive and yst � 0. Now takingthe limit as t tends to +1, we get 0 >= qT �y.If, in addition, M is copositive plus, and symmetric, �yTM �y = 0, �y � 0 impliesM �y = 0 by the de�nition of copositive plus. Also, in this case, if (9.15) has a solution z,multiplying both sides of (9.15) by �yT on the left yields (since �y >= 0) 0 < �yT (Mz+q) =qT �y + zT (M �y) = qT �y <= 0, a contradiction. Similarly, if (9.16) has a solution z inthis case, multiplying both sides of (9.16) on the left by �y � 0 yields 0 < �yTMz =zT (M �y) = 0, a contradiction.Hence (9.15) has no solution z in this case. Also the system (9.16) has no solutionz in this case.Theorem 9.11 Suppose either(a) M is a symmetric strictly copositive matrix, or(b) M is a symmetric copositive plus matrix satisfying the condition that either(9.15) or (9.16) has a feasible solution z.Then the sequence fzr : r = 0; 1; : : :g generated by the iterative scheme (9.9) is boundedand has an accumulation point which leads to a solution of the LCP (q;M).Proof. From Theorem 9.9 we know that f(zr) <= f(z0) for all r = 1; 2; : : :. If thesequence fzr : r = 0; 1; : : :g is not bounded, it must have a subsequence which diverges,and using it together with the results in Theorem 9.10, we get a contradiction. Hencethe sequence fzr : r = 0; 1; : : :g must be bounded. So it must possess an accumulationpoint, and by Theorem 9.9, every accumulation point of this sequence leads to a solutionof the LCP (q;M).Corollary 9.1 If M is symmetric, nonnegative and has positive diagonal elements,the sequence fzr : r = 0; 1; : : :g obtained under (9.9) is bounded, and every accumula-tion point of it leads to a solution of the LCP (q;M).Proof. Follows from Theorem 9.11.Corollary 9.2 If M is symmetric, copositive plus, and either (9.15) or (9.16) hasa feasible solution z, then the LCP (q;M) has a solution. In this case when thecomplementary pivot method is applied on the LCP (q;M), it cannot terminate in aray, it terminates with a solution for the problem.Proof. Follows from Theorem 9.11 and Theorem 2.1.



372 Chapter 9. Iterative Methods for LCPsExercise9.2 Suppose that M is symmetric and copositive plus. If q < 0 and there exists a zsatisfying Mz + q >= 0, prove that the LCP (q;M) has a solution.Now we state a theorem due to Ostrowski (Theorem 28.1 in reference [9.17], The-orem 6.3.1 in reference [9.12]) which we will use in proving Theorem 9.13 later on.Theorem 9.12 If the sequence fxr : r = 0; 1; : : :g in Rn is bounded and limitkxr+1 � xrk as r tends to 1 is zero, and if the set of accumulation points of fxr :r = 0; 1; : : :g is not a continuum (i. e., a closed set which cannot be written as theunion of two nonempty disjoint closed sets), then fxr : r = 0; 1; : : :g converges to alimit.Proof. See references [9.17] mentioned above.Theorem 9.13 Suppose M is symmetric, copositive plus and nondegenerate. Thenthe sequence fzr : r = 0; 1; : : :g obtained under (9.9) converges to a solution of theLCP (q;M).Proof. In this case the determinant of M is nonzero, so M�1 exists. The vector z =M�1e can be veri�ed to be a feasible solution for (9.16), so by Theorem 9.11, thesequence fzr : r = 0; 1; : : :g of points obtained under the iterative scheme (9.9) for thiscase is bounded, and has at least one limit point. So the nonincreasing sequence ofreal numbers ff(zr) : r = 0; 1; : : :g is also bounded and hence converges. From (9.14)we also conclude that limit kzr+1� zrk as r tends to 1 is zero. By Theorem 9.9 everyaccumulation point of fzr : r = 0; 1; : : :g leads to a solution of the LCP (q;M). But theLCP (q;M) has only a �nite number of solutions in this case, sinceM is nondegenerate(Theorem 3.2). So the sequence fzr : r = 0; 1; : : :g has only a �nite number of limitpoints in this case. This, together with the fact that limit kzr+1 � zrk as r tends to+1 is zero, implies by Theorem 9.12, that the sequence fzr : r = 0; 1; : : :g convergesto a limit, say �z. By Theorem 9.9, �z leads to a solution of the LCP (q;M).Corollary 9.3 If M is symmetric and PD, the sequence fzr : r = 0; 1; : : :g producedby the iterative scheme (9.9) converges to a point �z that leads to a solution of the LCP(q;M).Choice of Various Parameters in the Iterative Scheme (9.9)By setting Kr = 0, Er = E for all r, where E is a diagonal matrix with positivediagonal elements, the iterative scheme (9.9) becomes the following schemez0 >= 0; an initial pointzr+1 = �(zr � !E(Mzr + q))+ + (1� �)zr; r = 0; 1; : : : (9:17)



9.3. Iter. Methods for LCPs Assoc. with General Symmetric Matrices 373where 0 < � � 1, ! > 0 are chosen to satisfy th property that the matrix 2(�!E)�1�Mis PD (to meet condition (9.10)). This special scheme is a projected Jacobi over-relaxation scheme (see reference [10.33]).By setting Kr = L or U , Er = E where E is a diagonal matrix with positivediagonal entries we obtain the following scheme which is a projected SOR (successiveover relaxation) scheme.z0 >= 0; an initial pointzr+1 = �(zr � !E(Mzr + q +Kr(zr+1 � zr)))+ + (1� �)zr; r = 0; 1; : : : (9:18)where 0 < � <= 1, ! > 0 satisfying the condition that�! < 2=Maximum fGjjEjj : j such that Gjj > 0g (9:19)(where G is the diagonal part of M , and Gjj denotes the jth diagonal element fo G ifthe set fj : j such that Gjj > 0, j = 1 to ng is non-empty). This is to meet condition(9.10).In (9.9), by setting Kr = L and U alternately, we get the following projectedsymmetric SOR scheme.z0 >= 0; an initial point.zr+1 = �(zr � !E(Mzr + q + L(zr+1 � zr)))+ + (1� �)zr; r = 0; 2; 4; : : := �(zr � !E(Mzr + q + U(zr+1 � zr)))+ + (1� �)zr; r = 1; 3; 5; : : : (9:20)where 0 < � <= 1, ! > 0 and E is a diagonal matrix with positive diagonal entriessatisfying (9.19).9.3.1 Application of These Methods to SolveConvex Quadratic ProgramsThe LCP (1.19) corresponding to the quadratic program (1.11) is associated with amatrix M which is not symmetric, and hence the iterative methods discussed in thissection cannot be applied to solve it. Here we show that by treating the sign restrictionson the variables, also as contraints, and writing down the KKT optimality conditionsfor the resulting problem, we can derive an LCP associated with a symmetric matrixM corresponding to the problem, if the objective function is strictly convex (i. e., if Dis PD). We consider the quadratic program (1.11), but include all the sign restrictionsunder the system of constraints. This leads to a problem in the following form :Minimize Q(x) = cx+ 12xTDxSubject to Ax >= b (9:21)



374 Chapter 9. Iterative Methods for LCPswhere A is a given matrix of order m � n; b, c are given vectors, and D is a givensymmetric matrix of order n. We assume that D is PD. So (9.21) is a convex programwith a strictly convex objective function. Associate the Lagrange multiplier ui to theith constraint in (9.21), i = 1 to m, and let u = (u1; : : : ; um)T . The Lagrangian forthis problem is L(x; u) = cx+ 12xTDx � uT (Ax� b). The KKT necessary optimalityconditions for this problem are (since D is symmetric)@@xL(x; u) = cT +Dx� ATu = 0u >= 0uT (Ax� b) = 0Ax� b >= 0 : (9:22)
Since D is assumed to be PD here, D�1 exists. So from the �rst set of conditionsin (9.22), we get x = D�1(ATu � cT ). Using this we can eliminate x from (9.22).Denoting the slack variables Ax� b by v, this leads to the LCPv � (AD�1AT )u = �(b+AD�1cT )v >= 0; u >= 0vTu = 0 : (9:23)So if (�u; �v) is a solution of the LCP (9.23), then �x = D�1(AT �u�cT ) is a KKT point forthe quadratic program (9.21). Applying Theorems 1.13, 1.14 to the convex quadraticprogram (9.21), we conclude that an optimum solution of (9,21) is a KKT point andvice versa. So solving (9.21) is equivalent to solving the LCP (9.23). Since the matrixAD�1AT is symmetric this is an LCP associated with a symmetric matrix, and canbe solved by the iterative methods discussed above. In particular, let L, G, U berespectively the strictly lower triangular part, the diagonal part, and the strictly uppertriangular part of the matrix AD�1AT . Generate the sequence fur : r = 0; 1; : : :g inRm by the following iterative scheme :u0 >= 0 selected arbitrarilyur+1 = (ur � !E(AD�1ATur � b� AD�1cT +Kr(ur+1 � ur)))+ (9:24)where E is a diagonal matrix with positive diagonal entries, Kr is either L or U and0 < ! < 2= Maximum fGjjEjj : j such that Gjj > 0g (9:25)Note that (9.24) corresponds to setting � = 1 in (9.9). Also (9.25) is the condtion(9.19) for this case. Also, using (9.24), ur+1 is computed from ur in the speci�c orderj = 1; 2; : : : ; n if Kr = L, or in the speci�c order j = n; n � 1; : : : ; 1 if Kr = U ,asdiscussed earlier. We have the following theorems.



9.3. Iter. Methods for LCPs Assoc. with General Symmetric Matrices 375Theorem 9.14 Each accumulation point �u of the sequence fur : r = 0; 1; : : :ggenerated by (9.24) satis�es the property that (�v = AD�1AT �u� (b+ AD�1cT ); �u) isa solution of the LCP (9.23), and �x = D�1(AT �u� cT ) is the optimum solution of thequadratic program (9.21).Proof. Follows by applying Theorem 9.9 to this case.Theorem 9.14 does not, of course, guarantee that the sequence fur : r = 0; 1; : : :ggenerated by (9.24) has an accumulation point. This requires some more conditionson (9.21) as discussed below in Theorem 9.15.Theorem 9.15 If the set of feasible solutions of (9.21) has an interior point (i. e.,there exists an x satisfying Ax > b) and D is symmetric PD, then the sequence fur :r = 0; 1; : : :g generated under (9.24) is bounded, and has at least one accumulationpoint. Each accumulation point �u satis�es the statement in Theorem 9.14.Proof. Since Ax > b is feasible, there exists a � > 0 such that the set of feasiblesolutions of Ax >= b+ �e (9:26)is nonempty. Fix � at such a positive value. Since the set of feasible solutions of (9.26)is nonempty, and Q(x) is strictly convex, the problem of minimizing Q(x) subject to(9.26) has an optimum solution and it is unique. Suppose this optimum solution is ~x.The KKT necessary optimality conditions for this problem arecT +Dx� ATu = 0u >= 0Ax >= b+ �eu(Ax� b� �e) = 0 : (9:27)So there exists a ~u 2 Rm such that ~x, ~u together satisfy (9.27). Hence (AD�1AT )~u+(�b�AD�1cT ) >= �e > 0. This is like condition (9.15) for the LCP (9.23). Using this,this theorem follows from Theorem 9.11.
9.3.2 Application to Convex Quadratic ProgramSubject to General ConstraintsThe constraints in a quadratic program may be either linear inequalities or equations.Here we discuss how to apply the iterative scheme to solve the quadratic programdirectly without carrying out any transformations �rst to transform all the constraintsinto inqualities. We consider the quadratic programMinimize Q(x) = cx+ 12xTDxSubject to Ax >= bFx = d (9:28)



376 Chapter 9. Iterative Methods for LCPswhere A, F are given matrices of orders m � n, k � n respectively; b, d, c are givenvectors; and D is a given symmetric positive de�nite matrix of order n. Associate theLagrange multiplier ui, to the ith inequality constraint in (9.20), i = 1 to m; and theLagrange multiplier �t to the tth equality constraint in (9.28), t = 1 to k. Let u = (ui),� = (�t). The Lagrangian for this problems is L(x; u; �) = cx+ 12xTDx�uT (Ax� b)��T (Fx� d). Since D is symmetric, the KKT necessary optimality conditions for thisproblem are : @@xL(x; u; �) = cT +Dx� ATu� FT � = 0u >= 0uT (Ax� b) = 0Ax� b >= 0Fx� d = 0 : (9:29)
From (9.29) we get x = D�1(ATu � FT � � cT ). Using this we can eliminate x from(9.29). When this is done, we are left with a quadratic program in terms of u and� associated with a symmetric matrix, in which the only constraints are u >= 0. Theiterative scheme discussed above, specialized to solve this problem, becomes the fol-lowing. Let L, G, U be respectively the strict lower triangular part, the diagonal part,and the strict upper triangular part of 8>:AF 9>;D�1 (AT FT ). Generate the sequencef(ur; �r) : r = 0; 1; : : :g by the following scheme(u0; �0) selected arbitrarily to satisfy u0 >= 0:8>:ur+1�r+19>; = 8>:ur�r 9>;� !E �8>:AF 9>;D�1 (AT FT )8>:ur�r 9>;�8>:AF 9>;D�1cT �8>: bd9>;+Kr �8>:ur+1�r+19>;�8>:ur�r 9>;��� (9:30)where, as before, E is a diagonal matrix with positive diagonal entries, Kr is either Lor U , ! is a positive number satisfying (9.25), and8>:u�9>;� = 8>:u+� 9>;In (9.30), if Kr = L, ur+1j are computed in the order 1; 2; : : : ;m �rst and then �r+1is computed. If Kr = U , �r+1 is �rst computed and then ur+1j are computed in theorder j = m;m�1; : : : ; 1. We have the following theorems about this iterative scheme,corresponding to Theorems 9.14, 9.15 discussed earlier.Theorem 9.16 Each accumulation point (�u; ��) of f(ur; �r) : r = 0; 1; : : :g generatedby (9.30) satis�es the property that (�u; ��; �x = D�1(AT �u� FT �� � cT )), satis�es (9.29)and �x is the optimum solution of the quadratic program (9.28).Proof. Similar to Theorem 9.14.



9.4. Sparsity Preserving SOR Methods for Separable QP 377Theorem 9.17 If there exists an x̂ satisfying Ax̂ > b, F x̂ = d; and the set of rowsof F is linearly independent, then the sequence f(ur; �r) : r = 0; 1; : : :g generated by(9.30) is bounded, and at last one accumulation point.Proof. Similar to Theorem 9.15.
9.3.3 How to Apply These Iterative Schemes in PracticeIn practice we can only carry out the iterative scheme up to a �nite number of steps,and obtain only a �nite number of elements in the sequence. Usually the iterativescheme can be terminated whenever the current element in the sequence satis�es theconstraints in the LCP to a reasonable degree of accuracy, or when the di�erencebetween successive elements in the sequence is small.Exercise9.3 Consider the LP Minimize �(x) = cxSubject to Ax >= b (9:31)where A is a given matrix of order m � n, and b, c are given vectors. Suppose thisproblem has an optimum solution, and let �� denote the unknown optimum objectivevalue in this problem. Now consider the following quadratic programming pertubationof this LP where " is a small positive numberMinimize "2xTx+ cxSubject to Ax >= b (9:32)i) Prove that if (9.31) has an optimum solution, there exists a real positive number�" such that for each " in the interval 0 < " <= �", (9.32) has an unique optimumsolution �x which is independent of ", and which is also an optimum solution ofthe LP (9.31).ii) If �
 is the nonnegative optimal Lagrange multiplier associated with the last con-straint in the following problem, where �� is the optimum objective value in (9.31),prove that the �" in (i) can be selected to be any value satisfying 0 < �" � 1�
 . If�
 = 0, �" can be chosen to be any postive number.Minimize 12xTxSubject to Ax >= b�cx >= ���(O. L. Mangasarian and R. R. Meyer [9.15])



378 Chapter 9. Iterative Methods for LCPs9.4 Sparsity Preserving SOR MethodsFor Separable Quadratic ProgrammingThe iterative SOR methods discussed in Section 9.3 for quadratic programming requirethe product of the constraint matrix by its transpose which can cause loss of bothsparsity and accuracy. In this section we discuss special sparsity preserving versionsof the general SOR algorithms presented in Section 9.3 for the LCP associated witha symmetric matrix, or equivalently for the quadratic program with nonnegativityconstraints only; these versions are given in a simple explicit form in terms of the rowsof the matrix M , and very large sparse problems can be tackled with them. Thenwe specialize these algorithms into SOR algorithm for solving separable quadraticprogramming problems that do not require multiplication of the constraint matrixby its transpose. The algorithms and the results discussed in this section are fromO. L. Mangasarian [9.14].We consider the LCP (9.1) in which M = (mij) is a symmetric matrix. Asdiscussed in Section 9.3, solving (9.1) is equivalent to �nding a KKT point for thequadratic programming problem (9.11). The SOR algorithm given here is a type ofgradient projection algorithm for (9.11) with ! as the relaxation factor or step size thatmust satisfy 0 < ! < 2, and is based on those discussed in Section 9.3. The algorithmis the following. Choose z0 >= 0 as the initial point. For r = 0; 1; : : : de�ne for j = 1 ton. zr+1j = (zrj � !�j(
r+1j + nXt=j mjtzrj + qj))+ (9:33)where �j = 1mjj if mjj > 0, and �j = 1 if mjj <= 0; 
r+11 = 0, 
r+1j = Pj�1t=1 mjtzr+1tfor j > 1.Convergence TheoremsTheorem 9.18 Let M be a symmetric matrix. Then the following hold.(1) Each accumulation point of the sequence fzr : r = 0; 1; : : :g generated by theiterative scheme (9.33) leads to a solution of the LCP (9.1).(2) If M is symmetric and PSD and the system: Mz + q > 0, has a solution z,the sequence fzr : r = 0; 1; : : :g generated by (9.33) is bounded and has anaccumulation point that leads to a solution of (9.1).(3) IfM is symmetric and PD the sequence fzr : r = 0; 1 : : :g generated by (9.33)converges to a point �z that leads to the unique solution of the LCP (9.1) (i. e.,(w =M �z + q; �z) is the solution of the LCP).(4) If M is symmetric and PSD and (9.1) has a nonempty bounded solution set,the sequence fzr : r = 0; 1; : : :g generated by (9.33) is bounded and has anaccumulation point that leads to a solution of (9.1).



9.4. Sparsity Preserving SOR Methods for Separable QP 379Proof. Part (1) follows from Theorem 9.9. Part (2) follows from Theorem 9.11. Part(3) follows from Corollary 9.3. To prove part (4), notice that if the sequence fzr :r = 0; 1; : : :g generated by (9.33) is unbounded, by Theorem 9.10, there exists a �y 2 Rnsatisfying: �y � 0, M �y = 0, qT �y <= 0. So, if (w = M �z + q; �z) is a solution of (9.1),then (M(�z + ��y) + q; �z + ��y) is also a solution of (9.1) for all � >= 0 (since �z + ��y >= 0,M(�z + ��y) + q >= 0 and 0 <= (�z + ��y)T (M(�z + ��y) + q) = �qT �y <= 0) contradicting theboundedness assuption of the solution set of (9.1).
9.4.1 Application toSeparable Convex Quadratic ProgrammingConsider the quadratic programMinimize cx+ 12xTDxSubject to Ax >= bx >= 0 (9:34)where A is a given matrix of order m�n and D is a positive diagonal matrix of order n.Let uT 2 Rm, vT 2 Rn be the row vectors of Lagrange multipliers associated with theconstraints and sign restrictions in (9.34). From the necessary optimality conditionsfor (9.34) it can be veri�ed that an optimum solution for (9.34) is given byx = D�1(ATu+ v � cT ) (9:35)where (u; v) is an optimum solution ofMinimize �bTu+ 12(ATu+ v � cT )TD�1(ATu+ v � cT )Subject to (u; v) >= 0 : (9:36)The problem (9.36) is in the same form as (9.11) and so the iterative algorithm (9.33)can be applied to solve it. It leads to the following iterative scheme. Choose (u0; v0) >=0, 0 < ! < 2. Having (ur; vr) de�ne for i = 1 to m.ur+1i =  uri � !kAi.D� 12 k2��Ai.D�1(
i;r+1 + mXt=i (At.)Turt + vr � cT )�� bi�!+vr+1 = �vr � !(ATur+1 + vr � cT )�+ (9:37)where 
i;r+1 = 0 for i = 1, or =Pi�1t=1(At.)Tur+1i for i > 1. Notice that the sparsity orany structural properties that the constraint coe�cient matrix A may have are takenadvantage of in (9.37).



380 Chapter 9. Iterative Methods for LCPsTheorem 9.19 The following hold.(1) Each accumulation point (�u; �v) of the sequence f(ur; vr) : r = 0; 1; : : :g gen-erated by (9.37) solves (9.36) and the corresponding �x determined by (9.35)solves (9.34).(2) If fx : Ax > b; x > 0g 6= ;, the sequence f(ur; vr) : r = 0; 1; : : :g generated by(9.37) is bounded and has an accumulation point (u; v) and the correspondingx determined by (9.35) solves (9.34).Proof. Part (1) follows from Theorem 9.18. To prove part (2), if fx : Ax > b; x > 0g 6=;, the perturbed positive de�nite quadratic program: minimize cx+ 12xTDx subject toAx >= b+ em�, x > en�, where et is the column vector of all 1's in Rt for any t, has anoptimum solution ~x. If (~u; ~v) are the corresponding Lagrange multiplier vectors, fromthe KKT necessary optimality conditions we have~x = D�1(AT ~u+ ~v � cT ) >= en� > 0AD�1(AT ~u+ ~v � cT )� b >= em� > 0 :These conditions are equivalent to the condition Mz + q > 0 in Theorem 9.18 forthe LCP corresponding to problem (9.36). Hence, by Theorem 9.18, the sequencef(ur; vr) : r = 0; 1; : : :g generated by (9.37) is bounded, and hence has an accumulationpoint (u; v). The corresponding x determined from (9.35) solves (9.34) by the resultin part (1).In [9.14] O. L. Mangasarian used the iterative scheme (9.37) to develop a spar-sity preserving SOR algorithm for solving linear programs. These schemes are alsodiscussed in Section 16.4 [2.26].Note 9.1 Suppose we have observations on the yield at at values of the temperaturet = 1; 2; : : : ; n; and it is believed that this yield can be approximated very closely bya convex function of t. Let x(t) be a convex function in t, and denote x(t) by xtfor t = 1; : : : ; n. The problem of �nding the best convex approximation to the yield,usng the least squares formulation, leads to the quadratic programming problem : �ndx = (x1; : : : ; xn)T tominimize Pni=1(xi � ai)2subject to xi+1 � xi >= xi � xi�1; i = 2; : : : ; n� 1This leads to the LCP (q;M), where
M = 8>>>>>>>>>>>>>>>>>>>>>:

6 �4 1 0 0 0 : : : 0�4 6 �4 1 0 0 : : : 01 �4 6 �4 1 0 : : : 00 1 �4 6 �4 0 : : : 0... . . . . . . . . . . . . ... ... ...0 0 0 0 0 1 �4 6
9>>>>>>>>>>>>>>>>>>>>>;and q = (a2 � a1; a3 � a2; a4 � a3; : : :)T .



9.5. Iterative Methods for General LCPs 381J. S. Pang has tried to solve this class of LCPs for n = 100, using various iterativeSOR methods discussed in this section and in Section 9.3 and found that convergence isnot obtained even after several thousands of iterations. The matrixM given above is avery specially structured positive de�nite symmetric matrix, and the pivotal methodsdiscussed in Chapters 2,4 perform very well in solving LCPs associated with this matrixM . An explanation for the poor performance (slow convergence) of SOR iterativemethods on LCPs associated with M can be given in terms of the eigenvalues of M .At any rate, this example shows that iterative methods may not perform well on someclasses of LCPs. These iterative methods are particularly useful for solving LCPs ofvery large orders or those which lack special structure, and thus are not easily handledby pivotal methods.9.5 Iterative Methods for General LCPsThe results in Section 9.3 have been generalized by B. H. Ahn to the case of LCPs inwhich the matrixM may not be symmetric [9.3]. We discuss his results in this section.We want to solve the LCP (q;M) (9.1), where M is a given matrix of order n, notnecessarily symmetric.Given any matrix A = (aij) we will denote by jAj the matrix (jaijj). Also if A isa square matrix of order n, the matrix C = (cij) of order n where cii = jaiij for i = 1to n; and cij = �jaij j, i; j = 1 to n, i 6= j, is known as the comparison matix of A.We will now discuss some results on which the algorithm will be based.Suppose we are given a square matrix A of order n which is not necessarily sym-metric. So some of the eigenvalues of A may be complex. The spectral radius of Adenoted by �(A), is the maximum fj�1j; : : : ; j�njg where �1; : : : ; �n are the eigenvaluesof A. See Ortega and Rheinboldt [10.33] for results on the spectral radius of A.Theorem 9.20 Let x; y 2 Rn. Then (x + y)+ <= x+ + y+, also x <= y impliesx+ <= y+. Also (x� y)+ >= x+ � y+.Proof. Follows by direct veri�cation.Theorem 9.21 Let g(z) = (z � !E(Mz + q))+, ! > 0 and E is a diagonal matrixwith positive diagonal entries. (w = Mz + q; z) is a solution of the LCP (q;M) i�g(z) = z.Proof. Follows from Theorem 9.7 of Section 9.3.The Iterative SchemeChoose z0 >= 0 in Rn arbitrarily. Given zr, determine zr+1 fromzr+1 = �zr � !E�Mzr + q +K(zr+1 � zr)��+; r = 0; 1; : : : (9:38)



382 Chapter 9. Iterative Methods for LCPswhere ! > 0, E is a diagonal matrix with positive diagonal entries, and K is either astrictly upper triangular or a strictly lower triangular matrix. This scheme is a specialcase of (9.9) discussed earlier in Section 9.3. We will now study the convergenceproperties of the sequence fzr : r = 0; 1; : : :g when M is not necessarily symmetric.Notice that the convergence properties of this sequence established in Section 9.3 usingthe descent function 12zTMz+ qT z, need the symmetry of M , and hence may not holdwhen M is not symmetric.Convergence PropertiesTheorem 9.22 The vectors in the sequence fzr : r = 0; 1; : : :g obtained using (9.32)satisfy for each r = 1; 2; : : :jzr+1 � zrj <= (I � !EjKj)�1jI � !E(M �K)j.jzr � zr�1j : (9:39)Proof. From (9.38), we have zr+1�zr = (zr�!E(Mzr+q+K(zr+1�zr)))+�(zr�1�!E(Mzr�1+q+K(zr�zr�1)))+ <= ((zr�zr�1)�!EM(zr�zr�1)�!EK(zr+1�zr)+!EK(zr � zr�1))+ from Theorem 9.20. So (zr+1 � zr)+ <= ((I � !E(M �K))(zr �zr�1))+ + (�!EK(zr+1 � zr))+. We can obtain a similar result for zr � zr+1, that is(zr�zr+1)+ <= ((I�!E(M�K))(zr�1�zr))++(�!EK(zr�zr+1))+. Rememberingthat jxj = x++(�x)+ for any vector x 2 Rn, and adding the above two inequalities weget jzr+1� zrj <= jI �!E(M �K)j.jzr � zr�1j+!EjKj.jzr+1� zrj. Since K is strictlylower or upper triangular, the matrix I � !EjKj is either a lower or upper triangularmatrix, is invertible, and has a nonnegative inverse. Using this we get (9.39) from thelast inequality.Theorem 9.23 Suppose the iteration parameters !, E, K and the underlyingmatrix satisfy �(Q) = kQk < 1, where Q = (I � !EjKj)�1(jI � !E(M �K)j). Thenthe sequence of points fzr : r = 0; 1; : : :g generated by (9.38) converges to a point �zwhere (w =M �z + q; �z) is a solution of the LCP.Proof. Since �(Q) < 1, by the result in Theorem 9.22 we conclude that limit of(zr+1� zr) as r tends to1, is zero. Also, clearly Q >= 0. Now jzr� z0j <= jzr� zr�1j+: : : + jz1 � z0j <= (Qr + : : : + I)jz1 � z0j <= (I � Q)�1jz1 � z0j, (since kQk < 1) =a constant vector independent of r. So the sequence fzr : r = 0; 1; : : :g is bounded.So it has a subsequence fzrt : t = 1; 2; : : :g which converges to a limit, �z, say. Solimt!1 jzrt+1� �zj < limt!1 jzrt+1� zrt j+ limt!1 jzrt � �zj = 0, which shows that limit zrt+1 ast tends to 1 is �z too. Now by the de�nition of zrt+1 from equation (9.38), and takingthe limit as t tend to +1, we conclude that �z = (�z � !E(M�z + q))+. So by Theorem9.21, (w =M �z + q; �z) is a solution of the LCP. Also, as in the proof of Theorem 9.22,we can show that jzr+1 � �zj <= Qjzr � �zj holds for all r. Since j�(Q)j < 1; we concludethat limit jzr � �zj as r tends to +1 is zero. So the entire sequence fzr : r = 0; 1; : : :gitself converges in the limit to �z.



9.6. Iterative Methods for LCPs Based on Matrix Splittings 383Theorem 9.24 Let L, D, U be respectively the strictly lower triangular, diagonaland strictly upper triangular parts respectively of M . Let K be L or U or 0. LetB = I � !EjKj, C = jI � !E(M � K)j, A = B � C. If A is a P-matrix, thenthe sequence fzr : r = 0; 1; : : :g generated by (9.38) converges to a point �z where(w = M �z + q; �z) is a solution of the LCP (q;M).Proof. From the de�nition of B, we know that B is invertible and B�1 >= 0. AlsoC >= 0. So by 2.4.17 of Ortega and Rheinboldt's book [10.33], �(B�1C) < 1 i� A�1exists and is nonnegative. Since A is a Z-matrix, for it to have a nonnegative inverse,it su�cies if A is a P -matrix. The result follows from these and from Theorem 9.23.Theorem 9.25 If D � jL+ U j is a P -matrix, then the sequence fzr : r = 0; 1; : : :ggenerated by (9.38) with K = L or U or 0 and 0 < ! < 1=maxfMjjEjj : j = 1to ng where Mjj , Ejj are the jth diagonal entries of the matrices M , E respectively,converges to a solution �z where (w =M �z + q; �z) is a solution of the LCP.Proof. Follows from Theorem 9.23.
9.6 Iterative Methods for LCPsBased on Matrix SplittingsThe iterative scheme and the results discussed in this section are due to J. S. Pang[9.18]. Consider the LCP (q;M), (9.1), of order n. If B, C are square matrices of ordern satisfying M = B + C ; (9:40)(9.40) is said to be a splitting of the matrixM . Let E be a square nonnegative diagonalmatrix of order n with diagonal entries Eii < 1 for all i. This iterative scheme generatesa sequence of points fzr : r = 0; 1; : : :g by the following: Let B, C, be a splitting ofM as in (9.40), z0 2 Rn be an arbitrarily selected nonnegative vector. Given zr, solvethe LCP with data (qr; B) where qr = q + (C + BE)zr, and let the solution of thisLCP be (ur+1 = Bzr+1 + qr; zr+1). Then zr+1 is the next point in the sequence.For this scheme to be practical, the matrix B should be such that the LCP (p;B)can be solved easily for any p 2 Rn. If B is a diagonal matrix with positive diagonalentries, or a triangular matrix with positive diagonal entries this will be the case. Weassume that the splitting B, C of M is chosen so that the computation of the LCP(p;B) is easily carried out. Matrix splittings are used extensively in the study ofiterative methods for solving systems of linear equations. The results in this sectionshow that they are also useful for contructing iterative methods to solve LCPs. It canbe veri�ed that the iterative scheme discussed in Section 9.3 is a special case of thescheme discussed here, obtained by setting, E = (1� �)I and the splitting B, C given



384 Chapter 9. Iterative Methods for LCPsby B = K + G=(�!�), and C = (M �K) � G=(�!�) where 0 < � < 1, !� > 0, andK is either a strictly lower triangular or a strictly upper triangular matrix and G is adiagonal matrix with positive diagonal entries.Theorem 9.26 Suppose the following conditions hold:(i) B satis�es the property that the LCP (p;B) has a solution for all p 2 Rn;(ii) B = U + V + CT with U , V being matrices satisfying conditions mentionedbelow;(III) there exists a permutation matrix P such that the following matrices havethe stated partitioned structure.PTV P = 8>:V�� 00 09>; ; PTCP = 8>:C�� 00 09>; ;PTEP = 8>:E�� 00 09>; ; PTUP = 8>: 0 U���UT�� 0 9>; ;with V�� being symmetric positive de�nite matrix, where ��� � f1; : : : ; ng, ��� =f1; : : : ; ng n ���, and V�� is the matrix of Vij with i 2 ���, j 2 ���, etc.(iv) the initial vector z0 >= 0 satis�es q� � UT��z0� >= 0.Then every accumulation point, �z of the sequence f�z : r = 0; 1; : : :g generatedby the scheme discussed above, satis�es the property that (w = M �z + q; �z)is a solution of the LCP (q;M). Also if the following additional condition issatis�ed:(v) the matrix A�� = (V +C +CT )�� is copositive plus and there exists vectorsy1�, y2� such that q� + A��y1� > 0: (9:41)y2� >= 0; q� � UT��y2� > 0 (9:42)then the sequence fzr : r = 0; 1; : : :g generated by the above scheme isbounded, and has an accumulation point.Proof. De�ne f(z) = qT� z�+ 12zTMz. From the choice of z0, and the iteration formulait is clear that zr >= 0 for all r, and that q� � UT��zr >= 0 for all r >= 0. In order tosatisfy all these conditions, the matrix M need not be symmetric or PSD, but it mustbe copositive plus (for condition (iv)), and a principal rearrangement of M is given by8>: A�� U���UT�� 0 9>; :So f(z) = qT� z� + zT�A��z�=2. Hencef(zr+1)� f(zr) == (q� +A��zr�)T (zr+1� � zr�) + (zr+1� � zr�)TA��(zr+1� � zr�)=2= (q� + C��zr� + (V + CT )��zr+1� )T (zr+1� � zr�)� (zr+1� � zr�)TV��(zr+1� � zr�)=2= (q� + C��zr� + (V + CT )��zr+1� + U��zr+1� )T (zr+1� � zr�)� (zr+1� )T (UT��zr+1� � UT��zr�)� (zr+1� � zr�)TV��(zr+1� � zr�)=2= (q� + C��zr� + (V + CT )��zr+1� + U��zr+1� )T ((zr+1 � Ezr) + (E � I)zr)�+ (zr+1� )T ((q� � UT��zr+1� )� (q� � UT��zr�))� (zr+1� � zr�)TV��(zr+1� � zr�)=2 ;



9.7. Exercises 385because (ur+1 = Bzr+1+qr; zr+1) solves the LCP (qr; B). From this we conclude thatf(zr+1)� f(zr) <= �12(zr+1� � zr�)TV��(zr+1� � zr�) <= 0 : (9:43)Now let z� be an accumulation point of the sequence fzr : r = 0; 1; : : :g and let fzrt :t = 1; 2; : : :g be a subsequence coverging to z�. This clearly implies by (9.43) that thesequence ff(zr) : r = 0; 1; : : :g converges. As in the proof of Theorem 9.9, it can beshown that in this case, limt!1 zrt�1� = limt!1 zrt� = z�� : (9:44)Also, for each rt we haveurt� = q� + C��zrt�1� + B��zrt� >= 0; zrt >= E��zrt�1� (9:45)urt� = q� + B��zrt� >= 0; zrt� >= 0 : (9:46)(urt� )T (zrt� �E��zrt�1� ) = (urt� )T zrt� = 0 : (9:47)Taking the limit as t tends to1 and usng (9.44), we conclude that (w� =Mz�+q; z�)solves the LCP (q;M).Suppose now that condition (iv) holds. We will �rst show that the sequence fzr� :r = 0; 1; : : :g remains bounded. If not, by the results in Section 9.3, there must exist a�z� satisfying �z� � 0, qT� z� <= 0, �zT�A���z� = 0. Since A�� is copositive plus, this impliesthat A���z� = 0. These facts contradict the existence of a solution to the system (9.41).So fzr� : r = 0; 1; : : :g must be bounded.Now we will prove that the sequence fzr� : r = 0; 1; : : :g must be bounded too.Suppose not. Then there exists a subsequence fzrt� : t = 1; 2; : : :g such that kzrt� kdiverges to +1 as t tends to 1. Let yrt� = zrt� =kzrt� k. This normalized sequencefyrt� : t = 1; 2; : : :g is bounded and hence has an accumulation point y��. Take asubsequence of fyrt� : t = 1; 2; : : :g which converges to y��. Denote this subsequenceby fyrs� : s = 1; 2; : : :g. Since the sequence fzrs� : s = 1; 2; : : :g is bounded, it has alimit point. By considering a suitable subsequence again, if necessary, we can assumethat we �nally have a subsequence fzrs� : s = 1; 2; : : :g which converges to z��. Dividing(9.45) by kzrs� k and taking the limit as s tends to 1, we get B��y�� >= 0. From(9.47) we have ((I � E��)z��)TB��y�� = 0, and since (I � E��) is a positive diagonalmatrix, this implies that (z��)TB��y�� = 0. Similarly, from (9.46), (9.47), we obtainthat (y��)T (q� + B��z��) = 0. Since B�� = U�� = �BT��, it follows that (y��)T q� = 0.This together with B��y�� >= 0 and the fact that y�� � 0 contradicts the existence ofa solution to (9.42). So fzr� : r = 0; 1; : : :g is also bounded. Hence the sequence fzr :r = 0; 1; : : :g is bounded when the additional condition (iv) holds.In [9.18] J. S. Pang, has established the convergence properties of the sequencefzr : r = 0; 1; : : :g generated by the scheme discussed here, under various other sets ofconditions on M , B, C, q.



386 Chapter 9. Iterative Methods for LCPs9.7 Exercises9.4 Consider the problem of �nding x; y 2 Rn satisfyingcT +Dx+ y >= 0; x >= 0; y >= 0b� x >= 0xT (cT +Dx+ y) = yT (b� x) = 0 (9:48)where b > 0, c, D are given matrices of order n � 1 and n � n respectively. When Dis symmetric, these are the necessary optimality conditions for the quadratic program:minimize cx+ 12xTDx, subject to 0 <= x <= b. A model of type (9.48) arises in the studyof multicommodity market equilibrium problems with institutional price controls (hereD is not necessarily symmetric).1) Show that (9.48) is equivalent to the LCP (q;M) whereq = 8>: cTb 9>; ; M = 8>: D I�I 09>; :2) Let ��� = fx : 0 <= x <= bg and let P�(y) denote the nearest point in ��� (in termsof the usual Euclidean distance) to y. Give �x 2 ���, de�ne the corresponding�y = (�yi) 2 Rn by �yi = 0 if �xi < bi, or = �Di. �x + ci if �xi = bi. We say that �xleads to a solution of (9.48) if (�x; �y) solves (9.48). Consider the following iterativescheme. Choose x0 2 ���. For r = 0; 1; : : :, given xr, de�nexr+1 = �P�(xr � !E(Dxr + cT +K(xr+1 � xr))) + (1� �)xr (9:49)where 0 < � <= 1, ! > 0, E is a positive diagonal matrix of order n, and K iseither the strictly lower or the strictly upper triangular part of D. Using the resultin Exercise 7.7, xr+1j in (9.49) can be determined in the order j = 1 to n if Kis the strictly lower triangular part of D, or in the order j = 1 to n if K is thestrictly upper triangular part of D. In the sequence fxr : r = 0; 1; : : :g generatedby (9.49), xr 2 ��� for all r, so, it has at least one accumulation point. If D issymmetric and �! < 2= (maximumfDjjEjj : j such that Djj > 0g), (here Djj ,Ejj are the jth diagonal entries in the matrices D, E respectively), prove thatevery accumulation point of the sequence generated by (9.49) leads to a solutionof (9.48). In addition, if D is also nondegenerate, prove that the sequence fxr :r = 0; 1; : : :g generated by (9.49) in fact converges to a point �x that leads to asolution of (9.48).3) If D is a Z-matrix, not necessarily symmetric, and x0 2 T = fx : x 2 ��� andfor each i either xi = bi or ci + Di.x >= 0g, (for example, x0 = b will do) and�! <= 1= (maximumfDjjEjj : j such that Djj > 0g), prove that the sequencefxr : r = 0; 1; : : :g generated by (9.49) is a monotonic sequence that converges toa point �x leading to a solution of (9.48).



9.8. References 3874) A square matrix is said to be a H-matrix if its comparison matrix (which is a Z-matrix by de�nition) is a P -matrix. If D is a H-matrix, not necessarily symmetric,with positive diagonal elements, prove that the sequence fxr : r = 0; 1; : : :g gen-erated by (9.49), with ! <= 1= (maximumfDjjEjj : j = 1 to ng) converges to thepoint �x that leads to the unique solution of (9.48).(B. H. Ahn [9.4])9.5 For each i = 1 to m, let fi(x) be a real valued convex function de�ned on Rn.Let K = fx : fi(x) <= 0; i = 1 to mg. Assume that K 6= ;. Let x0 2 Rn bean arbitrary initial point. The following iterative method known as the method ofsuccessive projection is suggested as a method for �nding a point in K. Given xr, letxr+1 be the nearest point in the set fx : fir (x) <= 0g to xr. The index ir is choosen byone of the followingCyclic Order : Here the indices fir : r = 0; 1; : : :g are choosen in cyclical orderfrom f1; 2; : : : ;mg. So i0 = 1, i1 = 2, : : :, im = 1, im+1 = 2, and so on.Most Violated Criterion : Here ir is the i for which the distance between xrand the nearest point to xr in the set fx : fi(x) <= 0g is maximum (ties for thismaximum are broken arbitrarily).Prove that the sequence fxr : r = 0; 1; : : :g converges to a point in K.(L. M. Bregman [9.5])
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Chapter 10
SURVEY OF DESCENT BASEDMETHODS FOR UNCONSTRAINEDAND LINEARLY CONSTRAINEDMINIMIZATION
Nonlinear Programming ProblemsEventhough the title \Nonlinear Programming" may convey the impression that thesubject includes all optimization problems other than linear programming problems,it is not usually the case. Optimization problems involving discrete valued variables(i. e., those which are restricted to assume values from speci�ed discrete sets, suchas 0-1 variables) are not usually considered under nonlinear programming, they arecalled discrete, ormixed-discrete optimization problems and studied separately.There are good reasons for this. To solve discrete optimization problems we normallyneed very special techniques (typically of some enumerative type) di�erent from thoseneeded to tackle continous variable optimization problems. So, the term nonlinearprogram usually refers to an optimization problem in which the variables are continuousvariables, and the problem is of the following general form:minimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to t (P)where �(x), hi(x), gp(x) are all real valued continuous functions of x = (x1; : : : ; xn) 2Rn. Suppose some of these functions are not di�erentiable at some points x. Assumethat gradients exist for each function almost everywhere, but are not continuous. Thenproblem (P) is known as a non-smooth or non-di�erentiable optimization prob-lem. On such a problem, the usual gradient-based methods and results may fail, and



390 Chapter 10. Survey of Descent Based Methodsspecial attention must be given to the surfaces of non-di�erentiability, it becomes veryimportant to consider generalized gradients to handle such problems.If all the functions �(x), hi(x), gp(x) are continuously di�erentiable, problem (P)is known as a smooth nonlinear program. In this book we only study smoothnonlinear programs. However, some of the techniques that we discuss may convert asmooth NLP into a special type of nonsmooth NLP, and then solve it. As an example,the simplicial method discussed in Section 2.7.6 to solve the smooth NLP: minimize�(x), subject to gi(x) <= 0, converts it into the NLP: minimize �(x), subject to s(x) <= 0,where s(x) = max �fg1(x); g2(x); : : : ; gm(x)g. This modi�ed problem is a nonsmoothoptimization problem, since s(x) may not be di�erentiable at some points x. However,because of the special nature of s(x), we know that @s(x) = convex hull of frgi(x) : isuch that gi(x) = s(x)g, and hence for any given x, it is easy to �nd at least one pointin @s(x), and the special simplicial algorithms discussed in Section 2.7, are able tosolve this modi�ed problem using only this information.Consider the NLP (P) and assume that all the functions are continuously di�eren-tiable. The constraints in (P) are either equality constraints, or inequality constraints.(P) is the general form of the problem, and in a particular instance of (P), there mayor may not be such constraints. This problem is said to be:an unconstrained minimization problem, if there are no constraints on thevariables, in the statement of the problem,a linear programming problem, if all the functions �(x), hi(x), gp(x) are a�nefunctions,a quadratic programming problem, if �(x) is a quadratic function, and allhi(x) and gp(x) are a�ne functions,an equality constrained problem, if there are no inequality constraints on thevariables,a linearly constrained NLP, if all the constraint functions hi(x), gp(x) are a�nefunctions,a convex programming problem if �(x) is a convex function, all hi(x) area�ne functions, and all gp(x) are concave functions,a nonconvex programming problem, if it is not a convex programming prob-lem as de�ned above.In this chapter, we provide a brief survey of some commonly used algorithms forsmooth NLPs, those in the areas of unconstrained and linearly constrained NLPs, whichconstitute alternate methods to those discussed so far for solving quadratic programs.



10.1. A Formulation Example for a Linearly Constrained Nonlinear Program 39110.1 A FORMULATION EXAMPLE FORA LINEARLY CONSTRAINEDNONLINEAR PROGRAMWe begin this chapter with a practical example due to C. H. White, of a nonlinearmodel in which the constraints are linear. It arose in the boiler shop of a companywhich has �ve (5) boilers operating in parallel for generating steam. Data on theboilers is given below. Tableau 10.1Boiler Boiler load rangei limitslower upperli ki a0i a1i a2i a3i1 10 units 60 56:49 1:67 �:041 :000302 10 60 71:37 0:61 �:016 :000113 15 120 23:88 2:05 �:024 :000094 12:5 112:5 17:14 2:73 �:035 :000145 15 135 72:38 0:34 �:003 :00001The unit measures the rate at which steam is produced per unit time. If the ith boileris kept on, it must be operated within its load range limits li, ki. The boiler's energye�ciency de�ned as a percentage is 100 � (energy content of output steam)/(energycontent in the input fuel). It tends to increase as the load moves up from the minimumallowable operating load, and then peaks and drops as the load approaches the upperlimit. Data was collected on the boiler e�ciencies at di�erent operating load levels,and the plots indicated that boiler e�ciency can be approximated very well by a cubicpolynomial of the operating load. Let y(�) = e�ciency of a boiler when it is operatingat load � units. We approximate y(�) by f(�) = a0 + a1� + a2�2 + a3�3, where a0, a1,a2, a3 are parameters to be estimated from data. The problem of determining the bestvalues of the parameters that give the closest �t between observed e�ciency and thecubic polynomial, is known as the parameter estimation problem or the curve�tting problem. Suppose we have r observations on a boiler, at load levels �t, t = 1to r yielding observed e�ciencies of yt, t = 1 to r respectively. To derive the closest�t we need to construct a measure of deviation of the functional value f(�) from theobserved y(�) over the range of values of � used in the experiment, depending on theparameter vector a = (a0; a1; a2; a3). Three di�erent measures are in common use.



392 Chapter 10. Survey of Descent Based MethodsThey are L2(a) = rXt=1(yt � a0 � 3Xs=1 as�st )2L1(a) = rXt=1 jyt � a0 � 3Xs=1 as�st jL1(a) = Maximum fjyt � a0 � 3Xs=1 as�st j : t = 1 to rg:Since the L2(a) measure is a sum of squares, the technique which chooses the parametervector a to minimize L2(a) is called the least squares approach or the method ofleast squares. If â = (â0; â1; â2; â3) is the best vector of parameter values obtainedunder this method, the function â0 + â1� + â2�2 + â3�3 is called the least squaresapproximation for y(�).If the parameter vector a is determined so as to minimize the measure L1(a), theresulting function f(�) is known as the Tschebyche� approximation for y(�).If all the parameters appear linearly in the functional form f(�) (as in this boilere�ciency example) the problem of minimizing either the L1- or L1-measures can bothbe posed as linear programs and solved by the e�cient simplex method. However, ifthe parameters appear nonlinearly in the functional form, the least squares method ispreferred for parameter estimation.If the measure of deviation is too large even at the best parameter values, it isnecessary to review the choice of the functional form and modify it. Besides, it ispossible that no simple function provides a good approximation for all possible valuesof load. It is only necessary to �nd a good functional representation of the e�ciencyin the neighborhood of the optimum load values, if some reliable practical knowledgeis available on the likely location of this optimum.Thus, even the process of constructing a mathematical model for the problemmight itself need the application of optimization algorithms for parameter estimation.The Basic Di�erence Between Linear and Nonlinear ModelsTo construct a linear programming model involving n nonnegative variables subject tom constraints, we need to estimate the (m+ 1)(n+ 1)� 1 coe�cients of the variablesin the constraints and the objective function, these are the data elements in the model.Real life LP applications routinely involve models with n = 100; 000 or more, and mas large as 6000. A large scale LP model is usually of this size.To construct a nonlinear model, we have to determine the functional form of theobjective and each constraint function, and obtain the best values for any parametersin each. For this reason, practical nonlinear models tend to have fewer variables thanlinear models. Depending on how complicated the functions involved are, a nonlinearmodel with about 200 variables could usually be considered as a large scale model.



10.2. Types of Solutions for a Nonlinear Program 393Boiler Example, ContinuedFor the boiler problem, estimates of the best parameter values in the functional formfor the e�ciency of each boiler are given in Tableau 10.1.At a point of time, the Company's steam requirements are 350 units per unit time.The problem is to determine how this total load of 350 units should be shared acrossthe �ve (5) parallel boilers so as to minimize the total fuel cost. It may be possible toget a lower overall cost by shutting down one or more of the boilers and meeting thedemand using only the remaining boilers. For example, here it can be veri�ed that thetotal load of 350 units can be met using boilers 3, 4, and 5 only. Thus the problem ofdetermining the most e�cient plan to meet a load of exactly 350 units, leads to a mixedinteger nonlinear programming problem in which there are �ve zero-one variables todetermine which of the �ve boilers are shut down and which are kept operating, andthe operating load level for the boilers that are kept operating. In this plant however,it is known that the Company's steam requirements vary with time. When the demandfor steam goes up, if a boiler is kept operating, it is a relatively easy matter to increasethe boiler's steam output by turning a few valves. On the other hand turning on ashut down boiler is an expensive operation. In order to be able to meet the varyingsteam requirements over time, it was determined that all the �ve boilers should bekept operating. Under this condition, since xi=fi(xi) is a measure of the energy cost ofobtaining a load of xi units from boiler i, we are lead to the following nonlinear model:minimize 5Xi=1 xi=fi(xi)subject to 5Xi=1 xi = 350li <= xi <= ki; i = 1 to 5which is a linearly constrained nonlinear program.Exercise10.1 Using the 0� 1 variables yi de�ned byyi = 1 if the ith boiler is kept operating= 0 otherwiseformulate the problem of determining the most e�cient plan for producing exactly 350units of steam per unit time as a mixed integer NLP.



394 Chapter 10. Survey of Descent Based Methods10.2 TYPES OF SOLUTIONS FORA NONLINEAR PROGRAMConsider a NLP in which a function �(x) is required to be optimized subject to someconstraints on the variables x = (x1; : : : ; xn)T . Let K denote the set of feasible so-lutions for this problem. For this problem a feasible solution x 2 K is said to bea local minimum, if there exists an " > 0 such that �(x) >= �(x) for all x 2 K \fx : kx� xk < "g,strong local minimum, if there exists an " > 0 such that �(x) > �(x) for allx 2 K \ fx : kx� xk < "g, x 6= x,weak local minimum, if it is a local minimum, but not a strong one,global minimum, if �(x) >= �(x) for all x 2 K,local maximum, if there exists an " > 0 such that �(x) <= �(x) for all x 2 K \fx : kx� xk < "g,strong local maximum, if there exists an " > 0 such that �(x) < �(x) for allx 2 K \ fx : kx� xk < "g, x 6= x,weak local maximum, if it is a local maximum, but not a strong one,global maximum, if �(x) <= �(x) for all x 2 K,stationary point, if some necessary optimality conditions for the problem aresatis�ed at the point x.These concepts are illustrated in Figure 10.1 for the one dimensional problem:optimize �(x) subject to x 2 R1, a <= x <= b. �(x) is plotted in Figure 10.1.The points a, x5, x7, x10, x12 are strong local minima; x0, x4, x6, x11, b arestrong local maxima; x12 is the global minimum; x6 is the global maximum; in thisproblem. At the point x3 the derivative of �(x) is zero, and so it is a stationary point(satis�es the necessary optimality condition d�(x)dx = 0) even though it is neither a localminimum or maximum. In each of the intervals x1 <= x <= x2, and x8 <= x <= x9, �(x) isa constant. x1, x2 are weak local minima; and x8, x9 are weak local maxima. Everypoint x satisfying x1 < x < x2, x8 < x < x9 is both a weak local minimum and a weaklocal maximum.
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Figure 10.110.3 TYPES OF NONLINEAR PROGRAMS,WHAT CAN AND CANNOT BE DONEEFFICIENTLY BY EXISTING METHODSEvery local minimum is a global minimum for the problem of minimizing a convexobjective function on a convex set. Likewise, every local maximum is a global maximumfor the problem of maximizing a concave function on a convex set. Problems of this typeare considered to be nice problems in nonlinear programming, they are called convexprogramming problems. The other class of NLPs in which a nonconvex objectivefunction is required to be minimized, or in which the set of feasible solutions is notconvex, are called nonconvex programming problems.In general, it is very hard to �nd the global minimum, or even to check whethera given feasible solution is a global minimum in a nonconvex programming problem.E�orts have been made to �nd global minima by enumerating all local minima, butthese methods tend to be very ine�cient. The enormity of this task can be appreciatedwhen we realize that some of the most di�cult problems in mathematics that haveremained unresolved for centuries, can be posed as nonconvex programming problems.



396 Chapter 10. Survey of Descent Based MethodsAs an example, consider Fermat's last Theorem (unresolved since 1637 AD, see[10.34]) which states that the equation: xn + yn � zn = 0, has no solution in integersin the region x >= 1, y >= 1, z >= 1, n >= 3. Consider the following NLP, where �is some positive parameter, � denotes the irrational number which is the length ofthe circumference of the circle with unit diameter in R2, and cos � denotes the cosinefunction of the angle � measured in radians.minimize (xn + yn � zn)2 + �((�1 + cos(2�x))2 + (�1 + cos(2�y))2+(�1 + cos(2�z))2 + (�1 + cos(2�n))2)subject to x; y; z >= 1; n >= 3: (10:1)(10.1) is a linearly constrained NLP. It can be veri�ed that Fermat's last Theoremis false i� the optimum objective value in (10.1) is 0 and attained, since any feasiblesolution (x; y; z; n) to (10.1) which makes the objective value zero provides a coun-terexample to Fermat's last Theorem. (10.1) is a nonconvex programming problem inwhich every integer feasible solution is a local minimum. The objective function in(10.1) is a sum of several penalty terms. The number of distinct local minima can bevery large even in nonconvex programming problems that do not have such penaltyterms in the objective function. As an example, consider the concave minimizationproblem minimize �(x) = � nXj=1(xj � (1=2))2subject to 0 <= xj <= 1; j = 1 to n: (10:2)Each of the 2n extreme points of the set of feasible solutions of (10.2) is a local mini-mum. Unfortunately, there are no techniques known for determining how many localminima a general nonconvex programming problem has, other than plain enumeration.In nonconvex programming problems, since in general it is very di�cult to guaranteethat a global minimum will be obtained, the best thing that we can expect from analgorithm is that it leads to a point satisfying a necessary condition for being a localmimimum, and many of the descent type methods discussed in this chapter do that.In these methods, the terminal solution obtained may depend on the initial point withwhich the method is initiated. Usually, by running the algorithm with di�erent initialpoints, several local minima may be obtained, and the best among them might be areasonably good solution for the problem.Starting the algorithm with an initial point, suppose a local minimum x is obtainedfor a nonconvex programming problem. A technique often used to move to a di�erentlocal minimum is to add a penalty term like �=(kx� xk)p where � > 0 and p >= 2, tothe objective function, and use the algorithm again on the augmented problem. As xapproaches x, the penalty term �=(kx�xk)p blows up to1, and this guarantees thatthe algorithm moves to a point di�erent from x. But this may not be a satisfactoryapproach to enumerate the local minima in a nonconvex program, because of thenumerical di�culties created by the addition of the penalty terms to avoid previously



10.4. Can we at Least Compute a Local Minimum Efficiently? 397obtained local minima. Also, the augmented problem may have new local minimawhich are not local minima of the original problem.Because of this, if someone can establish the global minimum in a class of noncon-vex programming problems, it is considered to be a mathematical breakthrough andbecomes a major international headline item. An example of this is the recent break-through on establishing the minimum value of the permanent of a doubly stochasticmatrix of order n. Given a square matrix A = (aij) of order n, its permanent is de�nedby f(A) =X([(a1p1) : : : (anpn)] : sum over all the n!permutations (p1; : : : ; pn) of f1; : : : ; ng):A doubly stochastic matrix of order n is a nonnegative square matrixX = (xij) of ordern, whose row sums and column sums are all equal to 1. The problem of minimizing thepermanent of doubly stochastic matrix of order n is therefore the NLP: �nd a squarematrix X = (xij) of order n tominimize f(X)subject to nXj=1 xij = 1; i = 1 to nnXi=1 xij = 1; j = 1 to nxij >= 0; i; j = 1 to n:The objective function in this NLP is nonconvex, hence, this is a nonconvex pro-gramming problem. In 1926 B. L. vanderWaerden [10.40] conjectured that the globaloptimum for this problem is the doubly stochastic matrix (xij) in which xij = 1=nfor all i; j; with an optimum objective value of n!=nn. This conjecture resisted theattacks of many of the world's greatest mathematicians, but was �nally resolved in thea�rmative by G. P. Egorychev in 1980, see references [10.10, 10.11, 10.20].10.4 CAN WE AT LEAST COMPUTE ALOCAL MINIMUM EFFICIENTLY?In convex programming problems, any point satisfying any of the well known necessaryoptimality conditions such as the KKT conditions, is a local minimum and therefore itis also a global minimum for the problem. To solve a convex programming problem, anyalgorithm that is guaranteed to �nd a KKT point, if one exists, is thus adequate. Mostof the algorithms for solving NLP's discussed in this book can be shown to convergeto a KKT point, if one exists, and so these algorithms compute local, and thus globalminima when applied on convex programming problems.



398 Chapter 10. Survey of Descent Based MethodsIn a nonconvex program, given a feasible solution x satisfying the usual necessaryoptimality conditions, it may or may not even be a local minimum. If x does not satisfythe su�cient optimality condition given in Appendix 4 for being a local minimum, itmay be very hard to verify whether it is a local minimum. As an example, considerthe problem discussed in Section 2.9.3minimize xTDxsubject to x >= 0where D is a given square matrix of order n. When D is not PSD, this NLP is thesimplest nonconvex NLP.A su�cient condition for 0 to be a local minimum for this problem is that Dbe PSD. If D is not PSD, 0 is a local minimum for this problem i� the matrix D iscopositive, no e�cient methods are known at the moment for doing this. The methoddiscussed in Section 2.9.1 for testing copositiveness is a �nite enumeration method,but it may not be practically useful when n is large. As discussed in Section 2.9.3, theproblem of checking whether 0 is a local minimum for this problem is a hard problem.On nonconvex programs involving inequality constraints, existing algorithms canat best guarantee convergence to a KKT point in general. If the KKT point obtaineddoes not satisfy some known su�cient condition for being a local minimum, it is thenhard to check whether it is actually a local minimum. However, as mentioned in Section2.7.6, if the algorithm is based on a descent process (i. e., in a minimization problem,if the algorithm is designed to obtain a sequence of points with decreasing objectivevalues) one can be reasonably con�dent that the solution obtained is likely to be alocal minimum.10.5 PRECISION IN COMPUTATIONIn linear or in convex quadratic programming problems, if all the data are rationalnumbers, and if an optimum solution exists, there exists an optimum solution which isa rational vector that can be computed exactly with �nite precision arithmetic usingalgorithms like the simplex algorithm or the complementary pivot method discussedearlier. However, in general nonlinear programming, even when the constraints arelinear, and all the data in the model is rational, there may be optimum solutions,but no rational optimum solution. For example consider the simple one dimensionaloptimization problem: �nd x 2 R1 that minimizes f(x) = �2x + (x3=3) subjectto x >= 0. The unique optimum solution of this problem is x = p2, an irrationalnumber, so we can never compute the exact optimum solution of this problem ondigital computers that operate with �nite precision arithmetic.Hence, when dealing with general nonlinear programs, emphasis is placed on get-ting an approximate optimum solution. In practical implementations, nonlinear algo-rithms are usually terminated when optimality conditions are satis�ed to a reasonabledegree of approximation, or when it is evident that the algorithm has obtained aninterval of su�ciently small length containing the true optimum solution.



10.6. Rates of Convergence 39910.6 RATES OF CONVERGENCEThe algorithms discussed in this chapter are iterative in nature. They generate asequence of points fxr : r = 0; 1; 2; : : :g beginning with an initial point x0. Undersome conditions on the problem being solved, for most of these methods, it is usuallypossible to prove that the sequence converges in the limit to a point x� which is apoint satisfying the necessary optimality conditions for a local minimum. Even whenthis convergence is mathematically proven, the method is useful for solving practicalproblems only if xr converges rapidly to x� as r increases. Here we discuss how thisrate of convergence is measured mathematically.Finite Termination Property: The sequence is said to have this property, if thereexists a �nite value N such that xN = x� and the method terminates.Quadratic Termination Property: The method is said to have this property if thesequence generated terminates in a known �nite number of iterations when applied toa strictly convex quadratic function minimization problem.Suppose the method does not have either of the above properties. Then it gen-erates the truly in�nite sequence fxr : r = 0; 1; 2; : : :g. Assume that the sequenceconverges to x�, that xr 6= x� for any r. The measure of the rate of convergence ofthis sequence, tries to assess the improvement that occurs in each step, that is, ine�ect it measures how close xr+1 is to x� compared to the closeness of xr to x�,as r goes to 1. The converging sequence fxrg is said to converge with order k(or to have an asymptotic convergence rate k) if k is the largest number such thatlimitr!1(kxr+1 � x�k=kxr � x�kk) < 1. When k = 1, the sequence is said to havelinear (or �rst order, or geometric) convergence rate, if limitr!1(kxr+1 � x�k=kxr � x�k) = 
 < 1: In this case, the quantity 
 is called the convergence ratio ofthe sequence. If in fact 
 = 0 in this case, the sequence is said to have superlinearconvergence rate.As an example consider the sequence of real numbers f�r : r = 0; 1; : : :g where0 < � < 1. The sequence converges to zero linearly. On the other hand the sequenceof real numbers fxr = (1=r) : r = 1; 2; : : :g converges to zero with k = 1, but its rateof convergence is not linear, since limitr!1(kxr+1k=kxrk) = limitr!1((r=(r+1)) = 1which is not strictly less than one.If k = 2, the sequence fxrg is said to have quadratic (or second order) conver-gence rate. Quadratic convergence is rapid, since it implies that once the sequencereaches a small neighborhood of x�, the error in a step decreases as the square of theerror in the previous step (i. e. , the number of digits to which xr agrees with x� beginto double after each step, after a certain number of steps).Summary of Later SectionsIn the following sections we discuss various descent methods in common use for solvinglinearly constrained NLPs. These algorithms typically use some unconstrained mini-mization algorithms and algorithms for solving nonlinear programs in a single variable



400 Chapter 10. Survey of Descent Based Methods(the so-called line minimization algorithms) as subroutines. So we survey these algo-rithms �rst.10.7 SURVEY OF SOMELINE MINIMIZATION ALGORITHMSThe line minimization problem is the problem of minimizing a real valued functionf(�) of one variable �, either over the whole real line, or over the half-line � >= l for aspeci�ed number l, or over a speci�ed �nite interval [l; u] = f� : l <= � <= ug. Assumingthat f(�) is continuously di�erentiable, the global minimum for f(�) in the intervall <= � <= u is the point �� in this interval which gives the minimum value for f(�) amongthose � satisfying df(�)d� = 0, and the points l, u, if these are �nite. In fact if f(�) isconcave and l, u are �nite, the global minimum for f(�) in the interval l <= � <= u iseither l or u, whichever gives a smaller value for f(�). See Figure 10.2.In the interval [a; b] if f 0(a) > 0, a is a local minimum for f(�); and if f 0(b) < 0,b is a local minimum for f(�).When f(�) is a general function, a bracket is de�ned to be an interval in thefeasible region which contains the minimum. When the derivative f 0(�) = df(�)d� isnot available, a bracket usually refers to an interval [�1; �3] in the feasible region,satisfying the property that we have a �2 satisfying �1 < �2 < �3 and f(�2) <=minimum ff(�1); f(�3)g. If the derivative f(�) is available, a bracket usually refersto an interval [�1; �2] with �1 < �2, satisfying the property that f 0(�1) < 0 and f 0(�2)> 0.



10.7. Survey of Some Line Minimization Algorithms 401
(   )f λ

l u
λFigure 10.2 The global minimum for one dimensional concave minimizationproblem is a boundary point (l here).

How to Select an Initial Bracket?First consider the problem in which we are required to minimize f(�) over the entirereal line. Begin with an initial point �0 and choose a positive step lenth �. Computef(�0) and f(�1), where �1 = �0+�. If f(�1) < f(�0), the direction of increasing � isthe right direction to pursue; otherwise, replace � by �� to reverse the direction andgo through the procedure discussed next. De�ne �r = �r�1 + 2r�1� for r = 2; 3; : : :as long as they keep on decreasing, until either the upper bound on � is reached ora value k for r is found such that f(�k+1) > f(�k). In this case we have �k�1, �k,�k+1 satisfying f(�k) < f(�k�1), f(�k+1) > f(�k). Among the four points �k�1, �k,(�k+�k+1)=2, and �k+1, drop either �k�1 or �k+1, whichever is farther from the pointin the pair f�k; (�k+�k+1)=2g that yields the smallest value to f(�). Let the remainingpoints be called �a, �b, �c, where �a < �b < �c. These points are equi-distant, andf(�b) <= f(�c), f(�b) <= f(�a). So this interval �a to �c brackets the minimum.If the problem is to minimize f(�) over � >= l or u >= � >= l, it is reasonable toexpect that f(�) decreases as � increases through l (i. e., the derivative f 0(l) < 0,otherwise l is itself a local minimum for the problem). So in these problems, we canget a bracket by beginning with �0 = l and applying the above procedure.



402 Chapter 10. Survey of Descent Based Methods10.7.1 The Golden Section Search MethodThe function f(�) is said to be a unimodal function in the interval a <= � <= b if it hasa unique local minimum in the interval. See Figures 10.3, 10.4.
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λFigure 10.3 A unimodal function in the interval [a; b].
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λFigure 10.4 This function is constant in the interval c < � < d, so every pointin this interval is a local minimum. So this function is not unimodal in theinterval [a; b].



10.7. Survey of Some Line Minimization Algorithms 403In many practical applications, it is reasonable to assume that the interval hasbeen narrowed down using prior knowledge of the problem such that the objectivefunction has a single minimum in the interval. A unimodal function f(�) in the intervala <= � <= b satis�es the property that there exists a unique �� in the interval (this �� isthe minimum) such that given any �1, �2 in the interval with �1 < �2, if �2 < �� wehave f(�1) > f(�2); and if �� < �1, we have f(�1) < f(�2). The golden section searchmethod is a method for minimizing a unimodal function in an interval by sectioning(i. e., interval reduction) using only function values evaluated at selected points.The number � � 2=(1 + p5) ' :618 is known as the golden ratio. Let [�; �]be the current interval in which the minimum is known to lie. If function value hasnot been evaluated at any interior point in this interval, let �1 = � + :382(� � �),�2 = � + :618(� � �), evaluate f(�1), f(�2) (depending on what happened in theprevious step, it is possible that the function value at one of these points �1 or �2has already been computed in the previous steps). If f(�1) < f(�2), the minimum iscontained in the interval [�; �2]. If f(�1) > f(�2), the minimum is contained in theinterval [�1; �]. If f(�1) = f(�2), the minimum is contained in the interval [�1; �2].Repeat this process with the new interval.There is a reduction in the length of the interval of uncertainty (i. e., the bracketlength) by a factor of :618 or more in each step. The length of the interval of uncertaintyconverges linearly to zero. When the length of the interval of uncertainty has becomeless than a speci�ed tolerance, ", any point in the �nal interval could be taken as anapproximation for the minimum.10.7.2 The Method of BisectionThis method can be used if f(�) is continuously di�erentiable and the derivative f 0(�)can be computed. It starts with an initial bracket for the minimum [a; b] satisfyingf 0(a) < 0 and f 0(b) > 0. Evaluate f 0((a+b)=2). If f 0((a+b)=2) = 0, the point (a+b)=2satis�es the �rst order necessary condition for a local minimum. If f 0((a+ b)=2) > 0,take [a; (a+b)=2] as the new bracket and continue. If f 0((a+b)=2) < 0, take [(a+b)=2; b]as the new bracket and continue.Since the bracket is cut in half each time, the length of this interval convergesto zero linearly. When its length has become less than a speci�ed tolerance ", anypoint in the �nal interval could be taken as an approximation to the minimum. Onedisadvantage of this method is that it relies totally on the values of the derivative f 0(�)and does not use the values of the function f(�) being minimized.10.7.3 Newton's MethodThis is a second order gradient method that can be used if f(�) is twice continuouslydi�erentiable and the second derivative f 00(�) can be computed easily either through



404 Chapter 10. Survey of Descent Based Methodsa subroutine or by using a �nite di�erence approximation, and f(�) is required to beminimized over the entire real line. The method is the application of the Newton-Raphson method to �nd a solution of the equation: f 0(�) = 0. The method generatesa sequence f�r : r = 0; 1; : : :g beginning with an initial point �0. Given �r, thesecond order Taylor series approximation for f(�) at �r is f(�r) + f 0(�r)(� � �r) +(1=2)f 00(�r)(�� �r)2. If f 00(�r) > 0, this has a minimum at�r+1 = �r � f 0(�r)=f 00(�r): (10:3)Equation (10.3) gives the iterative scheme for Newton's method. The method is notsuitable to be used if f 00(�) turns out to be <= 0 at any point encountered during thealgorithm. It is quite suitable if an initial point �0 in the vincinity of a local minimumis known. In the vincinity of a minimum, the second derivative f 00(�) is of constantsign (nonnegative) and the �rst derivative f 0(�) changes sign from a negative to apositive value. If f(�) is a quadratic function with a minimum, this method �nds theminimum in one step. In general, any twice continuously di�erentiable function has aTaylor series expansion around a point, the �rst three terms of this series (which forma quadratic function) are dominant when the point is in the vincinity of the minimum.The method has rapid convergence (quadratically) once the vincinity of the minimumis reached. A result on the convergence rate of this method follows as a corollary ofTheorem 10.1, where a convergence rate result for Newton's method applied to �ndthe unconstrained minimum of a real valued function �(x) over x 2 Rn is proved.See references [10.9, 10.13, 10.26, 10.33] for results on the convergence and rates ofconvergence of Newton's method.10.7.4 Modi�ed Newton's MethodSeveral modi�cations have been proposed for Newton's method to handle cases wherea good initial point is not available to initiate Newton's method, or when a pointsatisfying f 00(�) <= 0 is encountered during the method, and to handle the problemin which the feasible range is a speci�ed interval and not the entire real line. Wediscuss one such modi�cation here. We consider the problem of minimizing a twicecontinuously di�erentiable function f(�) in the interval [a; c] = f� : a <= � <= cg andwe have a piont b satisfying a < b < c and f(b) < minimum ff(a); f(c)g. This methodgenerates a sequence of points f�r : r = 0; 1; : : :g satisfying the property that theentire sequence lies in the interval [a; c] and that f(�r+1) < f(�r) for all r. Initiatethe method with �0 = b, and select a constant � satisfying 0 < � < 1. The quantity� is called the attenuation factor.Given �r, the point obtained by moving in the direction of f 0(�r) a step of length� is �r � �f 0(�r). From the Taylor series, f(�r � �f 0(�r)) = f(�r) � �(f 0(�r))2+error term, where the error term tends to zero faster than �. So, if � > 0, we makeimprovement in the objective value by this move. Notice that Newton's method takes



10.7. Survey of Some Line Minimization Algorithms 405� = 1=f 00(�r) to get the next point in the sequence. In this method you do thefollowing.(a) If f 00(�r) > 0 compute yr = �r � f 0(�r)=f 00(�r). If yr 2 [a; c] and f(�r)� f(yr) >=(�=2)(f 0(�r))2=f 00(�r), de�ne �r+1 = yr. If yr 2 [a; c] but f(�r) � f(yr) <(�=2)(f 0(�r))2=f 00(�r), use a �rst order Armijo step size procedure which requiresthe determination of the smallest nonnegative integer s satisfying(�r � f 0(�r)=2s) 2 [a; c]; andf(�r)� f(�r � f 0(�r)=2s) > (�=2s)(f 0(�r))2and then de�ne �r+1 = �r�f 0(�r)=2s. The motivation for this step size procedureis explained in Section 10.8.1.(b) If f 00(�r) <= 0, de�ne � = �1 if f 0(�r) >= 0, +1 if f 0(�r) < 0 and use the secondorder Armijo step size procedure. This requires the determination of the smallestnonnegative integer s satisfying(�r � (f 0(�r)=2s) + (�=2s=2)) 2 [a; c]; andf(�r)� f(�r � (f 0(�r)=2s) + �=2s=2) >= �(((f 0(�r))2=2s)� f 00(�r)=2s+1):For a �nite s satisfying these conditions to exist, it is su�cient that f 00(�r) < 0 iff 0(�r) = 0. Then de�ne �r+1 = �r � (f 0(�r)=2s) + �=2s=2.Under certain conditions it can be shown that this method has second-order con-vergence. See references [10.1, 10.26, 10.27].10.7.5 Secant MethodIn Newton's method or modi�ed Newton's method discussed above, we need to com-pute the value of the second derivative f 00(�r). This may be hard. In the secant methodwe replace f 00(�r) by its �nite di�erence approximation (f 0(�r)�f 0(�r�1))=(�r��r�1).This is the only change in the Secant method from Newton's or modi�ed Newton'smethod. The secant method is initiated with two initial points �0, �1 in the feasibleregion satisfying �0 < �1 and f 0(�0) < 0, f 0(�1) > 0.10.7.6 The Method of False PositionIn the secant method we always use f 0(�r) and f 0(�r�1) to get a �nite di�erenceapproximation for f 00(�r) for each r. Even though initially f 0(�0), f 0(�1) are of oppositesigns, after some steps it may happen that f 0(�r) and f 0(�r�1) have the same sign, andthis could make the iterates diverge when minimizing over the real line. In this methodwe make sure that f 00(�) is always approximated using the values of f 0(�) of oppositesigns at two di�erent values of �. For some r, suppose f 00(�r) was approximatedusing f 0(�r) and f 0(�s) for an s <= r � 1. Compute �r+1 using this approximationas under the secant method, and compute f 0(�r+1). Determine which of f 0(�t) fort = r or s has a sign opposite to that of f 0(�r+1). Then approximate f 00(�r+1) byf 0(�r+1 � f 0(�t))=(�r+1 � �t), and continue in the same way.



406 Chapter 10. Survey of Descent Based Methods10.7.7 Univariate Minimization byPolynomial Approximation MethodsThe essential feature of these methods is to approximate the original function f(�)by a simpler function P (�) (normally a second or third degree polynomial) by curve�tting, and then using the minimum of P (�) to approximate that of f(�). Thesemethods are also called polynomial interpolation methods. If the minimum is knownto lie in a small enough interval, the application of these methods usually producesvery satisfactory results.Quadratic InterpolationThis method needs an interval of the form �1 < �2 < �3 with f(�2) < minff(�1);f(�3)g, a bracket for the minimum, as discussed earlier. �2, the initial best point, is theinitial point in the sequence. It constructs a quadratic approximation P (�) = a�2 +b�+ c which coincides with f(�) at � = �1; �2; �3. By the properties mentioned above,P (�) determines a parabola. The three independent pieces of information (value ofP (�) = value of f(�) at � = �1; �2; �3) are used to determine a, b, c in P (�) uniquely.Since P (�) is a parabola (by the condition imposed), the minimum of P (�) lies in theinterval [�1; �3] at the point � satisfying dP (�)d� = 0. It can be veri�ed that this pointis �� = (�22 � �23)f(�1) + (�23 � �21)f(�2) + (�21 � �22)f(�3)2[(�2 � �3)f(�1) + (�3 � �1)f(�2) + (�1 � �2)f(�3)]�� is a minimum for P (�) if(�2 � �3)f(�1) + (�3 � �1)f(�2) + (�1 � �2)f(�3)(�1 � �2)(�2 � �3)(�3 � �1) < 0a condition which will hold because of the properties satis�ed by �1, �2, �3.It is possible for �� to be equal to �2 even though this point is far away from alocal minimum of f(�). See Figure 10.5. If this happens, the quadratic interpolationhas failed to generate a new trial point.If j�� � �2j is not too small, we can replace one of the points in �1, �2, �3 by ��so that the new set of three points again satis�es the conditions for a bracket for theminimum of f(�). The best point among these three is the next point in the sequence,and the procedure is repeated with the new bracket. If �� and �2 are too close (evenif they are not equal) repeating the procedure with such close values could lead tonumerical problems in the next step. In this case, we select a small distance �, andtake the new point to be either ��+ � or ��� � whichever leads to the smallest lengthnew bracket.
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Figure 10.5 The minimum of f(�) in the bracket [�1; �3] is at �. But theminimum of Quadratic approximation, �� is the same as �2.Note 10.1 Newton's method is a quadratic approximation method. Given the cur-rent point �r at which the second derivative f 00(�r) > 0, Newton's method constructs aquadratic function P (�) satisfying the three properties P (�r) = f(�r), P 0(�r) = f 0(�r)and P 00(�r) = f 00(�r). It can be veri�ed that the function P (�) is just the second orderTaylor series approximation to f(�) around this point �r, and that the next point inthe sequence �r+1 is the minimum of this quadratic approximation P (�).Cubic Interpolation MethodThis method can be used when f(�) is di�erentiable and the derivative f 0(�) canbe computed either numerically using a �nite di�erence approximation or computeddirectly using a subroutine for evaluating it. The method needs a bracket [�1; �2]satisfying the property that f 0(�1) < 0, f 0(�2) > 0. A cubic function P3(�) = a�3 +b�2 + c� + d can be �tted such that it agrees in value with f(�) at �1 and �2 andits derivative has the same value as f 0(�) at �1 and �2. From the bracket conditionsthe minimum of this cubic function occurs inside the bracket at the point �� satisfying



408 Chapter 10. Survey of Descent Based Methodsdd� (P3(�)) = 0. It can be veri�ed that�� = �1 + (�2 � �1)�1� f 0(�2) + � � �f 0(�2)� f 0(�1) + 2� �where � = 3(f(�1)� f(�2))�2 � �1 + f 0(�1) + f 0(�2)� = (�2 � f 0(�1)f 0(�2))1=2:If jf 0(��)j is small, �� can be accepted as a good approximation for the minimum.Otherwise, if f 0(��) > 0, repeat the process with [�1; ��] as the new bracket. Iff 0(��) < 0, repeat the process with [��; �2] as the new bracket.It can be shown that these polynomial approximation methods have superlinearor better convergence rate under certain conditions. See [10.13, 10.17, A8]. It ispossible to develop algorithms based on a combination of sectioning and polynomialinterpolation steps.Di�culty in Computing Derivatives DuringLine Minimization Steps Encountered in SolvingNLPs Involving Several VariablesLet �(x) be a continuously di�erentiable real valued function de�ned on Rn. Considerthe NLP in which �(x) is to be minimized, possibly subject to some constraints. Manyalgorithms for solving such a problem make repeated use of line minimization algo-rithms to solve problems of the form: given a point x0 2 Rn and a search directiony 2 Rn, y 6= 0, �nd the step length � that minimizes �(x0 + �y) subject to � >= 0.In this problem, since x0 and y are given vectors, �(x0 + �y) = f(�) is purely afunction of the step length parameter �. If the problem of minimizing f(�) in � >= 0needs the derivative f 0(�) for some given value of �, we usef 0(�) = dd�(�(x0 + �y)) = (r�(x0 + �y))ywhere r�(x0+�y) is the row vector of partial derivatives of �(x) evaluated at x = x0+�y. So, the computation of f 0(�) needs the evaluation of each of the partial derivativesof �(x) at the point x0 + �y, which in the worst case takes n function evaluations (thework would be less if, for example, we know from the structure of �(x) that some ofthese partial derivatives are zero). Thus, evaluating f(�) = �(x0+ �y) needs only onefunction evaluation; while evaluating f 0(�) needs n function evaluations, considerablymore work. In the same manner, evaluation of the second derivative f 00(�) for any �,needs n2 function evaluations in the worst case. These facts should be considered inchoosing an algorithm for line minimization, to be used as a subroutine in algorithms forNLPs involving many variables. Since evaluating derivatives (f 0(�) or f 00(�)) requires a



10.7. Survey of Some Line Minimization Algorithms 409lot more function evaluations, typically line minimization algorithms based on functionvalues only, are to be preferred as far as possible.When f(�) = �(x0 + �y), the formula f 0(�) = (r�(x0 + �y))y is an analyticalformula for the exact derivative of f(�) at �, and the value of f 0(�) computed usingthis formula is known as the analytically computed derivative. Since the analyticalcomputation of the derivative is so expensive, it may be appropriate to use an ap-proximation for it. Let " be a small positive number, it is called the �nite di�erenceinterval. Then f 0(�) can be approximated by any of the three following quantitiesf(�)� f(�� ")"or f(�+ ")� f(�)"or f(�+ ")� f(�� ")2" :The topmost quantity is called the backward-di�erence approximation, the middlequantity is known as the forward-di�erence approximation, and the bottom quantity isknown as the central-di�erence approximation, to f 0(�). If the value of f(�) is alreadyknown, the computation of the forward or backward-di�erence approximation to f 0(�)needs one more function evaluation, whereas the computation of the central-di�erenceapproximation needs two more function evaluations. If " is small compared to jf 0(�)jand the magnitude of jf 00(�)j in the neighborhood of �, the error in approximationwill be small, because f(� + ") = f(�) + "f 0 + "22 f 00(� + 
) for some 0 <= 
 <= ", byTaylor's theorem. Thus with a suitable choice of the �nite di�erence interval, these�nite di�erence approximations provide a reasonable approximation to the derivative,with much less computational e�ort than that involved in using the analytical formula.Because of this, many professional software packages for NLP algorithms use �nitedi�erence approximations to the derivatives.Even the partial derivatives of �(x) can be approximated by �nite di�erence ap-proximations. Let I be the unit matrix of order n. Then�(x)� �(x� "I.j)"or �(x+ "I.j)� �(x)"or �(x+ "I.j)� �(x� "I.j)2"where " is the suitable �nite di�erence interval, are the backward, forward and central-di�erence approximations for the partial derivative @�(x)@xj , respectively.



410 Chapter 10. Survey of Descent Based Methods10.7.8 Practical Termination Conditions forLine Minimization AlgorithmsIn practice, line minimization algorithms discussed above are terminated either whenthe bracket length is small, or when a point � satisfying jf 0(�)j < " for some speci�edtolerance " is obtained, or when the improvement in objective value between twoconsecutive points obtained in the method is small, or when the di�erence betweentwo consecutive points obtained under the method is small. At termination, if we havea bracket for the minimum, a �nal interpolation step can be carried out to provide theapproximate location of the minimum in the bracket.10.7.9 Line Minimization Algorithms Based onPiecewise Linear and Quadratic ApproximationsIn this section we discuss new line minimization algorithms based upon a combinationof piecewise linear (or polyhedral) and quadratic approximations, due to C. Lemarechaland R. Mi�in [10.23, 10.28, 10.29]. These algorithms are rapidly convergent, and seembest suited as line search subroutines in higher dimensional optimization algorithms.Let f(�) : R1 ! R1 be the real valued function de�ned on R1 which is requiredto be minimized over � 2 R1. At any given �, the limit (if it exists) of f(�+")�f(�)" as"! 0 through positive values is known as the right derivative of f(�) at � and denotedby f 0+(�), the limit of the same quantity as "! 0 through negative values is known asthe left derivative of f(�) at � and is denoted by f 0�(�). If f(�) is di�erentiable at �,then f 0�(�) = f 0+(�) = f 0(�). If f(�) is convex, these f 0�(�) and f 0+(�) exist and theysatisfy if � < 
; then f 0�(�) <= f 0+(�) <= f 0�(
) <= f 0+(
):When f(�) is convex, the subdi�erential @f(�) is the line segment [f 0�(�); f 0+(�)], anda necessary and su�cient condition for a �� to be the minimizer point for f(�) is:f 0�(��) <= 0 <= f 0+(��):For the moment, let g(�) denote the derivative f 0(�) if it exists; or a number from@f(�), that is, a subgradient of f(�) at �, otherwise. Given two points � and 
satisfying the properties that f(�) <= f(
) and g(�)g(
) < 0, the interval between �and 
 is a bracket for the minimum.Polyhedral ApproximationThe a�ne functions f(�) + g(�)(� � �), f(
) + g(
)(� � 
), are the linearizations off(�) at � = �, 
 respectively. The pointwise supremum function P (�) = max :ff(�)+g(�)(���), f(
)+g(
)(��
)g provides a piecewise linear or polyhedral approximation



10.7. Survey of Some Line Minimization Algorithms 411for f(�) in the interval between � and 
. If f(�) is convex, this piecewise linear functionunderestimates f(�) at each point in the interval, see Figure 10.6. The point wherethis piecewise linear function attains its minimum is the point that equalizes the twoexpressions inside the max :, it is �+ dP , wheredP = f(�)� f(
)� g(
)(�� 
)g(
)� g(�) :This dP provides the polyhedral approximation step from the point � for the lineminimization problem. If f(�) is convex, the numerator in dP is >= 0 and �+ dP liesin the interval between � and 
.
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Figure 10.6 A Polyhedral approximation (the dashed lines) for f(�), andthe point �+ dP where it attains its minimum.Quadratic ApproximationA quadratic approximation for f(�) at � = � is of the formQ(�) = f(�) + g(�)(�� �) + 12(�� �)2G(�)



412 Chapter 10. Survey of Descent Based Methodswhere G(�) approximates the second derivative of f(�) and is determined in a one-sidedsecant manner, that is, G(�) = g(�)� g(t)�� twhere t is a point such that � is in the interval between t and the minimizer of f(�).If f(�) is convex, G(�) is � 0. If G(�) > 0, the minimum of Q(�) is attained at �+dQwhere dQ = �g(�)G(�) :If G(�) <= 0, jdQj = +1. dQ is the quadratic approximation step from � for the lineminimization problem.The algorithm uses a step that is the shorter of the quadratic approximation andthe polyhedral approximation steps. Some modi�cations are made to these steps if thefunctions are not convex, to guarantee convergence to at least a stationary point.These methods generate two sequences f�rg, f
rg where for each r, �r and 
rare on opposite sides of the minimizing point ��. The sequence ff(�r)g will be non-increasing, and j�r � 
rj is a decreasing sequence, since at least one of the two points�r, 
r changes in each step.We describe di�erent versions of the algorithm in various numbered subsectionsin the following, for ease of cross referencing.1 Line Minimization of a Convex FunctionAssume that f(�) is convex and that it is required to �nd the point �� that minimizesf(�) over � 2 R1. In this subsection, g(�) denotes f 0(�) if f(�) is di�erentiable at �,or a subgradient of f(�) at � otherwise (i. e., a point from @f(�), the interval betweenf 0�(�) and f 0+(�)). The method initially needs two points �1 and 
1 satisfyingf(�1) <= f(
1) and g(�1)g(
1) < 0:A pair of points like this can be generated by some initialization procedure. In thiscase �� is in the interval between �1 and 
1. Choose G(�1) = (g(
1)�g(�1))=(
1��1).We will now describe the general step.Step r. At the beginning of this step we have �r, 
r satisfyingf(�r) <= f(
r) and g(�r)g(
r) < 0and we also have G(�r). ComputedPr = f(�r)� (f(
r) + g(
r)(�r � 
r))g(
r)� g(�r)dQr = �g(�r)G(�r)



10.7. Survey of Some Line Minimization Algorithms 413where jdQr j = +1 if G(�r) = 0. Now determinedr = (sign of (�g(�r)))(min :fjdPr j; jdQr jg)�r = �r + dr:Terminate with the conclusion that �r is the minimizer of f(�) if either dr = 0 org(�r) = 0.Otherwise, update the quantities for the next step as given below. If f(�r) >=f(�r), then set �r+1 = �r, 
r+1 = �r, G(�r+1) = G(�r). In this case there is no movein the �r-sequence.If f(�r) < f(�r), then set �r+1 = �r, andif g(�r)g(�r) > 0; then set 
r+1 = 
rG(�r+1) = g(�r)� g(�r)drif g(�r)g(�r) < 0; then set 
r+1 = �rG(�r+1) = g(�r)� g(
r)�r � 
r :Under rather general assumptions, it has been proved in [10.23] that if this algorithmdoes not terminate in a �nite number of steps, then f(�r) ! f(��) as r ! 1; andthat the sequence f�rg itself converges superlinearly to ��, a minimizer of f(�).2 Constrained Line Minimization With Convex FunctionsNeed For a Constraint in Line MinimizationLet �(x) be a real valued function de�ned on Rn. In algorithms for the unconstrainedminimization of �(x), we start at a point x 2 Rn, develop a search direction y 2 Rn,y 6= 0, which is a descent direction at x; and then have to solve the line minimizationproblem of minimizing f(�) = �(x + �y) over � >= 0. It has been shown that suchalgorithms will have desirable convergence properties if the step length � >= 0 is chosenso as to satisfy f(�)� f(0) <= !�where ! is a negative number that is a positive fraction of an estimate of the directionalderivative of �(x) at x in the direction y. To satisfy this condition, we de�ne c(�) =f(�)� f(0)� !�, and solve the constrained line minimization problemminimize f(�)subject to c(�) <= 0:



414 Chapter 10. Survey of Descent Based MethodsFor another application of constrained line minimization, consider the general NLPminimize �(x)subject to hi(x) <= 0; i = 1 to m:Algorithms for solving these problems usually begin with an initial feasible point x, �nda descent search direction y at x, and do a line minimization in that direction. De�nec(�) = max :fhi(x+ �y) : i = 1 to mg. The problem of �nding the best feasible pointin this search direction, leads to the constrained line minimization problem: minimizef(�), subject to c(�) <= 0.The Constrained Line Minimization ProblemHere we consider the constrained line minimization problemminimize f(�)subject to c(�) <= 0where both functions f(�) and c(�) are convex. LetS = f� : c(�) <= 0g:Since c(�) is convex, S is an interval, but it may be hard to determine S explicitlyif c(�) is nonlinear. However, we assume that S has a nonempty interior and that afeasible point (i. e., � 2 S) may be found, for example, by �nding an unconstrainedminimum of c(�).Here we discuss a modi�cation of the algorithm of Subsection 1 due to R. Mi�in[10.28] for solving this constrained problem.The method generates two sequences f�rg, f
rg, where for each r, �r is feasibleand �r, 
r are on opposite sides of any constrained minimization point ��; 
r is eitherinfeasible (i. e., c(
r) > 0) or f(
r) >= f(�r). The sequence ff(�r)g is non-increasingwith r. In this subsection we de�neg(�) 2 @f(�) if c(�) <= 0 (i. e., � 2 S)g(�) 2 @ c(�) if c(�) > 0 (i. e., � 62 S).We therefore have c(�) >= c(
) + g(
) (�� 
); for all �; and 
 62 Sf(�) >= f(
) + g(
)(�� 
); for all �; and 
 2 S.For � feasible, as in Subsection 1, we de�ne G(�) = (g(�) � g(t))=(� � t) where t isfeasible and � is between t and ��. The quadratic approximation step at a feasiblepoint � is de�ned as before, using G(�).



10.7. Survey of Some Line Minimization Algorithms 415In Step r of the algorithm, if both the points �r and 
r are feasible, the polyhedralapproximation step is de�ned exactly as under Subsection 1.Given �r, 
r, if 
r is infeasible; then g(
r) is a subgradient of the constraintfunction c(�), and is not related to the objective function f(�). Thus, in this case,the polyhedral approximation step given �r, 
r is not well de�ned as in Subsection1. One aim for this step could be to move the 
-sequence towards feasibility. Takingthis step to be d̂, where �r + d̂ = 
r � (c(
r)=g(
r)) would correspond to a Newton-Raphson step for solving c(�) = 0 based upon linearization of c(�) at 
r. On the otherhand, in order to make a move not just towards feasibility, but towards a minimizingfeasible point, we could take the step to be ~d where �r + ~d is the point at which thelinearization of f(�) at �r, and the linearization of c(�) at 
r become equal. This leadsto ~d = (�c(
r)� g(
r)(�r� 
r))=(g(
r)� g(�r)). In order to achieve fast convergence,the actual polyhedral approximation step in this case, from the feasible point �r, istaken to be a compromise between d̂ and ~d given bydPr = P (�r; 
r)g(
r)� brg(�r)where P (�r; 
r) = �c(
r) � g(
r)(�r � 
r) and br = P (�r; 
r). We are now ready todescribe the algorithm.The algorithm needs an initial pair of points �1, 
1 such that �1 is feasible (i. e.,�1 2 S), and either c(
1) > 0 or f(
1) >= f(�1); and g(�1)g(
1) < 0. This implies thata constrained minimizing point lies between �1 and 
1. Also choose G(�1) >= 0. Wewill now describe the general step in the algorithm.Step r. Let �r, 
r be the points at the beginning of this step. De�neP (�r; 
r) = �c(
r)� g(
r)(�r � 
r); and br = P (�r; 
r); if c(
r) > 0P (�r; 
r) = f(�r)� f(
r)� g(
r)(�r � 
r); and br = 1; if c(
r) <= 0dPr = P (�r; 
r)g(
r)� brg(�r)dQr = �g(�r)G(�r) ; if G(�r) > 0jdQr j = +1; if G(�r) <= 0dr = (sign of (�g(�r)))(min :fjdPr j; jdQr jg)�r = �r + dr:Terminate with the conclusion that �r is the optimum solution of the problem if eitherdr = 0 or g(�r) = 0.Otherwise, update the quantities for the next step as given below. If c(�r) > 0 orf(�r) >= f(�r), set �r+1 = �r, 
r+1 = �r, G(�r+1) = G(�r).If c(�r) <= 0 and f(�r) < f(�r), then set �r+1 = �r, andif g(�r)g(�r) > 0; then set 
r+1 = 
r; G(�r+1) = g(�r)� g(�r)drif g(�r)g(�r) < 0; then set 
r+1 = �r; G(�r+1) = g(�r)� g(
r)�r � 
r :



416 Chapter 10. Survey of Descent Based MethodsUnder rather general conditions, R. Mi�in [10.28] has proved that if the algorithmdoes not terminate �nitely, then f(�r) converges to the minimum value of f(�) overS, and that the sequence f�rg itself converges to an optimum solution of the problem,��, with j�r � ��jj
r � �rj converging to zero superlinarly.3 General Constrained Line MinimizationLet f(�), c(�) be real valued functions de�ned on R1, not necessarily convex. Here weconsider the constrained line minimization problemminimize f(�)subject to c(�) <= 0:The set S = f� : c(�) <= 0g is the feasible set. Since c(�) is not assumed to be convex,S may consist of a collection of disjoint intervals.Let F (�) denote either f(�) or c(�). If F (�) is continuoulsy di�erentiable at �, welet @F (�) be the singleton set fdF (�)d� g, as in Appendix 3. If F (�) is not di�erentiable at�, @F (�) denotes the set of subgradients or generalized gradients, it is the convex hull ofall limits of sequences of the form fdF (�k)d� : f�kg ! � and F (�) is di�erentiable at each�kg. With this de�nition @F (�) agrees with the subdi�erential set when F (�) is convex.Also if F (�) is not given explicitly, but is de�ned implicitly as the pointwise supremum,say, as F (�) = maxfF1(�); : : : ; Ft(�)g where each Fi(�) is continuously di�erentiable,then @F (�) will be the convex hull of fdFi(�)d� : over all i such that Fi(�) = F (�)g. Thealgorithm discussed in this subsection needs a subroutine which can evaluate F (�) forany �, and another subroutine to obtain a number g(�) 2 @F (�).Stationary PointsA point �� 2 S is a stationary point for this constrained line minimization problem ifeither c(��) < 0; and 0 2 @f(��)or c(��) = 0; and 0 2 convex hull of @f(��) [ @c(��)because these are the necessary optimality conditions for this problem. See Figure10.7.
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rg with �r feasible for all rand f(�r) non-increasing. For each r we will havec(�r) <= 0 and g(�r)(
r � �r) < 0and either c(
r) > 0; or c(
r) <= 0 and f(
r) >= f(�r):These conditions imply that there exists a stationary point between �r and 
r. Thealgorithm needs a pair of initial points �1, 
1 satisfying the above conditions, these canbe obtained by a suitable initialization routine. The sequence of points f�rg obtainedin the algorithm converges to a stationary point �� and j�r � ��j. j
r � ��j convergesto zero superlinearly.



418 Chapter 10. Survey of Descent Based MethodsThe Quadratic Approximation StepAs before, G(�r) is an approximation to the second derivative of f(�) at �r, and it isdetermined in a one-sided secant-manner, that is, when �r 6= �1,G(�r) = g(�r)� g(tr)�r � trwhere tr is a feasible �j or 
j for some j < r and is on the opposite side of �r from 
r.If f(�) is convex, then we will have G(�r) >= 0 for all r. But due to nonconvexity wemay get some G(�r) <= 0. So, the quadratic approximation step is de�ned here bydQr = �g(�r)max :fG(�r); 0gwith the understanding that jdQr j = +1 if G(�r) <= 0.The Polyhedral Approximation StepConsider the case when both �r and 
r are feasible �rst. In this case, if g(�r), g(
r)have opposite signs, we de�ne the polyhedral approximation step bydPr = P (�r; 
r)g(
r)� g(�r)where P (�r; 
r) = f(�r) � f(
r) � g(
r)(�r � 
r), as before. If P (�r; 
r) >= 0 (whichwill be the case when f(�) is convex) then �r + dPr will be between �r and 
r. Due tononconvexity it may happen that g(�r) and g(
r) do not have opposite signs and/orP (�r; 
r) is negative. In this case, the polyhedral approximation step needs to bemodi�ed as follows. See Figure 10.8.Let Hr be a secant estimate of f 00(�) near 
r, that is when 
r 6= 
1,Hr = g(
r)� g(ur)
r � urwhere ur is a feasible �j or 
j for some j < r on the opposite side of 
r from �r. Inthis case a quadratic approximation to f(�) around 
r isq(�) = f(
r) + g(
r)(�� 
r) + 12Hr(�� 
r)2:A linear approximation for q(�r + d) based at �r isf(
r) + g(
r)(�r � 
r) + 12Hr(�r � 
r)2 + [g(
r) +Hr(�r � 
r)]d:We can take dPr to be the value of d which equalizes this to f(�r)+dg(�r). This leads tod = (f(�r)�f(
r)� [g(
r)+h](�r�
r))=(g(
r)+2h�g(�r)), where h = 12Hr(�r�
r).Since this needs to be carried out only under negative curvature, we de�ne a negativecurvature correction
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Figure 10.8 q(�) (the dashed curve) is the quadratic approximation to f(�)based at � = 
r. The point �r+dPr is the point where the linearizations of f(�)and q(�) based at �r, become equal.hr = 12(�r � 
r)minfHr; 0gand let Pr = f(�r)� f(
r)� (g(
r) + hr)(�r � 
r)dPr �= 0; if Pr <= 0= Pr=(g(
r) + 2hr � g(�r)); if Pr > 0.Now consider the case when 
r 62 S. In this case we make a similar quadratic approx-imation to c(�), and using it estimate the point �r + d where c(�r + d) would be zero.In this case Hr is an estimate of c00(
r), and hr is de�ned as above. Using again the



420 Chapter 10. Survey of Descent Based Methodscompromise as done in Subsection 2 for fast convergence, in this case we are lead tothe following polyhedral approximation step.Pr = �c(
r)� (g(
r) + hr)(�r � 
r)dPr �= 0; if Pr <= 0= Pr=(g(
r) + 2hr � Prg(�r)); if Pr > 0.To handle this general problem, we also de�ne a positive safeguard parameter � suchthat �j
r � �rj < 12so that �(
r � �r)2 < 12 j
r � �rj < j
r � �rj � �j
r � �rj2:In the algorithm, the step dPr is modi�ed into d�r so that jd�rj is between the lower andupper bounds in the above inequality. This guarantees that �r+dr is away from �r and
r. If the problem functions are convex, then G(�r) >= 0, Hr >= 0, hr = 0 and Pr >= 0,and if � = 0, the algorithm discussed below will be the same as the one discussed inSubsection 2. Now we describe the algorithm.The algorithm needs an initial pair of points �1 and 
1 satisfying the conditionsmentioned above. Choose the safeguard parameter � > 0 such that �(
1 � �1) < 12 ,and choose the initial curvature estimates G(�1) and H1. We will now describe thegeneral step in the algorithm.Step r. Let �r, 
r be the points at the beginning of this step. Let G(�r), Hr be thecurvature estimates. Set hr = 12(�r � 
r)minfHr; 0g:Pr = �c(
r)� (g(
r) + hr)(�r � 
r)and �r = g(
r) + 2hr � Prg(�r) ) if c(
r) > 0:Pr = f(�r)� f(
r)� (g(
r) + hr)(�r � 
r)�r = g(
r) + 2hr � g(�r) ) if c(
r) <= 0:dPr = 0 if Pr <= 0= Pr=�r if Pr > 0�r = �j
r � �rj2�r = +1 if � g(�r) > 0= �1 if � g(�r) < 0:d�r = �r�r; if jdPr j < �r= �rjdPr j; if �r <= jdPr j <= j
r � �rj � �r= �r(j
r � �rj � �r); if jdPr j > j
r � �rj � �r



10.8. Survey of Descent Methods for Unconstrained Minimization 421dQr = �g(�r)=maxfG(�r); 0gdr = �r(minfjdQr j; jd�jg)�r = �r + dr:If c(�r) <= 0, f(�r) < f(�r) and g(�r) = 0, terminate with the conclusion that �ris a stationary point.Otherwise update the quantities for the next step as given below.If c(�r) > 0, or f(�r) >= f(�r), then set �r+1 = �r, 
r+1 = �r, G(�r+1) = G(�r),and Hr+1 = [g(�r)� g(
r)]=(�r � 
r).If c(�r) <= 0, f(�r) < f(�r), g(�r) 6= 0, and g(�r)g(�r) > 0, then set �r+1 = �r,
r+1 = 
r, G(�r+1) = (g(�r)� g(�r))=dr, and Hr+1 = Hr.If c(�r) <= 0, f(�r) < f(�r), g(�r) 6= 0, and g(�r)g(�r) < 0, then set �r+1 = �r,
r+1 = �r, G(�r+1) = [g(�r)� g(
r)]=(�r � 
r), and Hr+1 = G(�r).Under rather general conditions on the functions, R. Mi�in [10.29] has provedthat if the algorithm does not terminate �nitely, then f�rg converges to a stationarypoint of f(�) on S.To start the algorithm from a feasible �1 when a suitable 
1 is not known, onecan use a safeguarded quadratic step of the form�g(�j)=max[G(�j); aj]; j = 1; 2where fajg is a bounded positive sequence chosen so that it converges to zero if fg(�j)gconverges to zero.10.8 SURVEY OF DESCENT METHODS FORUNCONSTRAINED MINIMIZATION IN RnIn this section we consider methods for solving the problemminimize �(x)over x 2 Rn (10:4)where �(x) is a real valued continuously di�erentiable function de�ned over Rn. Themethods discussed in this section make use of the �rst and sometimes the second orderpartial derivatives of �(x) when they exist, or approximations for these constructedfrom the information accumulated over the iterations. The methods are iterative, theygenerate a sequence of points fx0; x1; x2; : : :g � Rn beginning with an initial point x0,and satisfy the property that �(xr) monotonically decreases as r increases.In this section r�(xr) denotes the row vector of partial derivatives of �(x) at thepoint xr (the gradient vector of �(x) at xr). When the second order partial derivativesexist, we denote the n � n Hessian matrix of �(x) at the point xr by H(�(xr)) =



422 Chapter 10. Survey of Descent Based Methods(@2�(xr)@xi@xj ). In the methods discussed in this section, each iteration or step consists ofthree parts. The (k + 1)th step begins with the point xk (xk is the point obtained atthe end of step k if k > 0, x0 is the initial point with which the method is initiated)and consists of the following partsi) compute the search direction at xk, denoted by yk. yk 2 Rn, yk 6= 0,ii) compute the step length in the search direction, �k > 0,iii) compute the new point xk+1 = xk + �kyk and check whether termination criteriaare satis�ed. If the termination criteria are satis�ed, xk+1 is accepted as thesolution of (10.4). Otherwise, continue the method by going to the next step.In order to guarantee that �(xr) decreases monotonically, we require the searchdirections to be descent directions. The point y 2 Rn, y 6= 0 is said to be a descentdirection for �(x) at the point xk if there exists a � > 0 for which�(xk + �y) < �(xk); for all 0 < � <= �: (10:5)Since �(x) is di�erentiable at xk, (10.5) implies that the limit of (�(xk+�y)��(xk))=�as � approaches zero through positive values, is <= 0, that is (r�(xk))y <= 0. Conversely,it can be veri�ed that any y satisfying(r�(xk))y < 0 (10:6)is a descent direction at xk. The condition (10.6) is a su�cient condition for y to be adescent direction at xk. We de�ne a descent direction for �(x) at xk, to be a y 2 Rn,y 6= 0, satisfying (10.6). Similarly the point y 2 Rn, y 6= 0 is said to be a nonascentdirection for �(x) at xk if, (r�(xk))T y <= 0: (10:7)When �(x) is twice continuously di�erentiable, the point y 2 Rn, y 6= 0 is said to be adirection of nonpositive curvature for �(x) at xk if,yTH(�(xk))y <= 0 (10:8)and a direction of negative curvature if,yTH(�(xk))y < 0: (10:9)10.8.1 How to Determine the Step Length?Let xk be the current point and suppose the search direction yk, which is a descentdirection, has been selected. Since xk, yk are given points, �(xk+�yk) is now a functionof � only, and it can be veri�ed that its derivative with respect to � is (r�(xk+�yk))yk.The descent step length can be determined to minimize �(xk + �yk) over � >= 0. Thisoperation is a line search operation. Step lengths determined to minimize �(xk + �yk)



10.8. Survey of Descent Methods for Unconstrained Minimization 423over � >= 0 are referred to as optimal step lengths and algorithms using them arecalled optimal step descent techniques. Since yk is a descent direction for �(x) atxk, the optimal step length �k is > 0 andd�d� (xk + �kyk) = (r�(xk + �kyk))yk = 0: (10:10)So if optimal step lengths are used, the gradient direction at the termination of a linesearch step is orthogonal to the descent direction.In practice, it may not be e�cient to use optimal step lengths in every itera-tion. Algorithms which allow for termination of line searches when conditions for anapproximate minimum on the line are satis�ed, are said to use partial or inexactline searches. When using inexact line searches, it is necessary to make sure thatthe line search achieves a su�cient decrease in objective value, to guarantee conver-gence. A practical criterion requires that the step length � be determined to makej(r�(xk+�yk))ykj su�ciently small. Stated in terms of the decrease in the magnitudeof the derivative of �(xk+�yk) with respect to � from that at � = 0, another criterionrequires that the step length � be chosen to satisfyj(r�(xk + �yk))ykj <= �j(r�(xk))ykj (10:11)where � is a parameter satisfying 0 <= � < 1. If � = 0 in (10.11), exact line searches arerequired, and when � is small, the line search procedure needs to be close to optimal.Step Length Criterion to Achieve Su�cient Rate of DecreaseA fundamental requirement of step size procedures used in descent methods is thatthere be a su�cient decrease in the objective value in each step. There are many ways ofspecifying what a \su�cient-decrease" is. For example, consider the line minimizationproblem of minimizing �(xk + �yk) over � >= 0, where yk is a descent direction for�(x) at xk. The quantity, (r�(xk))yk, the directional derivative of �(x) in the searchdirection yk, is a measure of the rate of decrease in �(x) at xk in the direction yk.Select a number �, 0 < � < 1, known as the attenuation factor. One su�cientdecrease criterion requires that over the step length taken, the function value mustdecrease per unit step, at least a fraction � of the rate of decrease in �(x) at xk in thedirection yk. That is, that the step length � chosen satisfy�(xk)� �(xk + �yk) >= ��j(r�(xk))ykj: (10:12)To depict this pictorially, we plot � on the horizontal axis, and function values on thevertical axis in the two dimensional cartesian plane in Figure 10.9. The curve in Figure10.9 is �(xk + �yk) plotted against �. The straight lines in Figure 10.9 are plots ofl�(�) = �(xk)� ��j(r�(xk))ykjagainst �.
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Figure 10.9 The dashed line is l�(�) for � = 1. The continuous straight lineis l�(�) for � = 12 . (10.12) requires that for step length � chosen, �(xk+�yk) <=l�(�).The su�cient decrease condition (10.12) states that the step size � chosen, shouldsatisfy �(xk + �yk) <= l�(�) = �(xk)� ��j(r�(xk))ykj:This inequality is called Armijo inequality.Other Step Length CriteriaMany theoretical convergence proofs for descent algorithms assume that the step lengthused is the �rst local minimum along the line in the direction � >= 0.



10.8. Survey of Descent Methods for Unconstrained Minimization 425The First Order Armijo Step Size ProcedureThis procedure was introduced by L. Armijo [10.1]. Let yk be the descent directionfor �(x) at the current point xk. Let 0 < � < 1 be a predetermined constant. Thisprocedure �nds s = smallest nonnegative integer satisfying�(xk)� ��xk + yk2s � >= � �2s (r�(xk))yk (10:13)and chooses the step length to be 1=2s. Since yk is a descent direction, a �nite ssatisfying (10.13) exists.As an example, consider the problem depicted in Figure 10.9. Let the attenuationfactor � = 12 . In Figure 10.9, we verify that � = 1 violates the Armijo inequality(10.13), since �(xk+ yk) > l�(1) for � = 12 . Even � = 12 violates the Armijo inequality(10.13) since �(xk + 12yk) > l�(12 ) for � = 12 . � = 14 satis�es Armijo inequality (10.13)because �(xk + 14yk) < l�(14) for � = 12 in Figure 10.9. So the step length chosen bythis procedure in this problem is �k = 14 .It can be veri�ed that there is always a positive integer s satisfying (10.13). So,the step length indicated in this procedure is well de�ned and unique.One thing that should be noted here is that the step length chosen by this pro-cedure depends on the scaling of yk. Replacing yk by �yk where � > 0; does notchange the search direction, or the line search problem; but it could change the steplength chosen by this procedure and the �nal point obtained in the line search by thisprocedure. The direction yk is usually selected by a descent direction selection subrou-tine, using the values of the function �(x) or its gradient vectors or hessian matricesevaluated at previous points, and this procedure takes the output of that subroutineas it is.Second Order Armijo Step Size ProcedureThis procedure is useful when using second order methods like Newton's method dis-cussed below. Let xk be the current point. Here we will have two directions ofnonascent, yk and hk. If r�(xk) 6= 0, yk should be a descent direction satisfying(10.6). If r�(xk) = 0, then hk is a direction of negative curvature satisfying (10.9).Let 0 < � < 1 be a predetermined constant. Let s be the smallest nonnegative integers satisfying�(xk)� ��xk + yk2s + hk2s=2� >= � �2s ((r�(xk))yk + 12(hk)TH(�(xk))hk) (10:14)and take the next point to be xk+1 = xk + yk2s + hk2s=2 . The conditions mentionedabove guarantee that a �nite s satisfying (10.14) exists. It can be proved that if �(x)is twice continuously di�erentiable, and a descent algorithm using this second orderArmijo procedure is carried out, then every limit point x of the sequences of pointsfxrg generated by this method is a point x satisfying r�(x) = 0 and H(�(x)) is PSD(the second order necessary optimality condition for x to be a local minimum of �(x)).See [10.1, 10.26, 10.27].



426 Chapter 10. Survey of Descent Based Methods10.8.2 The Various MethodsNow we present various descent methods for (10.4). Since each method has the samestructure (each step consisting of three parts (i), (ii), (iii) described under Section10.8), we will brie
y describe how the search direction is chosen in each step, whatstep size procedures can be used, and a summary of convergence results.10.8.3 The Method of Steepest DescentIn this method, the search direction in the (k + 1)th step is chosen to be the steepestdescent direction at the current point xk. The steepest descent direction at xk is clearlythe direction d 2 Rn which minimizeslimit�!0+ �(xk + �d)� �(xk)� = (r�(xk))dsubject to kdk = 1. In Rn, kdk, the distance between d and 0 can be measured by thegeneral distance function f(d) = pdTAd where A is a PD symmetric matrix of ordern. If A = I, f(d) becomes the usual Euclidean distance. The matrix A is known as themetric matrix in the distance function f(d). With respect to this metric matrix A, thesteepest descent direction at xk is therefore the d which minimizes (r�(xk))d subjectto kdk = dTAd = 1. It can be veri�ed that this direction is given by �(r�(xk))A�1 ifr�(xk) 6= 0.The steepest descent method, dating back to Cauchy (1847) takes the metricmatrix to be I in each step, and thus uses the search direction to be yk = �(r�(xk))Twhen xk is the current point.It can be shown that the steepest descent method converges when applied withany of the step length procedures discussed in Section 10.8.1. Every limit point x of thesequence fxrg generated satis�es the necessary optimality condition r�(x) = 0. Theconvergence rate for the algorithm is linear [10.13, 10.17, 10.27, 10.33]. In practice,the method has been observed to be notoriously slow and unreliable due to round-o�e�ects.10.8.4 Newton's MethodThis is a second derivative method that can be used only if �(x) is twice continuouslydi�erentiable. At the current point xk, �(x) is approximated by the quadratic function�(xk)+(r�(xk))(x�xk)+ 12 (x�xk)TH(�(xk))(x�xk), containing the �rst three termsof the Taylor series expansion for �(x) around xk. The �rst order necessary conditionfor the minimum y = x� xk of this quadratic approximation is that y satis�esH(�(xk))y = �(r�(xk))T : (10:15)



10.8. Survey of Descent Methods for Unconstrained Minimization 427A direction y that satis�es (10.15) is known as the Newton direction for �(x) andxk. Assuming the H(�(xk)) is PD (since this matrix is nonsingular, the solution of(10.15) is unique), the unique minimum of the quadratic approximation at xk isxk+1 = xk � (H(�(xk)))�1(r�(xk))T (10:16)the iterative scheme given by (10.16) is the traditional Newton's method. WhenH(�(xk)) is PD, (H(�(xk)))�1(r�(xk))T is the steepest descent direction at xk usingH(�(xk)) as the metric matrix, and the formula (10.16) is based on using a constantstep length of +1 in this direction. When �(x) satis�es the property that H(�(x)) isPD for all x (in this case �(x) is strictly convex) Newton's method uses the steepestdescent direction with the metric matrix H(�(xk)) in the step in which xk is the cur-rent point, and since the metric matrix changes in each step, it is called a variablemetric method in this case.As an illustration of convergence proofs we provide below a theorem on the con-vergence of Newton's method.Theorem 10.1 Suppose �(x) is twice continuously di�erentiable. Let H(x) =(hij(x)) = H(�(x)). So hij(x) = @2�(x)@xi@xj . Suppose each of the functions hij(x) satis�esthe Lipschitz condition, that is, there exists a positive number � satisfying jhij(�) �hij(�)j <= �k� � �k for all �; � 2 Rn. Let x be a point satisfying r�(x) = 0, H(�(x))is PD. If the initial point x0 is su�ciently close to x, the sequence of points fxr : r =0; 1; : : :g obtained by Newton's method converges to x at a second order rate.Proof. By Taylor expansion of r�(x) around xr we have (r�(xr+�))T = (r�(xr))T+H(xr)�+ f(�) where jf(�)j <= �k�k2 for some positive number �, when � is su�cientlyclose to zero. Assuming that xr is su�ciently close to x, and substituting � = x� xr,we get 0 = (r�(x))T = (r�(xr))T + H(xr)(x � xr) + f(x � xr). By the continuityof H(x), and the hypothesis, when xr is su�ciently close to x, H(xr) is also PD andso (H(xr))�1 exists. Multiplying the above equation on both sides by (H(xr))�1 weget (since xr+1 = xr � (H(xr))�1(r�(xr))T in Newton's method) 0 = �(xr+1 � xr) +(x� xr) + (H(xr))�1f(x� xr) = (x� xr+1)+ (H(xr))�1f(x� xr). Since H(x) is PD,when xr is su�ciently close to x, there exists a constant � such that kH(xr)�1k <= �.So from the above equation we conclude thatk(x� xr+1)k = k � (H(xr))�1f(x� xr)k <= �kf(x� xr)k <= ��kx� xrk2:Using this inequality for r = 0, we conclude that there exists an " > 0 su�cientlysmall, such that kx � x0k < " implies kx � x1k < �kx � x0k < �" where � < 1.Repeating this argument we conclude that kx � xrk ! 0 as r ! 1, that is, thesequence fxrg converges to x. That the convergence is of second order follows fromthe above inequality.



428 Chapter 10. Survey of Descent Based Methods10.8.5 Modi�ed Newton's MethodsWhen H(�(xk)) is PD, �(H(�(xk)))�1(r�(xk))T is a descent direction for �(x) at xk,but there is no guarantee that �(xk+1) <= �(xk) when xk+1 is determined by (10.16),because the step length is a constant, 1, independent of the data. The sequence can bemade into a descent sequence by modifying Newton's method into Newton's methodwith line search, in which the direction of search is �yk satisfying (10.15), the signdetermined (when H(�(xk)) is not PD) so as to ensure that the direction is a descentdirection, and any of the step length procedures discussed earlier are used for the linesearch.The major di�culty with Newton's method arises when H(�(xk)) is not PD. IfH(�(xk)) is singular, (10.15) may not have a solution, and even if it has a solution,when H(�(xk)) is not PD, solutions of (10.15) are not necessarily descent directions,and methods based on using them may not converge. In the case when H(�(xk)) is noteven PSD, it is possible to modify Newton's method by using directions of negativecurvature together with step size procedures such as the second order Armijo step.One modi�cation suggested to guarantee that the search directions are descentdirections is to replace H(�(xk)) in (10.15) by �kQk +H(�(xk)) where Qk is either Ior a positive diagonal matrix and �k is a positive number to ensure that the resultingmatrix is PD, and then solve the modi�ed equation to give the search direction to beused at xk.For other modi�ed versions of Newton's method see [10.9, 10.13, 10.26, A8].One main di�culty in using Newton's method (or modi�ed Newton methods) isthat the Hessian matrix has to be evaluated in each step. If subroutines for directlycomputing each element of the Hessian matrix are not available, they can be approx-imated by �nite di�erences of the gradient vector. For this, select a positive number�, the �nite di�erence interval. To approximate the Hessian at the point xk, computeH.i = 1� (r�(xk + �I.i)�r�(xk))T :Let H be the matrix with columns H.i, i = 1 to n. Then (H + HT )=2 can be usedas an approximation for H(�(xk)) in executing Newton's or the appropriate modi�edNewton's method. With this change, the method is usually called a discrete (or�nite di�erence)Newton ormodi�ed Newton method. These methods are veryworthwhile when the Hessian matrix has a known sparsity pattern.10.8.6 Quasi Newton MethodsNewton's method is di�cult to implement because of the computational burden in-volved in calculating the Hessian matrix in each step (even if we decide to use a �nitedi�erence approximation for it). The Quasi-Newton methods try to build up informa-tion on the Hessian through various steps of the descent method using the computed



10.8. Survey of Descent Methods for Unconstrained Minimization 429values of r�(x) and �(x). In these methods (H(�(xk)))�1 is approximated by a sym-metric positive de�nite matrix, Dk, which is updated in each iteration. Thus in thesemethods, the (k + 1)th step consists of the following.(a) Initiate this step with the point xk obtained in the previous step (if k = 0, initiatethis step with x0, some initial point with which the method is started).(b) Compute the search direction at xk, denoted by yk = �Dk(r�(xk))T .(c) Compute step length in the search direction, �k > 0, by doing a line search,leading to the new point xk+1 = xk + �kyk.(d) Check whether termination criteria (see Section 10.8.8) are satis�ed by the newpoint xk+1, in which case accept xk+1 as the solution of (10.4) and terminate.Otherwise update Dk giving Dk+1 and go to the next step.The methods start out with an initial solution x0, and a symmetric positive de�nitematrix D0 (usually D0 = I). Dk is an approximation to the inverse Hessian at alocal minimum to which the sequence of points generated is presumed to converge.Di�erent algorithms use di�erent formula for updating Dk from step to step. Theadvantages are that these methods only need the computation of the gradient vectorr�(x) at one point in each step. When the matricesDk are all PD, the search directionsyk = �Dk(r�(xk))T are descent directions. In some quasi-Newton methods Dk maynot always be PD, but the important methods do maintain this property. When Dkis PD, the search direction yk is the steepest descent direction at xk using D�1k as themetric matrix, and since this metric matrix changes from iteration to iteration, thesemethods are also known as variable metric methods.The updating formula which gives Dk+1 as a function of Dk attempts to take intoaccount the second derivative information obtained during the (k + 1)th step. Theformula is derived to ensure that Dk becomes a good approximation of (H(�(xk)))�1as the method progresses. This is done through the use of an equation known as thequasi-Newton condition, which we will now derive. By taking the Taylor seriesexpansion of r�(x) around the point xk and neglecting higher order terms, we get(r�(xk+1))T ' (r�(xk))T +H(�(xk))(xk+1 � xk):So, if H(�(xk)) is invertible, we have(H(�(xk)))�1(r�(xk+1)�r�(xk))T ' (xk+1 � xk): (10:17)Since the quantities xk+1 and r�(xk+1) are not available until the k + 1th step iscompleted, we cannot expect the matrixDk to satisfy (10.17) in place of (H(�(xk)))�1,but we could require Dk+1 to satisfyDk+1(r�(xk+1)�r�(xk))T = (xk+1 � xk): (10:18)This condition is the quasi-Newton condition, and the updating formulae for thematrices Dk in quasi-Newton methods are usually formulated so that this condi-tion holds for all k. If the updating formulae are such that this condition is satis-�ed, and satis�es certain other prior conditions (sometimes it is also required that



430 Chapter 10. Survey of Descent Based MethodsDk+1(r�(xj+1) � r�(xj))T = (xj+1 � xj) hold for all j <= k) it can be shown thatwhen the algorithm is applied to minimize 12xTAx+ cx where A is PD and symmetric,using exact line searches, then the search directions generated are conjugate directions(see Section 10.8.7 for the de�nition of conjugate directions), that Dn = A�1, and thatthe method terminates after at most n steps with the minimum.The three basic considerations in constructing updating formulae for Dk in quasi-Newton methods are (i) the quasi-Newton condition (10.18), (ii) hereditary symmetry(i. e., if Dk is symmetric, the updating formula should guarantee that Dk+1 is alsosymmetric), and (iii) hereditary positive de�niteness. Not all the quasi-Newton meth-ods satisfy all these properties. In some of them, these properties may only hold if theline searches are carried out to a high degree of precision in each iteration.The updating formula usually has the form Dk+1 = Dk+Ck where Ck is a matrixknown as the correction term. Usually Ck has rank 1 or 2, and depending on its rank,the methods are classi�ed either as rank-one or rank-two methods.Now we will present the updating formulas used by some important quasi-Newtonmethods. The remaining details are the same as discussed above, for each method.For k >= 1, we de�ne �k = xk � xk�1�k = (r�(xk)�r�(xk�1))T (10:19)The Davidon-Fletcher-Powell (DFP) MethodHere the updating formula isDk+1 = Dk + �k+1(�k+1)T(�k+1)T �k+1 � (Dk�k+1)(Dk�k+1)T(�k+1)TDk�k+1where �k+1, �k+1 are column vectors de�ned as in (10.19). The method has the hered-itary symmetry property. It also has the hereditary PD property if (�k+1)T �k+1 > 0for all k. Notice that this condition will hold if the search direction yk is a descentdirection and the line search is carried out optimally or to a local minimum. Themethod has superlinear rate of convergence. When applied to minimize a strictly con-vex quadratic function 12xTAx + cx with exact line searches, the method preservesthe condition Dk+1�j+1 = �j+1 for all j <= k, for all k; it generates conjugate searchdirections and terminates after n steps with Dn+1 = A�1 and the optimum solution.See [10.9, 10.13, 10.37, A3] for proofs of these results.The Broyden-Fletcher-Goldfarb-Shanno (BFGS) MethodHere the updating formula isDk+1 =Dk + �1 + (�k+1)TDk�k+1(�k+1)T �k+1 �� �k+1(�k+1)T(�k+1)T �k+1���k+1(�k+1)TDk +Dk�k+1(�k+1)T(�k+1)T �k+1



10.8. Survey of Descent Methods for Unconstrained Minimization 431where �k+1, �k+1 are column vectors de�ned as in (10.19). The method has the hered-itary symmetry and hereditary PD properties, satis�es the quasi-Newton conditions(Dk+1�j+1 = �j+1 for all j <= k), and has the quadratic termination property. Atpresent this is considered the best quasi-Newton method. The method has been shownto converge even with inexact line searches (using several of the line search terminationcriteria discussed in Section 10.7.8).Resetting in Quasi-Newton MethodsIn quasi-Newton methods, the steps can continue until termination. However, in someimplementations the method is reset by setting the matrix Dk to some positive de�nitematrix (usually the same as D0, or I) after every n steps. If implemented this way,the method goes through cycles. Each cycle begins with the point obtained at the endof the last step in the previous cycle (the initial cycle begins with the initial point x0with which the method is initiated) and the initial step of each cycle begins with thematrix D0 (usually I or some other PD symmetric matrix) and the cycle consists of nsteps.Also in each step one should check that the search direction yk satis�es (r�(xk))yk< 0, as otherwise the direction is not a descent direction. Usually the method is alsoreset whenever this descent condition is violated.See references [10.2, 10.8, 10.9, 10.13, 10.26, 10.27, 10.33, A3] for a discussion ofvarious other quasi-Newton methods, their best computer implementations, and theconvergence results established about them.10.8.7 Conjugate Direction MethodsThese are a class of methods that use only �rst order derivatives, which obtain searchdirections without the need for storing or updating a square matrix of order n. Conju-gate direction methods were developed with the aim of solving strictly convex quadraticprogramming problems with an e�ort of at most n line searches. For this, the search di-rections have to be chosen to satisfy the conjugancy property. Let f(x) = cx+ 12xTAxwhere A is a PD symmetric matrix of order n. Consider the linear transformationx = Pz where P is a nonsingular square matrix of order n. This transforms f(x) intoF (z) = cPz + 12zTPTAPz. F (z) can be minimized with an e�ort of at most n linesearches in the z-space if it is separable, that is, if PTAP = Q is a diagonal matrixwith positive diagonal entries Q11; : : : ; Qnn, and(P.i)TAP.j = 0 for each i 6= j: (10:20)In this case F (z) is equal toPnj=1 Fj(zj) where Fj(zj) involves only one variable, andhence minimizing F (z) over z 2 Rn can be achieved by n one dimensional problemsof minimizing Fj(zj) over zj 2 R1 for each j = 1 to n separately, that is, n line



432 Chapter 10. Survey of Descent Based Methodssearches. The set of nonzero vectors fP.1; : : : ; P.ng is said to be conjugate withrespect to the PD symmetric matrix A if (10.20) holds. Let � = (�1; : : : ; �n) =cP . So F (z) = Pnj=1 �jzj + 12Pnj=1Qjjz2j . Hence, the point which minimizes F (z)is z = (zj) = (��j=Qjj) and so the point which minimizes f(x) in the x-space isx = (xj) = Pz. Since F (z) is separable, we can visualize the minimum of F (z) asbeing obtained by starting at an arbitrary point z0 in the z-space and doing n linesearches exactly, once in each direction I.j , j = 1 to n (the alternating variablesmethod). Let zj be the point obtained at the end of the jth line search in this scheme.So zj+1 is the minimizer of F (zj + �I.j+1) over � 2 R1, j = 0 to n� 1. Then zn = z.If xj = Pzj , j = 0 to n, it can be veri�ed that xj+1 is the minimizer of f(xj +�P.j+1)over � 2 R1, j = 0 to n � 1 and that xn = x, the point which minimizes f(x). Thefollowing properties can be veri�ed to hold1. the conjugacy condition (10.20) implies that fP.1; : : : ; P.ng is linearly independent.2. (rf(xk+1))P.j = 0, for j = 1 to k.3. Let �j be the minimizer of f(xj + �P.j+1) over � 2 R1, for j = 0 to n� 1. Thenxj+1 = xj + �jP.j+1. So (rf(xj+1)�rf(xj))T = A(xj+1 � xj) = �jAP.j+1. So(rf(xi+1)�rf(xi))P.j = 0 for i 6= j.The conjugate gradient methods for minimizing f(x) construct the conjugate di-rections one after the other using information collected from earlier line searches. Eachdirection will be a descent direction at the point which is the current point in the stepin which this direction is generated. We now describe these methods.Step 1 is initiated with an arbitrary initial point x0. The search direction instep 1 is the steepest descent one, y0 = �(rf(x0))T . Do a line search to minimizef(x0 + �y0), � >= 0.The general (k+1)th step for k >= 1 begins with the point xk obtained at the endof the line search in the kth step. The search direction in this step isyk = �(rf(xk))T + �kyk�1where �k is a scalar. The various conjugate gradient algorithms use di�erent formulafor �k. They are�k = krf(xk)k2=krf(xk�1)k2 (10:21)in Fletcher and Reeves method [10.13].= (rf(xk)�rf(xk�1))(rf(xk))T=krf(xk�1)k2 (10:22)in Polak and Ribiere and Polyak's method [10.13, 10.17, 10.37].= � krf(xk)k2=(rf(xk�1))yk (10:23)in conjugate descent method [10.13].It can be veri�ed that (rf(xk))yk = �krf(xk)k2 if the line search in the previousstep is carried out exactly, and in this case yk is therefore a descent direction at xk.Now do a line search to minimize f(xk+�yk), � >= 0. If �k is the optimum step length,



10.9. Survey of Linear Equality Constrained Minimization 433xk+1 = xk + �kyk. If rf(xk+1) = 0, xk+1 minimizes f(x), terminate. Otherwise, goto the next step.The method terminates after at most n steps. It can be veri�ed that the searchdirections generated are conjugate with respect to the Hessian matrix A, and they areall descent directions if the line search is carried out exactly in each step. Since f(x)is quadratic, it can be veri�ed that �k obtained in (10.21) or (10.22) or (10.23) areexactly the same if all the line searches are carried out exactly.To solve the problem of minimizing �(x), which is in general not quadratic, weapply the method exactly as above, replacing f(x) by �(x) wherever it appears. Inthis general problem, the search directions generated will be descent directions as longas line searches are carried out exactly in each step. In this general problem, thevalues for �k obtained from (10.21), (10.22), (10.23) may be di�erent. In numericalexperiments the method using (10.22) seemed to perform better, particularly whenn is large. The application of the method can be continued until some terminationcondition is satis�ed (see Section 10.8.8). In practical implementations to minimizegeneral non-quadratic functions �(x), the method is usually restarted (or reset) afterevery n steps. If this is done, the method goes through several cycles. Each cycleconsists of n steps. Step 1 of each cycle begins with the point obtained at the end ofthe previous cycle (or x0, the initial point, for the �rst cycle) and uses the negativegradient search direction. In the general non-quadratic case, if inexact line searches areused, the directions generated, yk, may not be descent directions (that is, (r�(xk))T ykmay not be < 0). The method based on updating using (10.23) (the conjugate descentmethod) produces descent directions even when line searches are not very exact. If thesearch direction in a step is not descent, we can carry out the line search in that stepover the entire line (instead of the half-line with step length � >= 0 as is done usually,that is, allow step length to be negative), but usually the cycle is terminated in such astep and the method is reset to begin the next cycle with the steepest descent directionin step 1. It can be shown that these methods have superlinear convergence in termsof cycles. See [10.8, 10.13, 10.17, 10.26, 10.37].10.8.8 Practical Termination Conditions forUnconstrained Minimization AlgorithmsWhen the descent algorithm generates the sequence of points fxr : r = 0; 1; : : :g inpractical implementations for minimizing �(x), the method can be terminated whensome or all of the following conditions are metj�(xk)� �(xk�1)j < "1kxk � xk�1k < "2kr�(xk)k < "3where the "'s are suitably chosen tolerances.



434 Chapter 10. Survey of Descent Based Methods10.9 SURVEY OF SOME METHODS FORLINEAR EQUALITY CONSTRAINEDMINIMIZATION IN RnHere we consider the NLP minimize �(x)subject to Ax = b (10:24)where A is a matrix of order m�n and rank m, and �(x) is a real valued continuouslydi�erentiable function. Given a feasible point x for this problem, the �rst order neces-sary conditions for it to be a local minimum are that there exist a Lagrange multipliervector � = (�1; : : : ; �m) satisfying (r�(x)) = �A: (10:25)Suppose (10.24) is feasible, and let x be any feasible solution for it. Then every feasiblesolution for (10.24) is of the form ~x+ z where z satis�esAz = 0: (10:26)There exists a matrix Z of order n� (n�m) and rank n�m, such that every columnvector of Z is a solution of (10.26) and conversely every solution of (10.26) is a linearcombination of the column vectors of Z. To obtain a matrix like Z, �nd a basis B for(10.24). B is a square nonsingular submatrix of A of order m. Rearrange the variablesand their columns in A so that A can be partitioned into basic and nonbasic parts as(B;D) where D is the m � (n �m) matrix of nonbasic columns. Then the matrix Zcan be taken to be Z = ��B�1DIn�m � (10:27)where In�m is the unit matrix of order n � m. It is not necessary to compute Zexplicitly. All the computations in the algorithms discussed below can be carried outusing a factorization for B�1.Since any solution for (10.24) is of the form x = ~x + Z� where ~x is a solutionof (10.24) and � 2 Rn�m, (10.24) is equivalent to the problem of minimizing f(�) =�(~x+Z�) over � 2 Rn�m, that is the unconstrained minimum of f(�) over � 2 Rn�m.It can be veri�ed that rf(�) = (rx�(~x + Z�))Z. Also if �(x) is twice continuouslydi�erentiable, H(f(�)) = ZTHx(�(~x + Z�))Z. For x feasible to (10.24) the vector(r�(x))Z is known as the projected gradient or the reduced gradient vector of�(x) at x, and the matrix ZTH(�(x))Z of order (n �m) � (n �m) is known as thereduced or projected Hessian matrix of �(x) at x. The condition (10.25) implies(r�(x))Z = 0: (10:28)



10.9. Survey of Linear Equality Constrained Minimization 435If �(x) is twice continuously di�erentiable, a second order necessary condition forthe feasible solution x of (10.24) to be a local minimum for it is that the matrixZTH(�(x))Z is PSD.The algorithms discussed in this section generate a sequence of feasible pointsfx0; x1; : : :g beginning with the initial feasible point x0. If xk is feasible, the searchdirection at xk in step k + 1 must satisfy Ayk = 0, that is, yk = Z�k for some�k 2 Rn�m, such directions are called feasible search directions, because a move of anylength in such a direction, starting from a feasible point, remains in the feasible regionfor (10.24). Step k + 1 of the algorithm consists of the following tasks:1. Compute a feasible search direction: First compute �k and then compute thesearch direction yk = Z�k.2. Determine step length: Compute the positive step length �k.3. Compute the new point xk+1 = xk + �kyk.4. Check whether xk+1 satis�es the conditions for termination, if so, accept xk+1 asthe solution of (10.24) and terminate. Otherwise go to the next step.The feasible search direction yk selected in 1. above is a descent direction at xk if((r�(xk))Z)�k = (r�(xk))yk < 0: (10:29)The method of steepest descent uses (�k)T = �(r�(xk))Z to determine the feasiblesearch direction at xk, which is therefore yk = �ZZT (r�(xk))T , and uses step lengthprocedures exactly as in the unconstrained case. However, this method has slow linearrate of convergence.Newton's method is based on minimizing the second order Taylor approximationfor f(�) = �(xk+Z�) around � = 0, that is �(xk)+ (r�(xk))Z�+ 12�TZTH(�(xk))Z�.So, Newton's method uses the search direction yk = Z�k, where �k solves(ZTH(�(xk))Z)� = �ZT (r�(xk))T (10:30)and uses �xed step lengths of �k = 1. Modi�ed Newton methods replace the matrixZTH(�(xk))Z in (10.30) (when this matrix is not PD) by a PD approximation toit such as ZTH(�(xk))Z + �I for some � > 0, and step lengths determined by linesearches.When the second derivatives are not available, the matrix ZTH(�(xk))Z can beapproximated by �nite di�erence approximation. For this, let "i be an appropriate�nite di�erence interval, and for i = 1 to n�m letW.i = 1"i (r�(xk + "iZ.i)�r�(xk))Tand let W be the n� (n�m) matrix with column vectors W.i, i = 1 to n�m. Thena symmetric approximation for ZTH(�(xk))Z is (1=2)(ZTW +WTZ).Quasi-Newton methods can be developed for (10.24) by looking at the corre-sponding unconstrained minimization problem of minimizing f(�) = �(xk + Z�), but



436 Chapter 10. Survey of Descent Based Methodscarrying out all the operations in the x-space. In this case the search direction in stepk + 1 will be yk = Z�k, where �k = �DkZT (r�(xk))T . The matrix Dk is of order(n�m)� (n�m). We choose D0 = In�m, and in updating Dk from step to step, weuse the updating formulas discussed in Section 10.8.6 with �k = ZT (xk+1 � xk), and�k = ZT (r�(xk+1)�r�(xk))T instead of (10.19).Another approach for solving (10.24) is to use a conjugate gradient method onthe corresponding reduced problem of minimizing f(�) = �(xk+Z�), but doing all thecomputations in the x-space. The search directions used arey1 = �Z(r�(x0)Z)Tyk = �Z(r�(xk)Z)T + �kyk�1where �k = k(r�(xk))Zk2=k(r�(xk�1))Zk2 or (r�(xk)�r�(xk�1))ZZT (r�(xk))T=kr�(xk�1)Zk2, or �kr�(xk)Zk2=(r�(xk�1)Z)�k (here �k is the unique solution ofZ�k = yk), as in (10.21), (10.22), (10.23), depending on the method used. Statementsmade in Section 10.8.7 about resetting the algorithm remain valid here also (hereresetting is done after every n�m steps or whenever the search direction generated isnot a descent direction).10.9.1 Computing the Lagrange Multiplier VectorLet x be the terminal point obtained in the algorithm for solving (10.24). The corre-sponding Lagrange multiplier vector is the vector � which satis�es (10.25). Given x,(10.25) is a system of n equations in the m unknowns �1; : : : ; �m, and since n > m,this is an overdetermined system of equations. We can determine � as the row vectorin Rm which minimizes k(r�(x))T ��Ak2 over � 2 Rm, for which the solution is givenby � = (AAT )�1Ar�(x): (10:31)If x is a local minimum for (10.24), the vector � given by (10.31) is an exact solution for(10.25). If x is an approximation to a local minimum (obtained when the algorithmsdiscussed above are terminated using some practical termination criteria discussed inSection 10.8, there is no � satisfying (10.25) exactly, however, the � obtained from(10.31) is a corresponding approximation to the Lagrange multiplier vector for (10.24).For other approximating estimates to the Lagrange multiplier vector see references[10.13, 10.17].



10.10. Survey of Linearly Constrained Optimization 43710.10 SURVEY OF OPTIMIZATION SUBJECTTO GENERAL LINEAR CONSTRAINTS
10.10.1 The Use of Lagrange Multipliers toIdentify Active Inequality ConstraintsFor the purpose of this discussion, consider the following NLP:minimize �(x)subject to Ax >= b (10:32)where A is a matrix of order m� n, say. If x is feasible, the ith constraint in (10.32)is said to be active or tight or binding at x if it holds as an equation at x, that is, ifAi.x = bi; inactive if Ai.x > bi. For x feasible to (10.32), let I(x) = fi : i such thatAi.x = big = index set of active constraints in (10.32) at x. Let y 2 Rn, y 6= 0. yis said to be a feasible direction at x, if x + �y remains feasible for (10.32) for all0 <= � <= �, for some positive �. Clearly y is a feasible direction at x i�Ai.y >= 0; for each i 2 I(x): (10:33)The direction y is said to be a binding direction or a non-binding direction at xwith respect to the ith constraint for i 2 I(x), depending on whether Ai.y = 0 or Ai.y >0 respectively. A move in a binding direction continues to keep the constraint active,while any move of positive length in a non-binding direction makes the constraintinactive, that is, moves o� the constraint.Now consider the corresponding equality constrained NLP:minimize �(x)subject to Ax = b (10:34)and further assume that the set of row vectors of A is linearly independent. Supposex is a KKT point for (10.34) with the associated Lagrange multiplier vector � =(�1; : : : ; �m). So x, � together satisfy the �rst order necessary optimality conditionsr�(x) = �A: (10:35)Since the set of feasible solutions of (10.34) is a subset of the set of feasible solutionsof (10.32), an optimum solution for (10.34) may not be optimal for (10.32) in general.The point x is of course feasible to (10.32) and clearly it is also a KKT point for (10.32)if � >= 0.



438 Chapter 10. Survey of Descent Based MethodsSuppose there is a t such that �t < 0, we will now show that there exists a descentfeasible direction at x for (10.32) which moves o� the tth constraint. Since the set ofrow vectors of A is assumed to be linearly independent, by standard results in linearalgebra, there exists a y 2 Rn satisfyingAi.y = 1 for i = t= 0 for i 6= t: (10:36)Let y be a solution for (10.36). From (10.35) and (10.36), we have (r�(x))y = �Ay =�t < 0, and hence y is a descent feasible direction for (10.32) at x.Thus a necessary condition for a KKT point of (10.34) to be a KKT point for(10.32) is that all the Lagrange multipliers be nonnegative. Otherwise we can constructa descent feasible direction for (10.32) at such a point. These results are used in some ofthe algorithms discussed below, to solve NLP's involving linear inequality constraintsusing techniques for solving NLP's involving linear equality constraints only. They tryto guess the set of active inequality constraints at the optimum, and apply the equalityconstraint techniques to the problem treating these active constraints as equations.Modi�cations are made in the active set using Lagrange mulitplier information gatheredover each step.10.10.2 The General ProblemHere we consider the NLPminimize �(x)subject to Ai.x = bi; i = 1 to m>= bi; i = m+ 1 to m+ p (10:37)where x 2 Rn, and �(x) is a real valued continuously di�erentiable function. Givena feasible point x, the �rst order necessary conditions for x to be a local minimumfor this problem are that there exists a Lagrange multiplier vector � = (�1; : : : ; �m+p)satisfying r�(x) = m+pXi=1 �iAi.�i >= 0; i = m+ 1 to m+ p�i(Ai.x� bi) = 0; i = m+ 1 to m+ p: (10:38)Without any loss of generality we assume that fAi. : i = 1 to mg is linearly inde-pendent. Let K denote the set of feasible solutions of (10.37). Given x 2 K, all theequality constraints for i = 1 tom are active at x in (10.37). Form+1 <= i <= m+p, theith constraint in (10.37) is active at x (also said to be an active inequality constraintat x) if Ai.x = bi, inactive otherwise. Let I(x) = fi : Ai.x = big, the index set of active



10.10. Survey of Linearly Constrained Optimization 439constraints at x. The point y 2 Rn, y 6= 0, is a feasible direction at x if x + �y 2 Kfor 0 <= � <= �, for some positive �. Clearly y is a feasible direction at x i�Ai.y = 0; i = 1 to m>= 0; i 2 I(x) \ fm+ 1; : : : ;m+ pg:If y is a feasible direction at x and Ai.y > 0 for some i 2 I(x) \ fm+ 1; : : : ;m+ pg, amove in the direction y from x is said to move o� the ith constraint in (10.37).We will now discuss some algorithms for solving (10.37).10.10.3 The Frank-Wolfe MethodTo solve (10.37), this method generates a descent sequence of feasible points fxr : r =0; 1; : : :g beginning with an initial feasible solution x0, satisfying �(xr+1) < �(xr) forall r.For k >= 0, in step k + 1, the initial point is xk, the feasible point obtained atthe end of the previous step if k > 0, or the feasible point with which the method isinitiated, if k = 0. In this step the search direction yk is of the form zk � xk where zkis a feasible point satisfying (r�(xk))(zk � xk) < 0, and so yk is a descent direction atxk. To �nd a point like zk, we solve the LP in variables xminimize (r�(xk))xsubject to x 2 K: (10:39)If zk is an optimum solution obtained when the LP is solved and (r�(xk))T zk =(r�(xk))Txk, then xk is also optimal to the LP (10.39). By the duality theorem oflinear programming, there exists a vector �k such that xk, �k together satisfy the �rstorder necessary optimality conditions (10.38) for (10.37), and so we terminate with xkas the solution for (10.37). Otherwise, since xk 2 K, we must have (r�(xk))(zk�xk) <0, and so yk = zk � xk is a feasible descent direction at xk. Now do a line search to�nd the minimum of �(xk + �yk) subject to 0 <= � <= 1. If �k is the minimum for thisline search problem, the next point in the sequence is xk+1 = xk + �kyk, continue.We have the following results about the convergence properties of this method.Theorem 10.2 Suppose K 6= ; and that the linear function in x, (r�(~x))x, isbounded below on x 2 K for each ~x 2 K. Assume that K has at least one extremepoint, and that for each k, the optimum solution zk for the LP (10.39) obtained inthe method is an extreme point of K. If the method does not terminate after a �nitenumber of steps, the sequence fxr : r = 0; 1; : : :g generated by the above method hasat least one limit point, and every limit point of this sequence is a KKT point for(10.37), if the line searches are carried out exactly in each step.Proof. Since r�(~x)x is bounded below for x 2 K for each ~x 2 K, the LP (10.39) hasan optimum solution always. The LP (10.39) may have alternate optima, and we are



440 Chapter 10. Survey of Descent Based Methodsassuming that zk is an optimum solution for (10.39) which is an extreme point of K(this will be the case, for example, if K has at least one extreme point and (10.39) issolved by the simplex method). Since K is a convex polyhedron, it has a �nite numberof extreme points, and let K� be the convex hull of these extreme points. Because ofthe descent property �(xr) is monotonic decreasing as r increases, and by the mannerin which the algorithm is carried out, it is clear that every point in the in�nite sequencefxrg lies in the convex hull of K� and x0, a compact set. So the sequence fxrg has atleast one limit point. Let x be a limit point of the sequence fxrg. Let S be an in�niteset of positive integers such that xk ! x as k !1 with all k 2 S. For each k 2 S wehave an associated extreme point of K, zk, which is an optimum solution of (10.39).Since there are only a �nite number of extreme points of K, there must exist at leastone extreme point of K, say z, which is equal to zk for k 2 S an in�nite number oftimes. Let S1 � S such that for each k 2 S1, zk = z. So (r�(xk))T (z � xk) < 0 foreach k 2 S1. xk ! x as k ! 1 through k 2 S1, so taking the limit in the aboveinequality as k !1 through k 2 S1, we get(r�(x))(z � x) <= 0: (10:40)By our hypothesis, the line searches are carried out exactly in each step. Let S1 = frt :t = 1 to 1g, with the elements in S1 arranged in increasing order. So limit xrt = x ast!1. In step k = 1+ rt, the optimal step length is �1+rt , and so we must have, for0 <= � <= 1, �(xrt + �(z � xrt)) >= �(x1+rt) >= �(xrt+1): (10:41)This follows because x1+rt is the point on the line segment fxrt+�(z�xrt) : 0 <= � <= 1gwhich minimizes �(x) on this line segment. Also, since rt is an increasing sequence,we have rt+1 >= 1 + rt, and since f�(x1); �(x2); : : :g is a descent sequence we have�(x1+rt) >= �(xrt+1). In (10.41) let t!1. This leads to�(x+ �(z � x))� �(x) >= 0 (10:42)for all 0 <= � <= 1. When � is su�ciently small and positive, by the mean value theoremof calculus, (10.42) implies that �(r�(x))(z � x) >= 0, that is, (r�(x))(z � x) >= 0.Combining this with (10.40) we haver�(x)(z � x) = 0: (10:43)Since z is an optimum solution of (10.39) whenever k 2 S1, and since xk ! x ask !1 with all k 2 S1, by (10.43) we conclude that x is a feasible solution for (10.37)satisfying the property that x = x is an optimum solution of the LPminimize (r�(x))xsubject to Ai.x = bi; i = 1 to m>= bi; i = m+ 1 to m+ p: (10:44)



10.10. Survey of Linearly Constrained Optimization 441Let � = (�1; : : : ; �m+p) be an optimum dual solution associated with (10.44), thenby the duality and complementary slackness theorems of linear programming, x, �together satisfy (10.38), and hence x is a KKT point for (10.37).If �(x) is convex, and xk is a point obtained during the Frank-Wolfe method,and satis�es (r�(xk))(xk � zk) <= ", where zk is an optimum solution of (10.39), then�(xk) <= "+ minimum value of �(x) in (10.37). To see this, since �(x) is convex, wehave for x 2 K, �(x)� �(xk) >= (r�(xk))(x� xk) >= (r�(xk))(zk � xk) >= �", and so�(x) >= �(xk)� " for all x 2 K. So if �(x) is convex and xk satis�es (r�(xk))(xk � zk)< ", where " is small, we can conclude that xk is near optimum and terminate.In each step of this method, an LP and a line search problem have to be solved.Even though the system of constraints in the LP to be solved in all the steps is thesame, the objective function changes from step to step. The line search problem ineach step has to be solved either optimally or at least to guarantee a su�cient decreasein the objective value. Since there is a considerable amount of work to be done ineach step, the method tends to be slow. It is practical to use the method only onsuch problems for which the structure of the problem allows the solution of the LP ineach step by an e�cient special algorithm. One such application arises in the study oftra�c 
ow along a city's street network using a tra�c assignment model. We discussthis application brie
y here.The Tra�c Assignment ProblemLet G = (N ;A) be a city's street network. N is a set of points which are the variouscenters in the city or street intersections. A is a set of arcs or street segments, eacharc joining a pair of points. The prupose of the study is to determine how the tra�cwill be distributed over alternate routes. Each driver makes his own choice of theroute to take, but tra�c 
ow on road network exhibits certain patterns. One broadprinciple for the analysis of tra�c movement enunciates that tra�c distributes itselfover alternative routes so that the average journey time is a minimum.The cost associated with an arc (i; j) in the network is a measure of the journeytime from node i to node j along that arc. Journey time is in
uenced by tra�ccongestion, and tends to increase with tra�c 
ow. Let fij denote the tra�c 
ow onthis arc (i. e., the number of cars entering this arc at node i per unit time) and letcij(fij) denote the journey time as a function of the 
ow fij . This function has theshape given in Figure 10.10, and so is a monotone increasing convex function.
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Figure 10.10Tra�c modelers construct these functions cij(fij) by actually collecting data. Theyalso have data on the volumes of tra�c (i. e., how many people travel and from where,to where) for di�erent periods of the day. For example, during a particular peakperiod, suppose we know that V u vehicles will be travelling from node su (origin) tonode tu (destination) in the network, u = 1 to g. Let fuij be the number of thesevehicles (with origin su and destination tu) travelling along arc (i; j) in the network.For u = 1 to g let fu = (fuij) be the vector of arc 
ows of the su to tu vehicle 
ows.The problem is to determine these vectors fu. The tra�c assignment model statesthat the (fu : u = 1 to g) form an optimum solution to the following nonlinear (
owdependent cost) multicommodity 
ow problemminimize X(i;j)2A cij(fij)subject to fij= 
ow on arc (i; j) = gXu=1 fuijP(fuij : j such that (i; j) 2 A)�X(fuji : j such that (j; i) 2 A)= 0; if i 6= su or tu= V u; if i = su= �V u; if i = tufuij >= 0; u = 1 to g; (i; j) 2 A:
(10:45)



10.10. Survey of Linearly Constrained Optimization 443In this model it is quite reasonable to make the simplifying assumption that the 
owvariables are continuous variables rather than discrete integer variables. Also, since thecost function cij(fij) is constructed to re
ect the journey time as a function of the 
owfij , there is no need to include a constraint in the model corresponding to the capacityfor 
ow of this arc. So, (10.45) is an uncapacitated, convex, multicommodity 
owproblem, and this can be solved e�ciently using the Frank-Wolfe method. It beginswith a feasible 
ow ((fu)0 : u = 1 to g), which can be generated by standard network
ow methods, and generates a sequence of feasible 
ow vectors ((fu)r : u = 1 to g :r = 0; 1; : : :) converging to the optimum solution of (10.45). In the (k+1)th step of thismethod, the initial 
ow vectors are ((fu)k; u = 1 to g). Let (fij)k =Pgu=1(fuij)k, thetotal 
ow on arc (i; j) in these 
ow vectors. Let cij = �dcij(fij)dfij : evaluated at fij =(fij)k�. Then the LP to be solved in this step isminimize gXu=1 X(i;j)2A cijfuijsubject toX(fuij: j such that (i; j) 2 A)�X(fuji : j such that (j; i) 2 A)= 0; if i 6= su or tu= V u; if i = su= �V u; if i = tufuij >= 0; u = 1 to g; (i; j) 2 A: (10:46)
Clearly, (10.46) can be broken up into g separate network 
ow problems one for eachu = 1 to g. Also, the uth problem becomes the shortest chain problem from su to tuin the network G = (N ;A) with (cij) as the vector of arc lengths, for which there arevery e�cient special algorithms.Let Pu be the shortest chain from su to tu in G with (cij) as the vector of arccosts. De�ne the 
ow vector zu = (zij)u wherezuij = V u if (i; j) is on Pu= 0 otherwise:Then the 
ow vectors (zu : u = 1 to g) are an optimum solution of the LP (10.46), tobe solved in this step.Since the objective function in (10.45) is separable in the arcs, even the line searchproblem to be solved in this step, which is that of minimizingP(i;j)2A cij(f1ij+: : :+fgij)over the line segment ffu = �(fu)k + (1 � �)zu; u = 1 to g; 0 <= � <= 1g, can besimpli�ed.Thus the Frank-Wolfe method provides a reasonable approach for solving thetra�c assignment problem (10.45). The main reason for this is the fact that the LPto be solved in each step of the method breaks down into g separate shortest chainproblems, for which very e�cient special algorithms are available.



444 Chapter 10. Survey of Descent Based Methods10.10.4 Reduced Gradient MethodsThe name reduced gradient method refers to a method which uses the equality con-straints to eliminate some variables (the dependent or basic variables) from the prob-lem, and treats the remaining problem in the space of the independent (or nonbasic)variables only, either explicitly or implicitly. The gradient of the objective function inthe space of independent variables is the reduced gradient de�ned in Section 10.9, thesearch direction is usually the steepest descent vector in the space of the independentvariables (the negative reduced gradient vector); or the Newton search direction inthe space of the independent variables, determined using the reduced Hessian or anapproximation for it.We will consider the problem in the following formminimize �(x)subject to Ax = bl <= x <= u (10:47)where A is a matrix of order m � n and rank m. As discussed in Chapter 1, theproblem (10.37) can be put in this form. Here l, u are the lower and upper boundvectors for x in (10.47). Let B be a basis for A (i. e., a square nonsingular submatrixof A of order m) and partition A as (B;D), and let x = (xB; xD) be the correspondingpartition of the vector x. xD is the vector of independent (nonbasic) variables and xBis the vector of dependent (basic) variables. Let x = (xB ; xD) be a feasible solutionfor (10.47). So xB = B�1(b�DxD). The problem can be transformed into one in thespace of independent variables xD only, by eliminating the dependent variables xB .The reduced gradient at x is cD = (rxD�(x))� (rxB�(x))B�1D. De�ne yD = (yj) byyj = �cj if xj is a nonbasic variable in xD and either cj < 0 andxj < uj or cj > 0 and xj > lj= 0 if xj is a nonbasic variable in xD;and the above conditions not met.If yD = 0, x satis�es the �rst order necessary optimality condition for being a localminimum for (10.47), and the method terminates. Otherwise verify that cDyD < 0, soyD is a descent direction in the space of independent variables xD. It is the steepestdescent (negative reduced gradient) direction. De�ne yB = �B�1DyD and let y =(yB ; yD). Then y is the search direction at x. Since Ay = 0, the equality constraintsin (10.47) continue to be satis�ed when we move in this direction. De�ne�1 = minimum f(xj � lj)=(�yj) : j such that yj < 0g;�2 = minimum f(uj � xj)=(yj) : j such that yj > 0g;� = minimum f�1; �2g:Do a line search for minimizing �(x+�y) over 0 <= � <= �, and repeat the whole processwith the optimum point in this line segment.



10.10. Survey of Linearly Constrained Optimization 445Let lB , uB denote the bound vectors for the dependent variables xB . If lB < xB <uB , from the de�nition of the search direction y, it can be veri�ed that � > 0. Ifhowever, (10.47) is degenerate, given a feasible solution x for it, it may not be possibleto �nd a basis B for (10.47) for which lB < xB < uB holds. In this degenerate case,it may so happen that � = 0. In this case y is not a feasible direction at x, and theline search problem does not make any sense, since any move of positive length inthe direction y results in infeasibility. In this case the method can be continued byidentifying the active constraints at x, and moving from x in the direction of yp, theorthogonal projection of y in the subspace of active constraints at x (this will be agradient projection step, see the next section, Section 10.10.5). This is equivalent tocarrying out the line search problem exactly as above after replacing y by yp.For convergence and rate of convergence results in this method see [10.2, 10.13,10.15, 10.17, 10.26].This method has been generalized very directly into the Generalized ReducedGradient method (GRG) for solving NLPs involving nonlinear constraints. See [10.2,10.13, 10.15, 10.17, 10.25, 10.26].10.10.5 The Gradient Projection MethodWhen applied to solve the NLP (10.37), this method generates a descent sequencefxr : r = 0; 1; : : :g beginning with a feasible point x0, all the points in which arefeasible. Step 1 begins with x0, and in general for k >= 1 step k + 1 begins with thepoint xk at the end of step k.For any feasible solution x of (10.37) de�ne I(x) = fi : Ai.x = big. Clearly,f1; : : : ;mg � I(x) for all feasible solutions x.In step k + 1, if there are no equality constraints in the problem and if I(xk) =;, choose the search direction at xk to be yk = �(r�(xk))T . If I(xk) 6= ;, thesearch direction in this step is determined by projecting the negative gradient of theobjective function at xk, onto the subspace parallel to the a�ne space of currentlyactive constraints treated as equations. Let Ak denote the matrix whose rows are Ai.for i 2 I(xk). So Ak is of order jI(xk)j � n. Assume that the set of rows of Ak islinearly independent, otherwise delete some dependent row vectors of Ak from it untilthis property holds. The projection matrix corresponding to the active subspace isPk = I � ATk (AkATk )�1Ak. The projection of �(r�(xk))T onto the active subspace is�Pk(r�(xk))T . It can be veri�ed that this vector �Pk(r�(xk))T is a positive multipleof the vector which minimizes (r�(xk))y subject to Aky = 0 and yT y <= 1.If �Pk(r�(xk))T = 0, de�ne �k = (AkATk )�1Ak(r�(xk))T . Then r�(xk) �(�k)TAk = 0. (�k)T is a row vector of dimension jI(xk)j. Augment (�k)T into a vectorof dimension m + p, by inserting 0's for all i 62 I(xk), and let the vector obtained becalled �k. Then r�(xk) = �kA where A is the (m+p)�n coe�cient matrix in (10.37).So if �ki >= 0 for all i = m+1 to m+ p, xk, �k together satisfy the �rst order necessaryoptimality conditions (10.38) and the method terminates with xk as the KKT point



446 Chapter 10. Survey of Descent Based Methodsfor (10.37). On the other hand if �ki < 0 for some i between m+ 1 to m + p, identifythe i for which �ki is the most negative, say r, delete the rth constraint from the activeset (that is, eliminate Ar. from the matrix Ak) update the projection matrix, and theprojection of �(r�(xk))T on the new active subspace, and repeat the whole process.If �Pk(r�(xk))T 6= 0, de�ne yk = �Pk(r�(xk))T , yk is the search direction atxk. It can be veri�ed that Pk is symmetric and PTk Pk = Pk, so Pk is PSD. Alsor�(xk)yk = �kykk2 < 0. So yk is a descent direction. Now �nd � from� = minimum nAi.xk � bi�Ai.yk : i such that i 62 I(xk) and Ai.yk < 0o= +1 if Ai.yk >= 0 for all i 62 I(xk):Do a line search to minimize �(xk+ �yk), 0 <= � <= �. If �k is the optimum step lengthin this line search problem, xk+1 = xk + �kyk is the new point; go to the next step.Methods for Updating the Projection MatricesThe periodic updating of the projection matrix is a considerable computational prob-lem. However, the matrix Ak usually changes by one row, say Ar., which is eitherdropped from the set of active constraint rows, or is added to it. Here we discuss howto e�ciently update (AkATk )�1 when a change like this takes place.To Delete a Row From AkLet Ar. be the sth row in Ak at the moment and suppose we want to delete it fromAk. After deletion suppose Ak becomes Â, of order (q � 1)� n.Interchange the last row and the sth row in (AkATk )�1. In the resulting matrixinterchange the sth column and the last column. After these interchanges suppose thismatrix (AkATk )�1 is written down in partitioned form as8>: E uuT �9>;where E is of order (q� 1)� (q� 1). Then it can be shown that (ÂÂT )�1 = E� uuT� .To Add a Row to AkSuppose the row Ar. has to be added to Ak. We will make Ar. as the last row of theresulting matrix, which is ~A = 8>: AkAr.9>;. Let P be the projection matrix correspondingto Ak, which is I � ATk (AkATk )�1Ak. Compute c = kP (Ar.)Tk2 = Ar.P (Ar.)T , w =(AkATk )�1Ak(Ar.)T , u = �(w=c), F = (AkATk )�1 + wwTc . Then( ~A ~AT )�1 = 8>: F uuT 1=c9>; :



10.10. Survey of Linearly Constrained Optimization 447In the process of this updating, if c turns out to be zero, i. e., PAr. = 0, then thenew active constraint row, Ar., is linearly dependent on the previous active constraintrows, and the updating cannot be carried out. In this case the new active constraintrow is ignored and the method can be continued with the same set of active constraintrows as before.The updating procedure can also be used recursively to obtain the inverse (AkATk )�1in the �rst step of the algorithm, from the set of active constraints at that stage, byintroducing them one at a time. An advantage of this recursion is that it selects thelargest set of linearly independent active constraint rows among the set of all activeconstraint rows at this stage.10.10.6 The Active Set MethodsWe consider the NLP (10.37). These methods begin with a feasible solution x0 andobtain a descent sequence fxr : r = 0; 1; : : :g, where each point in the sequence isfeasible.If x is an optimum solution for (10.37), and I(x) = fi : Ai.x = bi; i = 1 to m+ pg,then x is also an optimum solution of the equality constrained NLPminimize �(x)subject to Ai.x = bi; i 2 I(x): (10:48)If we can guess the correct active set I(x), we could solve (10.48) by methods for solvingequality constrained NLPs discussed in Section 10.9.In these methods, a guess is built up over the steps, on the likely set of activeconstraint indices at the optimum. This set is known as the working active set. Theworking active set in step k + 1 is denoted by Ik. Clearly f1; : : : ;mg � Ik for all k.Changes are made in the set Ik using information gathered in each step. Ik alwayssatis�es the property: fAi. : i 2 Ikg is linearly independent. The initial point in step1 is x0, in initial feasible solution with which the method is initiated. For k >= 1, theinitial point in step k+1 is xk, the feasible point obtained at the end of step k. Usuallywe have Ik � I(xk).In step k + 1, we carry a step for the equality constrained minimization problemminimize �(x)subject to Ai.x = bi; i 2 Ik (10:49)as discussed in Section 10.9. The search direction at xk is the direction determinedusing the projected gradient, the projected Hessian or some quasi-Newton search di-rection at xk for (10.49) as discussed in Section 10.9.If xk satis�es the termination criteria for (10.49), let Ak denote the matrix withrows Ai., i 2 Ik. The corresponding Lagrange multiplier vector for (10.49) is �k =(AkATk )�1Ak(r�(xk))T from (10.31). If �ki >= 0 for all i 2 Ik \ fm+ 1; : : : ;m+ pg, as



448 Chapter 10. Survey of Descent Based Methodsdiscussed in Section 10.9.1, xk is a KKT point for (10.37), terminate. If �ki < 0 forsome i 2 Ik \ fm+ 1; : : : ;m+ pg, select the most negative among these, say �kr , thendelete r from the working active set, and repeat the whole process.If xk does not satisfy the termination criteria for (10.49), let yk be the searchdirection generated at xk for solving (10.49). Find out � from� = minimum nAi.xk � bi�Ai.yk : i such that i 62 Ik and Ai.yk < 0o=1 if Ai.yk >= 0 for all i 62 Ik:Do a line search to minimize �(xk + �yk) over 0 <= � <= �. Let �k be the optimumstep length for this line search problem. If �k < �, leave the working active set Ikunchanged, and with xk+1 = xk + �kyk go to the next step. If �k = �, all the i whichtie for the minimum in the de�nition of � join the active set, select one of these andinclude it in Ik. Then go to the next step.To carry out a step of the algorithm discussed in Section 10.9 for the equalityconstrained minimization problem (10.49), we need the corresponding matrix Z, whichwe denote by Zk here, as discussed in Section 10.9. Whenever we change the workingactive set Ik by dropping an element from it, or including a new element in it, it isnecessary to make the corresponding changes in Zk. Suppose Zk is computed as in(10.27) using a basis Bk for Ak, and maintained by storing Bk either explicitly or insome factored form. Whenever Ik changes by one element, Bk changes by one row andone column, and B�1k can be updated by using the standard pivot methods of LP.Several practical strategies have been developed to decide when to include a con-straint in the working active set, and when to drop a constraint from it. Software pack-ages for linearly constrained nonlinear programming based on such active set strategiesseem to give the most satisfactory performance. Many of the commercially availablepackages usually include a combination of several of the strategies discussed above, inorder to satisfactorily solve the widest class of problems.All these methods become considerably simpli�ed when applied to solve a qua-dratic programming problem, because of the special nature of the objective function.10.11 Exercises10.2 Fermat's ProblemLet A.j = (a1j; : : : ; amj)T , j = 1 to n be given distinct points in Rm. Letwj be a given positive weight associated with point A.j . For any x 2 Rm de�nef(x) =Pnj=1wjkx�A.jk.(i) If no three points among fA.1; : : : ; A.ng are collinear, prove that f(x) is positiveand strictly convex on Rm.



10.11. Exercises 449(ii) Assuming that no three points in the set fA.j : j = 1 to ng are collinear provethat the problem of minimizing f(x) over Rn has a unique solution, call it x, andprove that x lies in the convex hull of fA.1; : : : ; A.ng.(iii) De�ne g(x) = nXj=1�wj(A.j � x)kx�A.jk �; if x 6= A.j ; for each j = 1 to n:For such points, g(x) = �rf(x). This function g(x) given above, is not de�ned ifx = A.j for some j. By analogy, de�ne for j = 1 to n,h(A.j) = nXi=1i6=j �wi(A.i �A.j)kA.i � A.jk �g(A.j) = maximum fkh(A.j)k � wj ; 0g� h(A.j)kh(A.j)k�:Prove that a given point x is x (whether x is one of the points in the set fA.j :j = 1 to ng or not) i� g(x) = 0, with g(x) de�ned as above.(iv) Assume that no three points in the set fA.j : j = 1 to ng are collinear.De�ne:T (x) = � nXj=1 wjA.jkx�A.jk�=� nXj=1 wjkx�A.jk�; if x 6= A.j for each j = 1 to nT (A.j) = A.j ; for each j = 1 to n:Prove that T (x) = x. Also prove that if x is such that x 6= A.j for each j = 1 ton and T (x) = x, then x = x.Prove that if x 2 Rm satis�es x 6= T (x), then f(T (x)) < f(x).Consider the interative method x0 = initial point in Rm choosen so thatx0 6= A.j for each j = 1 to nxr+1 = T (xr); r = 0; 1; : : : :If xr 62 fA.j : j = 1 to ng for all r, prove that the sequence fxr : r = 0; 1; : : :gconverges to x.(v) Let A.j be the jth column vector of the following matrix for j = 1 to 6.8>:�2 �1 1 2 0 00 0 0 0 1 �19>; :Let wj = 1 for all j = 1 to 6. In this case prove that x = (0; 0)T .Show that there is an x01 (approximately 1.62) such that for x0 = (x01; 0)T we haveT (x0) = A.3, which is not optimal. This shows that the iterative method discussed in(iv) may not always converge to x even if the initial point x0 62 fA.j : j = 1 to ng.



450 Chapter 10. Survey of Descent Based MethodsHowever, prove that there exists a countable set ��� of points in Rm such that if x0 62���, then the sequence of points generated by the iterative method discussed in (iv)converges to x.(H. W. Kuhn [10.21])10.3 Consider the NLP minimize �(x)subject to f(x) = 0where �(x) and f(x) are both continuously di�erentiable real valued functions de�nedover Rn. Using the ideas of the reduced gradient method and the results given by theimplicit function theorem, develop an e�cient algorithm for solving this problem.10.4 De�ne the diameter of a convex hexagon (convex polytope with six extremepoints in R2) K to be maximum fkx � z : x; z 2 Kg. Formulate the problem of�nding a maximum area convex hexagon of diameter <= 1, as an NLP. Is this a convexprogramming problem? Find a solution to this problem using some of the algorithmsdiscussed in this book.10.5 D = (dij) is a square symmetric matrix of order n satisfying, dii = 0 for all i,the triangle inequality (dij + djk >= dik for all i; j; k), and dij > 0 for all i 6= j. It is thematrix of Euclidean distances between pairs of points among a set of n points in R2.We are given the matrix D, but not the actual points from which D was calculated.It is required to �nd the coordinates (xi; yi), i = 1 to n, of n points in R2, for whichthe pairwise distance matrix is D. Formulate this as an NLP and discuss an e�cientapproach for solving it.The rectilinear or L1-distance between two points (x1; y1), (x2; y2) inR2 is de�nedto be jx1 � x2j + jy1 � y2j. Consider the version of the above problem of �nding thecoordinates of n points in R2, for which the matrix of pairwise rectilinear distances isa given matrix D. Formulate this problem. Is this easier or harder to solve than theversion for the Euclidean distances? Why?(S. M. Pollock)10.6 Let n > 1, x = (x1; : : : ; xn)T , Sk =Pnj=1 xkj . Consider the NLPminimize S23 � S2S4subject to 0 <= xj <= 1; j = 1 to n:Prove that the vector x = (xj) is a strict local minimum for this problem if m of the xjare equal to 1, and p of the xj are equal to 1/2, where m+p = n and n > m > (1=9)n.Also, prove that x is a global minimum for this problem if it is of the above form andeither m or p is b(1=2)nc.(P. Wolfe [10.41])



10.11. Exercises 45110.7 Automatic Voltage Regulator Control Panel (AVR) Design Problem.AVR's are used to stabilize voltage in electrical power systems. AVR contains manycircuits, each circuit may consist of several components like resistors, transistors, ca-pacitors, zener diodes etc. Each component is characterized by some variables (e. g. theresistence of a resistor measured in ohms, the gain value of a transistor measured inhFE, the capacitance of a capacitor measured in microfared (MF) etc.). The problemis to �nd an optimum design (i. e., �nd the optimal values of all the variables) whichstabilizes the output voltage as far as possible, while the input voltage may 
uctuateuncontrollably in some speci�ed range. Here we provide a simpli�ed example relatingto the triggering circuit design in the AVR control panel for a diesel 2MW AC gen-erator, to illustrate the basic principles involved in modelling and solving this classof problems (the general problem may have many more variables, and the functionsinvolved are more complicated and may have many more terms, but the basic featuresremain identical). The functional form for the output voltage as a function of the inputvoltage and the design variables is available from electrical engineering theory. Giventhis function, and the range of 
uctuation of the input voltage, the problem is to �ndoptimal values for the design variables that stabilizes the output voltage as much aspossible. In our example, the positive and negative voltages are denoted by v1, v2;each of these 
uctuates between 14.25 to 15.75 and we have no way of controlling it.There are 5 design variables, x1, x2, x3, x4, x5. The functional form for the outputvoltage v is the following:v3 = v1(1� e�(0:5=x1x5))v4 = (x4(x3 + 100) + 100v2)=(x3 + 200)v = (v3 � v4)e�(10=x2x5):The constraints on the variables are, 1 <= x5 <= 10, 3 <= x4 <= 15, 10 <= x1 <= 200,100 <= x2 <= 4000, 1 <= x3 <= 1000. Formulate the problem as a nonlinear program anddiscuss an algorithm for solving it.(Kirloskar Electricals Ltd., India)10.8 The variable y represents the yield in a chemical process. There are n processvariables x1; x2; : : : ; xn (such as temperature, 
ow rate, etc.) which in
uence the yieldy. Data was collected to observe the yield y for various values of the process variablevector x = (x1; : : : ; xn). This leads to k data points, t = 1 to k.Process variable vector xt = (xt1; : : : ; xtn), corresponding yield yt.In the vectors xt, t = 1 to k, each process variable takes several values spanningits possible range of variation, and each combination of process variables takes severalvalues in the combined range of variation of the vector of these process variables. It isbelieved that y can be approximated reasonably well by a convex quadratic functionof the form Q(x) = cx + (12 )xTDx. It is required to �nd the best convex quadratic�t Q(x) for y, using the available data. Formulate this problem of �nding the bestconvex quadratic approximation Q(x) for y using the available data as a nonlinearprogramming problem, and discuss how this problem can be solved.



452 Chapter 10. Survey of Descent Based MethodsIf lj , uj are known lower and upper bounds for the process variable xj for j = 1to n, and you are asked to design an experiment for collecting the necessary datain the above problem, outline how you will determine the process variable vectorsxt = (xt1; : : : ; xtn) at which the yield has to be observed, in order to obtain the best �t.10.9 Let �(x) be a continuously di�erentiable real valued function de�ned on Rn. Itis required to �nd the unconstrained minimum of �(x) over Rn. Beginning with aninitial point x0 2 Rn, the sequence of points fxr : r = 0; 1; 2; : : :g was obtained byusing Cauchy's Method of steepest descent with optimal step lengths in each step (themetric matrix for determining the steepest descent direction is always the unit matrixI). Prove that (xr+2 � xr+1)T (xr+1 � xr) = 0 for all r.10.10 Let c be a given row vector in Rn. Write down explicitly, an optimum solutionfor the following problem minimize cxsubject to xTx = 1x >= 0:10.11 Let �(x) be a continuously di�erentiable real valued convex function de�nedon a bounded convex set K � Rn, that attains its minimum over K at x� 2 K.fxr : r = 1; 2; : : :g, fyr : r = 1; 2; : : :g are sequences of points in K satisfying thefollowing conditionsr�(xr)(yr � xr) <= In�mum f"r +r�(xr)(x� xr) : x 2 Kgr�(xr)(yr � xr)! 0 as r !1where "r >= 0 for all r and "r ! 0 as r ! 1. Then, prove that �(xr) ! �(x�) asr!1.10.12 We are given a set of n points in R2, say, at = (at1; at2), t = 1 to n. It is requiredto �t a circle to these points. The objective function to be minimized isP ((r2-squareof the Euclidean distance between at and the center)2 : t = 1 to n), where r is theradius of the circle. Formulate this problem as an NLP and discuss an e�cient methodfor solving it.(R. Chandrasekaran)10.13 We are given row vectors c1; : : : ; cr in Rn and real numbers d1; : : : ; dr. De�ne�(x) = Maximum fjctx� dtj : t = 1 to rg:It is required to �nd the unconstrained minimum of �(x) over x 2 Rn. Discuss ane�cient method for computing it.



10.11. Exercises 45310.14 Let d1; : : : ; dn be given positive integers. The partition problem with this data,is to check whether there exists a subset S � f1; : : : ; ng such thatXi2S di =Xi2S diwhere S = f1; : : : ; ng n S. This is a well known NP-complete problem (see [8.12]).Formulate this problem as a special case ofminimize kxkpsubject to x 2 K = fx : Ax >= bg (10:50)where kxkp = (Pni=1 jxijp)1=p, and A, b are integer matrices of orders m�n and m�1respectively, p a positive integer >= 1, and K is known to be nonempty and bounded.kxkp is known as the p-norm of the vector x. Thereby establish that the problem ofmaximizing the p-norm on a convex polytope speci�ed in terms of linear inequalitieswith integer data, is an NP-hard problem.Show that an upper bound on the optimum objective value in (10.50) can beobtained by solving a relaxed linear program.The 1-norm of the vector x = (xi) 2 Rn, denoted by kxk1 is de�ned to bemaximum fjxij : i = 1 to ng. Show that when p =1, (10.50) can be solved by solvingat most 2n linear programs.(O. L. Mangasarian and T.-H. Shiau, \A variable-complexity norm maximization prob-lem", Technical Report 2780, Mathematics Research Center, University of Wisconsin,Madison, 1984)10.15 Optimal Betting in a Race TrackThe \market" at a race track in North America typically convenes for about 20 minutes,during which participants make bets on any number of 6 to 12 horses in the followingrace. To keep the discussion simple, we consider a race in which participants can beton each horse either to win or place. All participants who have bet on a horse towin, realize a positive return on that bet only if that horse comes �rst, while a placebet realizes a positive return if that horse comes �rst or second. Consider a race withthe following data declared at the time we are ready to bet.n = number of horses running in the race.Wi = total amount bet by public (all participants so far) on horse i to win.W = Pni=1Wi = win pool.Q = track payback proportion (typically .83, it is the proportion of pool givenaway; the remaining proportion .17 is kept by the race track company).Pj = total amount bet by public (all participants so far) on horse j to place.P = Pnj=1 Pj = place pool.



454 Chapter 10. Survey of Descent Based Methodsqi = probability that horse i �nishes �rst in the race.qij = qiqj1�qi = probability that horse i �nishes �rst and horse j �nishes second inthe race.payo� per dollar beton horse i to win = � WQWi ; i� horse i comes in �rst place0 otherwise.payo� per dollar beton horse j to place = 8>>><>>>: 1 + PQ�Pi�Pj2Pj ; if horses i; j are �rsttwo winners in any order0; if horse j did not �nish in the �rsttwo places in the race.Thus the payo� on horse j to place is independent of whether j �nishes �rst or second,but dependent on which horse �nishes with it in �rst two places.We assume that qi = Wi=W , that is that the crowd is good at picking a winner,or that the relative amount bet on a horse to win corresponds closely to its actualchances of winning.The Wi, Pi are the public's bets in the race, are known. Consider the problemof determining the place bets to make optimally, given all the above data and theassumptions, subject to a budget of b $. The Kelly criterion determines the optimalbets to maximize the expected logarithm of �nal wealth. The decision vector in thisproblem is x = (x1; : : : ; xn)T , where xi is the place bet on the ith horse, i = 1 to n.De�ne fij(x) = �Q�P +Pnl=1 xl�� xi � xj � Pi � Pj2 �� xixi + Pi + xjxj + Pj �:Then the problem for determining the optimal x isminimize nXi=1 nXj=1j 6=i qij log�fij(x) + b� nXl=1l6=i;j xl�subject to nXl=1 xl <= bxl >= 0; for all l = 1 to n:Discuss an e�cient approach for solving this problem. Solve the numerical problemusing this approach, when the data isn = 8; Q = 0:83; b = 500:i 1 2 3 4 5 6 7 8Wi 10; 000 15; 000 5; 000 35; 000 5; 000 10; 000 18; 000 12; 000Pi 4; 000 4; 000 4; 000 8; 000 3; 000 8; 000 13; 000 5; 000



10.11. Exercises 455(See the delightful book, W. T. Ziemba and D. B. Hausch [10.42] for a completetreatment of this problem.)10.16 Consider the following LPminimize cxsubject to x 2 K = fx : Ax >= bgwhere A, b are given matrices of orders m�n, m�1 respectively. Assume that K 6= ;.For � >= 0, let x(�) denote the nearest point in K to �c in terms of the usual Euclideandistance.If the above LP has an optimum solution, prove that there exists a � > 0 such thatx(�) is constant for all � >= � and that x(�) is the least (Euclidean) norm optimumsolution for the LP.If the objective value is unbounded below on K in the above LP, prove thatkx(�)k ! 1 as �!1.(O. L. Mangasarian)10.17 Consider the following NLPminimize �(x)subject to Ax >= bwhere �(x) is a strictly convex function de�ned over Rn with a unique unconstrainedminimum, x, in Rn; and A is a matrix of order m� n. Suppose x satis�esAi.x� bi�< 0; i = 1 to r>= 0; for i = r + 1 to m.Let xi denote the point which minimizes �(x) subject to one constraint only \Ai.x >=bi", for i = 1 to r. Suppose there is a unique k 2 f1; : : : ; rg such that xk is feasible tothe original NLP. Then prove that xk is an optimum solution for the original NLP.10.18 A Curve Fitting Application in High Voltage Coil Insulation Testing: Thelife of the insulation system on high voltage coils used in rotating electrical machines,depends on it's DLA (dielectric loss analyzer) value. The DLA value for a coil isexpected to depend on it's � tan � (increase in tan � or dissipation factor expressedas a percentage, with increase in test voltage) and �C (inrease in capacitance withincrease in test voltage) values. The DLA value is hard to measure, but the � tan �and �C values can be measured easily. Given below are the DLA, � tan � and �Cvalues for a sample of 95 test coils. Use this data to determine if the DLA value ofa coil can be estimated reliably from it's � tan � and �C values, and if so, determinethe appropriate functional form. Using this analysis, design a scheme for checking theacceptability of coils (acceptable if DLA value is <= 8:0 units) using measurements oftheir � tan � and �C values as far as possible.



456 Chapter 10. Survey of Descent Based Methods�C and � tan � with their corresponding DLA values for 95 test coils.� tan �, � tan �,Sample 6.6 KV � C, 6.6 DLA at Sample 6.6 KV � C, 6.6 DLA atcoil No. to 11 KV to 11 KV coil No. to 11 KV to 11 KVKV 11 KV KV 11 KV1 .0011 0.5 0.4 26 .0044 2.4 2.52 .0017 0.9 0.8 27 .0042 2.5 1.63 .0030 1.0 1.6 28 .0041 2.5 2.24 .0019 1.2 0.8 29 .0048 2.6 2.05 .0020 1.3 0.2 30 .0042 2.7 1.56 .0026 1.3 1.1 31 .0060 2.7 1.77 .0020 1.4 1.2 32 .0039 2.7 1.48 .0028 1.6 1.4 33 .0030 2.7 1.29 .0023 1.6 1.4 34 .0031 2.8 2.310 .0027 1.7 1.6 35 .0047 2.9 3.011 .0024 1.7 1.6 36 .0052 3.3 2.712 .0023 1.8 1.0 37 .0036 3.3 2.113 .0032 1.9 2.1 38 .0049 3.3 2.414 .0026 1.9 1.5 39 .0045 3.3 2.515 .0027 2.0 1.6 40 .0053 3.3 2.416 .0026 2.0 1.2 41 .0050 3.6 3.717 .0031 2.0 2.8 42 .0054 3.6 2.918 .0041 2.0 0.6 43 .0056 3.7 4.019 .0045 2.1 0.6 44 .0059 3.8 2.420 .0032 2.1 2.1 45 .0057 3.8 2.521 .0031 2.1 1.2 46 .0057 3.9 3.522 .0024 2.2 1.5 47 .0067 4.1 3.323 .0031 2.2 1.4 48 .0045 4.3 3.524 .0028 2.2 1.4 49 .0059 4.5 4.025 .0029 2.4 1.1 50 .0066 4.5 3.4



10.11. Exercises 457�tan �, � tan �,Sample 6.6 KV � C, 6.6 DLA at Sample 6.6 KV � C, 6.6 DLA atcoil No. to 11 KV to 11 KV coil No. to 11 KV to 11 KVKV 11 KV KV 11 KV51 .0076 4.5 3.4 71 .0045 6.2 5.152 .0073 4.6 4.2 72 .0066 6.2 5.253 .0058 4.6 4.0 73 .0077 6.3 3.654 .0060 4.7 3.4 74 .0093 6.4 7.055 .0072 4.8 4.2 75 .0089 6.3 5.856 .0057 4.9 4.1 76 .0055 6.8 7.357 .0068 4.9 3.6 77 .0083 7.3 5.958 .0076 5.3 6.5 78 .0096 7.5 5.059 .0084 5.0 3.4 79 .0091 7.7 6.060 .0063 5.0 3.1 80 .0100 8.0 5.561 .0058 5.0 5.4 81 .0109 8.3 7.662 .0053 5.2 4.6 82 .0045 8.8 7.363 .0067 5.2 4.6 83 .0094 9.1 7.064 .0064 5.3 5.2 84 .0104 9.1 6.465 .0072 5.3 4.2 85 .0093 8.2 9.366 .0086 5.3 6.7 86 .0140 10.0 8.267 .0074 5.6 5.1 87 .0121 10.0 10.868 .0081 6.0 3.8 88 .0143 10.3 6.769 .0070 6.0 4.2 89 .0124 10.5 9.970 .0074 6.0 4.0 90 .0120 12.1 9.791 .0131 11.1 10.492 .0155 13.3 7.193 .0127 14.6 9.094 .0144 14.7 16.095 .0139 15.4 13.2
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Chapter 11
NEW LINEAR PROGRAMMINGALGORITHMS, ANDSOME OPEN PROBLEMS INLINEAR COMPLEMENTARITY
Some open research problems in linear complementarity have already been posedamong the exercises in previous chapters. Here we discuss some more research problemsbrie
y.
11.1 Classi�cation of a Given Square Matrix MLetM be a given square matrix of order n. In Section 1.3.1 we discussed algorithms tocheck whetherM is PD os PSD, requiring a computational e�ort of at most n Gaussianpivot steps, or O(n3) e�ort in terms of multiplications and additions. Such e�cientalgorithms are not known to check whether M belongs to other classes of matricesdiscussed in Chapters 2, 3.As an example, consider the problem of checking whether M is a non-degenerate(i. e., principally non-degenerate to be speci�c) matrix. The question is: given M , to�nd whether there exists a subset of f1; : : : ; ng such that the principal subdeterminantof M corresponding to that subset is zero. Since this question involves the existenceof a subset of f1; : : : ; ng satisfying a speci�ed property which is easily checked (givena subset J � f1; : : : ; ng, we can check whether J satis�es this property by computingthe subdeterminant of M corresponding to J, which takes at most O(r3) e�ort, r =jJj), this problem is in NP, the class of decision problems which can be solved by apolynomially bounded non-deterministic algorithm (see M. Garey and D. Johnson'sbook [8.12] for precise de�nitions of these terms). We will now show that this problemis in fact NP-complete. Given positive integers d0; d1; : : : ; dn, the problem of checking



462 Chapter 11. New LP Algorithms and Some Open Problemswhether there exists a subset of fd1; : : : ; dng whose sum is equal to d0, known as thesubset sum problem, is the 0-1 problem of checking whether the following systemhas a solution nPj=1 djxj = d0xj = 0 or 1 for all j : (11:1)This problem is a well-known NP-complete problem. De�ne M to be the matrixM = 8>>>>>>>>>>>>>>>>>>:
d0 d1 d2 d3 : : : dn1 1 0 0 : : : 01 0 1 0 : : : 01 0 0 1 : : : 0... ... ... ... . . . ...1 0 0 0 : : : 1

9>>>>>>>>>>>>>>>>>>; = 8>: d0 de In9>;where d = (d1; : : : ; dn), e is the column vector of all 1's in Rn, and In is the unitmatrix of order n. A principal submatrix of M corresponding to a non-empty subsetof f1; : : : ; n + 1g not containing 1 is a unit matrix of appropriate order, and hencehas determinant 1. The principal subdeterminant of M corresponding to a subset off1; : : : ; n + 1g of the form f1; i1; : : : ; irg can be veri�ed to be d0 � (di1 + : : : + dir ).Thus the matrix M given above has a zero principal subdeterminant i� the system(11.1) has a solution. Since the NP-complete problem (11.1) is a special case of theproblem of checking whether a given square matrix has zero principal subdetermi-nant, this later problem is also an NP-complete problem. This result is from [11.1] ofR. Chandrasekaran, S. N. Kabadi and K. G. Murty.The computational complexity of checking whether a given square matrix M is aP -matrix, P0-matrix, Q-matrix, or Q0-matrix is not known. For all these problems,�nite algorithms are known. P - and P0-properties can be checked by computing allthe principal subdeterminants (requiring the evaluation of 2n determinantes when Mis of order n). Finite algorithms for checking the Q- and Q0-properties are providedin Exercises 3.87, 3.89 (when applied on a matrix of order n, these methods requirethe solution of at most n2n systems of linear inequalities, hence these methods though�nite, are utterly impractical even for n = 4). No polynomially bounded algorithmsfor any of these problems are known so far, and it is also not known whether any ofthese problems is NP-complete.11.2 Worst Case Computational Complexityof AlgorithmsIn Chapter 6 we established that several of the pivotal algorithms for LCP are expo-nential growth algorithms in the worst case. However, the worst case computationalcomplexity of the algorithm for solving the LCP (q;M) when M is PD symmetricmatrix (or the corresponding nearest point problem) based on orthogonal projectionsdiscussed in Chapter 7 is still an open question.



11.2. Worst Case Computational Complexity of Algorithms 46311.2.1 Computational Complexity of the LCPAssociated with a P -MatrixIn Chapter 8 we discussed polynomially bounded algorithms for the LCP (q;M) whenM is either a Z-matrix, or a principally triangular P -matrix, or a PSD-matrix. Thepolynomially bounded ellipsoid methods work only whenM is PSD, since they dependon the fact that the set fz : zT (Mz + q) <= 0g is convex, which may not hold whenM is not PSD. None of the methods discussed in Chapter 8 are guaranteed to processthe LCP (q;M) when M is a P -matrix which is not PSD. In this case the set fz :zT (Mz + q) <= 0g may not be convex. When M is a P -matrix, by the results inChapter 3, the LCP (q;M) has the nice property of having a unique solution, butas yet no polynomially bounded algorithm is known for computing it. Establishingwhether the LCP (q;M), where M is a P -matrix, can be solved by a polynomiallybounded algorithm, remains an important mathematical problem in LCP theory.11.2.2 A Principal Pivoting Descent AlgorithmFor the LCP Associated with a P -MatrixIn the LCP there is of course no objective function. In this algorithm from K. G. Murty[3.52] an extraneous distance function is computed and this distance decreases strictlyin each step. The distance provides a measure of progress in the algorithm, it becomeszero i� we obtain a complementary feasible basis. The algorithm is a principal pivotingalgorithm employing only single principal pivot steps, it can be used to solve the LCP(q;M) whenM is a P -matrix. The algorithm can be initiated with any complementarybasis. We now describe the algorithm.Let A be the current complementary basis and y the corresponding complementarybasic vector.Find the nearest point in Pos(A) to q in terms of the usual Euclidean distance(this can be found in polynomial time by the ellipsoid algorithm discussed in Section8.4, or by the practically e�cient algorithm discussed in Chapter 7). Let �x be thisnearest point and d = jj�x� qjj, the Euclidean distance between �x and q.We will have d = 0 and �x = q i� q 2 Pos(A). In this case y is a complementaryfeasible basic vector, and the solution of the LCP (q;M) is (y = A�1q; t = 0), wheret = (tj) and tj is the complement of yj for all j.If d > 0, let B(q; d) = fx : jjx� qjj <= dg. B(q; d) is the closed ball with q as centerand d as radius. Let T(q; �x) = fx : (q � �x)T (x� �x) = 0g, it is the tangent hyperplaneto B(q; d) at its boundary point �x. Since �x is the nearest point in Pos(A) to q, by theresults in Chapter 7, �xT (q � �x) = 0, T(q; �x) = fx : xT (q � �x) = 0g, it is a hyperplanecontaining the origin, 0. Since �x 2 Pos(A), we have �x = Pnj=1 �jA.j where �j >= 0for all j. Let J = fj : �j > 0g, �J = f1; : : : ; ng n J. In this case since q 62 Pos(A), bythe results in Chapter 7, �x must be a boundary point of Pos(A), so �J 6= ;. For each



464 Chapter 11. New LP Algorithms and Some Open Problemsj let D.j be the complement of A.j . By the results in Chapter 7, �x is the orthogonalprojection of q in the linear hull of fA.j : j 2 Jg, so the tangent hyperplane T(q; �x)contains the linear hull of fA.j : j 2 Jg. By Theorem 3.20 of Section 3.3, T(q; �x) mustseparate strictly, at least one of the pair of column vectors fA.j ; D.jg for some j 2 �J.Let ��� = fj : j 2 �J; A.j and its complement are strictly separated by T(q; �x)g. So��� 6= ;, select a p 2 ��� arbitrarily. Then in the notation of Chapter 7, D.p is on thenear side of T(q; �x), and Posf�x;D.pg contains points which are strictly closer to q than�x. Thus if we make a single principal pivot step in position p in the complementarybasis A, we get a new complementary basis whose pos cone contains points strictlynearer than �x to q.With (y1; : : : ; yp�1; tp; yp+1; : : : ; yn) as the new complementary basic vector, werepeat the whole process.After each principal pivot step, the distance d strictly decreases, so a comple-mentary basic vector can never reappear in the algorithm. Since there are only 2ncomplementary basic vectors, the method must terminate after a �nite number ofprincipal pivot steps with the complementary solution for the problem.Since the problem of �nding the nearest point in a complementary cone which has anon-empty interior, to q, is equivalent to another LCP associated with a PD symmetricmatrix, the method can be viewed as one for solving the LCP (q;M) associated witha P -matrix M by solving a �nite number of LCP's associated with PD symmetricmatrices.The worst case computational complexity of this algorithm is still an open ques-tion.One can get di�erent variants of the algorithm by choosing p from ��� accordingto di�erent rules. One can consider the least index rule in which the p chosen from��� is always the least; or a cyclical rule like the least recently considered rule popularin implementations of the simplex algorithm. We can also consider a block principalpivoting method in which the new complementary basic vector at the end of the step isobtained by replacing each yp in the present complementary basic vector, by its com-plement for each p 2 ���, in a block principal pivot step. The worst case computationalcomplexity of each of these variants is currently under investigation.Exercise11.1 The rectilinear or L1-distance between two points x = (xj), y = (yj) in Rn isde�ned to be Pnj=1(jxj � yj j). Consider the LCP (q;M) with M being a P -matrix.Let y = (yj) be a complementary basic vector for this problem associated with thecomplementary basis A. The nearest point in the complementary cone Pos(A) to q interms of the L1-distance can be obtained by solving the LPminimize nPj=1(ui + vi)subject to Ay + u� v = qy; u; v >= 0 :



11.3. Alternate Solutions of the LCP (q;M) 465If (�y; �u; �v) is an optimum solution to this LP, �x = A�y is a nearest point in Pos(A)to q in terms of the L1-distance.If M is a P -matrix and q 62 Pos(A), does there always exist a p such that thecone Pos fA.1; : : : ; A.p�1; D.p; A.p+1; : : : ; A.ng, where D.p is the complement of A.p,contains points which are strictly closer to q in terms of the L1-distance, than �x? Ifso, discuss an e�cient method for identifying such a p.Develop a method for solving the LCP (q;M) when M is a P -matrix, that movesfrom one complementary cone to another, decreasing the L1-distance to q in each step.Study the worst case computational complexity of this method.
11.3 Alternate Solutions of the LCP (q,M)There are very nice conditions to check the uniqueness of a given solution for a lin-ear programming problem, and to characterize and enumerate alternative optimumsolutions when they exist. See [2.26].For LCP, such characterizations or methods do not exist yet. A su�cient conditionfor the uniqueness of the solution for the LCP (q;M) is that M be a P -matrix. WhenM is not a P -matrix, alternate solutions may exist for the LCP (q;M), but in this casethe algorithms discussed for the LCP �nd only one solution for the problem if they areable to process it, and then terminate.Consider the LCP (q;M). Let y = (yj) be a complementary vector of variables forit, that is, for each j, yj 2 fwj ; zjg. Let A be the complementary matrix correspondingto y. Let t = (tj) where tj is the complement of yj for each j. The complementaryvector y leads to a solution of the LCP (q;M) i� the systemAy = qy >= 0has a feasible solution. If �y is a feasible solution of this system, (y = �y; t = 0) isa solution of the LCP (q;M). If A is nonsingular, the above system has a feasiblesolution i� A�1q >= 0, and in this case if it does have a solution, it is unique. If A issingular, the above system may have many feasible solutions. Whether it has a feasiblesolution or not can be determined by using Phase I of the simplex method for linearprogramming. If the above system is feasible, all alternate feasible solutions of it canbe enumerated and the set of alternate feasible solutions compactly represented usingstandard results in linear programming [2.26], each such feasible solution leads to asolution of the LCP (q;M), as discussed above.By solving the system of the type discussed above, for each of the complementaryvectors of variables y, we can check whether the LCP (q;M) has a solution, and in fact



466 Chapter 11. New LP Algorithms and Some Open Problemsobtain all its solutions. This is a total enumeration method, requiring the solution of2n separate systems of linear equations in non-negative variables.Since 2n grows rapidly, the above total enumeration method for checking whetheralternate solutions exist for a given LCP, or to obtain all solutions of it, is impracticalunless n is very small. It would be nice if some e�cient partial enumeration methodscan be developed for doing the same job. These partial enumeration methods shouldidentify subsets of complementary vectors of variables which do not lead to a solutionof the LCP, and prune them, thereby saving some of the e�ort needed to carry out theenumeration. These methods would be similar to branch and bounds for 0-1 integerprogramming problems (see [1.28]) which are also partial enumeration methods.We will now describe brie
y one partial enumeration method for generating all thesolutions of the LCP (q;M) discussed in K. G. Murty [11.3]. To keep the discussionsimple, we make the assumption that q is nondegenerate. In this case, every com-plementary solution is a complementary BFS and it is adequate to enumerate amongcomplementary basic vectors for all complementary solutions of the LCP (q;M).The set of all variables in the LCP (q;M) is fw1; : : : ; wn; z1; : : : ; zng. Given anysubset ��� of these variables, we will represent ��� by a 0-1 incidence vector a = (ap) 2R2n, a row vector, wherefor j = 1 to n, aj = � 1; if wj 2 ���0; if wj 62 ���an+j = � 1; if zj 2 ���0; if zj 62 ��� .As an example, for n = 4, the incidence vector of the subcomplementary set fz1; w2; z3gis (0; 1; 0; 0; 1; 0; 1; 0). So a complementary feasible basic vector for the LCP (q;M)corresponds to an incidence vector x = (xp) 2 R2n satisfying P2np=1 xp = n andxj+xn+j >= 1, for each j = 1 to n, and the vector is a feasible basic vector, xp = 0 or 1for all p = 1 to 2n. The second constraint that the vector be a feasible basic vector isnot available explicitly in the form of a system of linear constraints, at the beginning;but we develop linear constraints in the xp-variables corresponding to it during thecourse of the algorithm. In each step, more constraints of this type in the xp-variablesare generated and augmented to the system.A set covering problem is a 0-1 integer programming problem of the followingform. minimize 2nPp=1xpsubject to Ex >= erxp = 0 or 1 for all pwhere E is a 0-1 matrix of order r � 2n and er in the column vector of all 1's in Rr.In each step, we solve a set covering problem of this form, and generate additionalconstraints for the set covering problem in the next step.The set covering problem itself is anNP-hard combinatorial optimization problem,but practically e�cient branch and bound algorithms are available for it. The branch



11.3. Alternate Solutions of the LCP (q;M) 467and bound algorithm discussed in [1.28] for the set covering problem using the lowerbounding strategy based on Lagrangian Relaxation may be particularly suitable, sincewe have to solve the problem repeatedly, with the only change between the problem inone step and the next being a few additional constraints.A solution stack is maintained. Any solution to the LCP (q;M) found out duringthe algorithm is stored in the solution stack. At termination of the algorithm, thisstack contains all the solutions of the LCP (q;M).The initial set covering problem isminimize 2nPp=1xpsubject to xj + xn+j >= 1; for each j = 1 to nxp = 0 or 1, for p = 1 to 2nThe initial complementary basic vector is w. We will now describe a general step inthe algorithm.General StepLet y = (yj) be the current complementary vector of variables with yj 2 fwj ; zjg foreach j = 1 to n, and let A be the corresponding complementary matrix. Let t = (tj)where tj is the complement of yj for each j = 1 to n.If A is singular, every complementary basic vector must include one of the variablesfrom ft1; : : : ; tng. Let a 2 R2n be the incidence vector of ft1; : : : ; tng. Add theadditional constraint \ax >= 1" to the set covering problem.If A is nonsingular, y is a complementary basic vector, obtain the canonical tableauof the LCP (q;M) with respect to it. Suppose it isy tI �D �qIf �q >= 0, y is a complementary feasible basic vector, and (y = �q; t = 0) is the corre-sponding complementary solution, include it in the stack. Every complementary basicvector di�erent from y must include one of the variables from ft1; : : : ; tng. Let a 2R2n be the incident vector of ft1; : : : ; tng. Include the additional constraint \ax >= 1"in the set covering problem.If �q 6>= 0, y is not a feasible basic vector. For each i such that �qi < 0, let Si = ftj : jsuch that �dij < 0g, where dij is the (i; j)th entry in the matrix D in the canonicaltableau. Clearly, any feasible basic vector must include one of the variables from Si.Let ai be the incidence vector of Si, include the additional constraint \aix >= 1" foreach i satisfying �qi < 0, in the set covering problem.Solve the set covering problem together with the additional constraints added inthis step.



468 Chapter 11. New LP Algorithms and Some Open ProblemsIf the optimum objective value in the set covering problem is >= n+ 1, terminate.The solution stack at this stage contains all the complementary solutions of the LCP(q;M).If the optimum objective value in the set covering problem is n, let �x be anoptimum solution for it. Let �y be the complementary vector of variables correspondingto the incidence vector �x. Make �y the new complementary vector of variables. Go tothe next step with it and the current set covering problem.This algorithm has not been computationally tested and it is not known how itmay work in practice.Developing practically e�cient partial enumeration methods for the general LCPremains a problem worth investigating.11.4 New Approaches for Linear ProgrammingThe well known primal simplex algorithm for linear programming starts at an extremepoint of the set of feasible solutions, moves along an edge direction to an adjacentextreme point, and repeats the whole process until an optimal extreme point or anunbounded edge along which the objective value is unbounded below (for minimizationproblems) is reached. Thus all the direction used in the primal simplex algorithm areedge directions. Recently K. G. Murty and Y. Fathi [11.4] discussed versions of thesimplex algorithm based on pro�table directions of movement through the interior orrelative interior of the set of feasible solutions or faces of it of dimension greater than1. They showed that with simple modi�cations these methods can be proved to be�nite, and can be implemented using basis inverses just as the usual versions of thesimplex algorithm. Computational testes indicate that these modi�cations leads toimprovements in the running time for solving linear programs.N. Karmarkar [11.2] has developed an entirely new polynomially bounded algo-rithm for solving linear programs based on pro�table search directions through theinterior of the set of feasible solutions. This method closes in on an optimum by cre-ating a sequence of spheres inside the feasible region for the LP. It is claimed thatpreliminary computational testing has shown this method to be much faster than thesimplex algorithm for large scale linear programs. A statement of this algorithm withan intuitive justi�cation is given in the Notation section in front of this book. Here weprovide a detailed treatment of the algorithm and its polynomial boundedness.Throughout this section the symbol e denotes the column vector of all 1s of ap-propriate dimension, and eT denotes its transpose.



11.4. New Approaches for Linear Programming 46911.4.1 Karmarkar's Algorithm for Linear ProgrammingThe Barrier Function Approach to Handle InequalityConstraints in Nonlinear ProgrammingConsider the following optimization problem (P).minimize �(x)subject to Ax = bgi(x) >= 0; i = 1 to m: (P)A feasible solution x for this problem is said to be strictly feasible if gi(x) > 0for all i = 1 to m. The barrier function approach for solving this problem needs aninitial strictly feasible point x0. It generates a sequence of points fxr : r = 0; 1; : : :g,each xr being a strictly feasible solution of the problem.Barrier methods work by establishing a barrier on the boundary of the feasibleregion that prevents the search procedure from leaving the strictly feasible part ofthe feasible region. A barrier function for this problem is a continuous function B(x)de�ned on ��� = fx : gi(x) > 0; for all i = 1 to mg that tends to +1 as the point xapproaches the boundary of ���. One commonly used barrier function is the logarithmicbarrier function (suggested by K. R. Frisch in 1955)B(x) = � mXi=1 log(gi(x)):Here log represents the natural logarithm. The barrier function method for (P) looksat the problem minimize F (x) = �(x)� �Pmi=1 log(gi(x))subject to Ax = b (B)where � is a positive parameter known as the barrier parameter. Giving � somepositive value and �xing it, the barrier method tries to solve (B), by some feasibledirection descent method beginning with the initial strictly feasible point x0. Considerthe line search problem of minimizing F (x) along the half-line fx+�y : � >= 0g, wherex is a strictly feasible point. If �1 > 0 is such that gi(x+ �1y) = 0 for some i between1 to m, then the step length choosen in this line search problem will be < �1, since�loggi(x + �y) ! +1 as � ! �1 from below. Thus any line searches carried out forsolving (B) beginning with a strictly feasible point will always lead to another strictlyfeasible point.The barrier function method for solving (P) proceeds as follows. It selects amonotonic decreasing sequence of positive values f�r : r = 1; 2; : : :g converging to 0.Fixing � = �1, it solves (B) by a feasible direction descent method, beginning withthe initial strictly feasible point x0. Suppose this terminates with the strictly feasiblepoint x1. Now � is changed to �2, and the new (B) solved again beginning with the



470 Chapter 11. New LP Algorithms and Some Open Problemsinitial strictly feasible solution x1. The process is repeated in the same way, generatingthe sequence of strictly feasible points fxr : r = 0; 1; : : :g. Under mild conditions itcan be shown that this sequence converges to a solution of (P). Karmarkar's algorithmfor linear programming, closely resembles this nonlinear interior point barrier method.In his algorithm, Karmarkar uses a potential function which closely resembles thelogarithmic barrier function.We will now provide a theoretical description of Karmarkar's algorithm and proofsof its polynomial boundedness. A brief discussion on issues in implementing Kar-markar's algorithm will then follow. We divide this section into various numberedsubsections, for ease of cross referencing.1 Transforming Any LP Into AnotherWith an Optimum Objective Value of ZeroWe show that any LP can be transformed into another one with a known (minimum)objective value of zero.Consider the LP minimize h�subject to E� >= p� >=0: (11:2)Let � denote the row vector of dual variables. It is well known (see [2.26]) that solving(11.2) is equivalent to solving the following system of linear inequalities.h�� �p <= 0E� >= p�E <= h�; � >= 0 (11:3)There is no objective function in (11.3). If (��; ��) is a feasible solution for (11.3), �� isan optimum solution for the LP (11.2) and �� is an optimum dual solution. If (11.3) isinfeasible, either (11.2) is itself infeasible, or (11.2) may be feasible but its dual maybe infeasible (in the later case, the objective value is unbounded below on the set offeasible solutions of (11.2)).The system (11.3) can be expressed as a system of equations in nonnegative vari-ables by introducing the appropriate slack variables. To solve the resulting system,construct the usual Phase I problem by introducing the appropriate arti�cial variables(see Chapter 2 in [2.26]). Let u denote the vector consisting of the variables �j , �i,and the arti�cial variables. Let the Phase I problem corresponding to (11.3) beminimize gusubject to Fu = du >= 0 : (11:4)



11.4. New Approaches for Linear Programming 471The optimum objective value in (11.4) is >= 0 (since it is a Phase I problem correspond-ing to (11.3)) and (11.3) is feasible i� it is zero. Let v denote the row vector of dualvariables for (11.4). Consider the LPminimize gu� vdsubject to Fu = dvF <= gu >= 0 (11:5)The LP (11.5) consists of the constraints in (11.4) and its dual. From the dualitytheory of linear programming, the optimum objective value in (11.5) is zero (since(11.4) has a �nite optimum solution). The LP (11.5) can be put in standard form forLPs by the usual transformations of introducing slack variables etc., see Chapter 2 in[2.26]. If (�u; �v) is optimal to (11.5), then �u is optimal to (11.4). If g�u = 0, then the�-portion of �u is an optimum solution for (11.2). If g�u > 0, (11.3) is infeasible andhence (11.2) is either infeasible or has no �nite optimum solution.2 Transforming an LP Into AnotherWith a Known Strictly Positive Feasible SolutionAn LP in standard form with an optimum objective value of zero, can be transformedinto another with the same property, but with a known strictly positive feasible solu-tion. Consider the LP minimize gysubject to Gy = dy >= 0 (11:6)where G is a matrix of orderm�n, and suppose all the data is integer and the optimumobjective value in (11.6) is zero. Let y0 > 0 by any integer vector in Rn. Consider thenew LP minimize gy + gn+1yn+1subject to Gy + yn+1(d�Gy0) = dy >= 0; yn+1 >= 0 (11:7)clearly (y = y0; yn+1 = 1) > 0 is a feasible solution of (11.7). Since the optimum objec-tive value in (11.6) is zero, the same property holds in (11.7) if gn+1 is su�ciently large(mathematically, it is su�cient to take gn+1 > 2s, where s is the size of8>:G G.n+1g 0 9>;,G.n+1 = d�Gy0).3 Transforming the Feasible Set intothe Intersection of a Subspace with a SimplexGiven an LP in standard form with integer or rational data, with the optimum objectivevalue of zero, and a strictly positive feasible solution, we can transform it into another,



472 Chapter 11. New LP Algorithms and Some Open Problemsfor which the set of feasible solutions is H \ S, where H is a subspace and S is thestandard simplex. Consider the LPminimize �gysubject to Gy = �dy >= 0 (11:8)where G is of order m � n, and all the data is assumed to be integer. Let L be thesize of this LP (i. e., L is the total number of digits in all the data in the LP (11.8) inbinary encoding, see Sections 8.3 to 8.6 and Chapters 14, 15 in [2.26]).Since (11.8) has an optimum solution, it has an optimum solution satisfying theadditional constraint nXj=1 yj <=Mwhere M is an upper bound depending on the size L. By the results in Chapter 8 (seealso Chapter 15 in [2.26]) taking M = 2L will do. Hence (11.8) is equivalent tominimize �gysubject to Gy = �deT y <=My >= 0where eT = (1; 1; : : : ; 1) 2 Rn. By introducing the slack variable yn+1, this LP is thesame as minimize �gysubject to Gy � 1M �d n+1Pj=1 yj! = 0n+1Pj=1 yj = 1yj >= 0; j = 1 to n+ 1 (11:9)
The system Gy� 1M �d�Pn+1j=1 yj� = 0 is a homogeneous system of equations, and henceits set of feasible solutions is a subspace H in Rn+1. The system Pn+1j=1 yj = 1, yj >= 0for j = 1 to n + 1 de�nes the standard simplex S in Rn+1. So the set of feasiblesolutions of (11.9) is H \ S, as desired.4 Minimization of a Linear FunctionOver a Spherical Ball or an EllipsoidConsider the problem minimize cxsubject to (x� x0)T (x� x0) <= �2



11.4. New Approaches for Linear Programming 473If c = 0, every point in the sphere is optimal to this problem. If c 6= 0, the optimalsolution of this problem is x0� cT�, it is the point obtained by taking a step of length� (radius of the sphere) from the center x0 in the direction of �cT .
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Figure 11.1 To minimize cx on the sphere, walk from the center x0 in thedirection �cT , a step of length � =radius. The direction �cT is the steepestdescent direction for the linear function cx.Now consider the problemminimize cxsubject to Ax = band x 2 B = fx : jjx� x0jj <= �g :Let H = fx : Ax = bg. H is an a�ne space. If H \ B 6= ;, it is a lower dimensionalsphere inside the a�ne space H. Again if c = 0, every point in H\B is optimal to thisproblem. If c 6= 0, let �c be the orthogonal projection of c onto H. �c = 0 if c is a linearcombination of the rows of A, in this case the objective function is a constant onH\B,and every point in it is optimal. If �c 6= 0, the optimal solution of this problem is thepoint obtained by taking a step of length equal to the radius of the lower dimensionalsphere H \B from its center in the direction of ��cT .Consider the following problemminimize cxsubject to Ax = band x 2 E = fx : (x� x0)T�(x� x0) <= 1gwhere � is a symmetric PD matrix of order n. So E is an ellipsoid. Let H = fx :Ax = bg. Let F be the Cholesky factor of � (i. e., it is the lower triangular matrix



474 Chapter 11. New LP Algorithms and Some Open Problemssatisfying FFT = �). To solve this problem, apply the linear transformation thattransforms the ellipsoid into a sphere B, this isy = FT (x� x0) orx = x0 + (FT )�1y :This transform the a�ne space H into another a�ne space bH = fy : A(FT )�1y =(b� Ax0)g, the ellipsoid E into the unit sphere B = fy : jjyjj <= 1g, and the objectivefunction cx into c(FT )�1y + cx0. So the transformed problem is :minimize c(FT )�1ysubject to y 2 bH \Bwhich can be solved as discussed above. From the optimum solution y of this problem,we compute the optimum solution x, of the original problem using the equation x =x0 + (FT )�1y.5 Converting a Near Optimum Feasible Solutioninto an Optimum Feasible SolutionConsider the LP minimize z(x) = cxsubject to Ax = bx >= 0 (11:10)Let �x be a feasible solution for it. A well known result in LP says that if �x is not aBFS for this problem, then a BFS x̂ for it satisfying cx̂ <= c�x can be obtained, or it canbe established that cx is unbounded below in this problem. See [2.26]. We describethe procedure for doing it here.Let J = fj : �xj > 0g. If fA.j : j 2 Jg is linearly independent, �x is itself a BFS.If �x is not BFS, fA.j : j 2 Jg is linearly dependent. Let a linear dependence relationamong these vectors be Xj2J �jA.j = 0where (�j : j 2 J) 6= 0. Such a vector (�j : j 2 J) can be computed by pivotal methodsfor checking linear independence of the set fA.j : j 2 Jg, see [2.26].Since �x is feasible, and from the de�nition of J, we also haveXj2J �xjA.j = b_. . Xj2J(�xj + ��j)A.j = b



11.4. New Approaches for Linear Programming 475for all real values of �. De�ne the vector x(�) byxj(�) = � �xj + ��j for j 2 J0 for j 62 J .Now de�ne�1 = (�1; if �j <= 0 for all j 2 J;maxf� �xj�j : j 2 J and such that �j > 0g; otherwise�2 = (+1; if �j >= 0 for all j 2 J;minf� �xj�j : j 2 J and such that �j < 0g; otherwise .Clearly �1 < 0, �2 > 0, and x(�) >= 0 and hence feasible to the LP for all �1 <= � <=�2. Since (�j : j 2 J) 6= 0, at least one among �1 or �2 is �nite. If Pj2J cj�j = 0, let
 = �1 or �2 whichever is �nite, break ties arbitrarily.If Pj2J cj�j > 0, and �1 = �1 then fx(�) : � <= �2g is a feasible half-line alongwhich cx diverges to �1. Likewise if Pj2J cj�j < 0, and �2 = +1, then fx(�) :� >= �1g is a feasible half-line along which cx diverges to �1. If neither of theseunboundedness conditions are satis�ed, select 
 = �1 if Pj2J cj�j > 0, or 
 = �2 ifPj2J cj�j < 0.Then x(
) is a feasible solution satisfying cx(
) <= c�x, and the number of positivecomponents in x(
) is at least one less than that in �x.Repeat the same process now with the feasible solution x(
). After at most jJj ofthese steps, we will either obtain a BFS x̂ satisfying cx̂ <= c�x, or establish that cx isunbounded below in this LP.Example 11.1Consider the following LPx1 x2 x3 x4 x5 x6 x7 b1 0 0 1 0 1 �1 30 1 0 0 �1 2 �1 50 0 1 �1 1 1 �2 7�10 4 6 2 4 8 10 = z(x) minimizexj >= 0 for all jLet x0 = (52 ; 6; 132 ; 12 ; 1; 0; 0)T be the feasible solution with an objective value z(x0) =43. Denote the coe�cient of xj in z(x) by cj , and the column vector of xj in theconstraint matrix by A.j . J = the set of subscripts of positive variables in x0 isf1; 2; 3; 4; 5g. The set of columns fA.j : j = 1 to 5g is linearly dependent, and a lineardependence relation among them is�A.1 + A.3 + A.4 = 0



476 Chapter 11. New LP Algorithms and Some Open ProblemsSo the vector �0 leading to this linear dependence relation is (�1; 0; 1; 1; 0; 0; 0)T andz(�0) = 18 > 0. The feasible solution x0(�) constructed in the procedure isx0(�) = �52 � �; 6; 132 + �; 12 + �; 1; 0; 0�Tand so �1 = �12 , �2 = 52 . Since z(�0) > 0, we choose 
 = �1 = �12 . The next feasiblesolution in x0(�1) = x1 is x1 = (3; 6; 6; 0; 1; 0; 0)TIt can be veri�ed that z(x1) = 34 and that x1 has only 4 positive components. Contin-uing the procedure with x1, the set of columns to examine is fA.1; A.2; A.3; A.5g whichagain is linearly dependent, with the linear dependence relationA.2 � A.3 + A.5 = 0 :The vector �1 corresponding to this linear dependence relation is (0; 1;�1; 0; 1; 0; 0)Tand z(�1) = 2 > 0. The feasible solution x1(�) constructed in the procedure isx1(�) = (3; 6 + �; 6� �; 0; 1 + �; 0; 0)Tand so �1 = �1, �2 = 6, and since z(�1) > 0, we choose � = �1 = �1. The nextfeasible solution is x1(�1) = x2, x2 = (3; 5; 6; 0; 0; 0; 0)T , z(x2) = 32. Now x2 is a BFSand it satis�es z(x2) < z(x0).Consider the LP (11.10) again. Suppose the data is integer, and L is the size ofthis LP. Let z� be the unknown optimum objective value in this LP. If �x is a feasiblesolution for this LP whose objective value is su�ciently close to the optimum objectivevalue, e.g. if c�x is within 2�L of z�, then the BFS obtained by applying the aboveprocedure beginning with �x, will be an optimum solution for the LP, by the resultsproved in the ellipsoid algorithm, see Chapter 8 and [2.26] and Figure 11.2. Thisfollows because when L is the size of the LP, any BFS x satisfying, objective valueat x, z(x) <= z� + 2�L, has to be an optimum BFS, by the results proved under theellipsoid algorithm.
x xObjective

decreasing
direction

Optimum
solution optima

Face of alternate

Figure 11.2 If �x is near optimal, a BFS obtained by above procedure will beoptimal, whether problem has unique optimum solution or has alternate optima.



11.4. New Approaches for Linear Programming 477Thus if a near optimal feasible solution with objective value su�ciently close tothe optimum can be found, the procedure discussed in this subsection can be used toconvert it into an exact optimum solution for the LP. This result is used in Karmarkar'salgorithm. Karmarkar's algorithm computes a near optimal solution for an LP andthen converts it into an exact optimum solution of the problem using the procedurediscussed here.
6 Karmarkar's AlgorithmConsider the LP in the form minimize cxsubject to x 2 
 \ S (11:11)where 
 = fx : Ax = 0gS = nx : x >= 0; nXj=1 xj = 1oA is of order m � n. Without any loss of generality we assume that the rank of A ism. We make the Following assumptions.(i) x0 = 1ne, where e is the column vector of all 1's in Rn is feasible to this LP.(ii) The optimum objective value in (11.11) is zero.Karmarkar's algorithm generates a �nite sequence of feasible points x0; x1; : : :, allof them > 0, such that cxr is strictly decreasing. L denotes the size of (11.11).These assumptions also imply that the rank of 8>: AeT 9>; is m+1. If cx0 = 0, by theassumptions, x0 is optimal to (11.11), we terminate. So we assume that cx0 > 0. Themethod terminates when a feasible solution xr satisfying cxr <= 2�O(L) is obtained,and then converts this approximate optimal solution xr into an exact optimal solutionas in Subsection 5.If c is a linear combination of the rows of A, cx = 0 at all feasible solutions x, andso our assumptions imply that c is not a linear combination of the rows of A.Now we shall describe the general step of the algorithm.Step r + 1 : Assume we are given xr > 0, xr 2 
 \ S. Let xr = a = (a1; : : : ; an)T .Let D = diagfa1; : : : ; ang = (dij) with dii = ai, i = 1 to n, and dij = 0 for i 6= j. SoD is a positive diagonal matrix of order n� n.We now construct a projective transformation T : S ! S, which depends on thevector a. For x 2 S, T (x) = D�1xeTD�1x :



478 Chapter 11. New LP Algorithms and Some Open ProblemsIt can be veri�ed that T (x) 2 S for all x 2 S. Also, if x 2 S satis�es x > 0, so isT (x). So, the transformation T (x) maps every point in the relative interior of S (i. e.,a point in S which is > 0) into another point in the relative interior of S. It can beveri�ed that T (a) = a0 = 1ne :If T (x) = x0, the inverse transformation yielding T�1(x0) = x isT�1(x0) = Dx0eTDx0 :Associate the objective function cx with the potential function f(x) de�ned over theintersection of 
 with the relative interior of S, given byf(x) = nXj=1 log� cxxj�where log denotes the natural logarithm. Since all the points obtained in the algorithmwill be strictly positive, they are in the relative interior of S, and f(x) is well de�nedat them. For x from the relative interior of S (i. e., x 2 S and x > 0) with T (x) = x0,de�ne the transformed potential function f 0(x0) so that it satis�es f(x) = f 0(T (x)) =f 0(x0). Then it can be veri�ed thatf 0(y) = nXj=1 log� ĉyyj �� nXj=1 log(aj)where ĉ = cD.Let 
0 denote the tranformation of the subspace 
 under T . Thus
0 = fx0 : ADx0 = 0g :Now de�ne 
00 = ( y : ADy = 0eT y = 1)B = 8>:ADeT 9>; :As discussed earlier, B is of full row rank. Since a 2 
, we have ADe = 0, so a0 2 
00.Let ��, � be respectively the radii of the largest sphere with center a0 contained inthe simplex S, smallest shpere with center a0 containing S. See Figure 11.3.
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S

a0

Figure 11.3 Inscribed sphere and circumscribing sphereThen � = 1pn(n� 1) ; �� =rn� 1n = (n� 1)� :For 0 < � < 1, de�ne B(a0; ��) = fx : jjx� a0jj <= ��g :Since 0 < � < 1, the sphere fx : Pnj=1 xj = 1g \ B(a0; ��) � S. The projectivetransformation T (x), transforms the set of feasible solutions of (11.11) into 
00 \ S.However, T (x) does not transform cx into a linear function. But the potential functionf(x), which depends on ratios of linear functions is transformed into another functionof the same form, f 0(x0). We will show later on that a reduction in f(x) leads to areduction in cx. The problem of minimizing f(x) gets transformed into that of mini-mizing f 0(x0). We show later on that minimizing f 0(x0) can be achieved approximatelyby optimizing a linear approximation, ĉx0.Instead of optimizing over 
00 \ S in the transformed problem, we optimize overthe simpler subset 
00 \B(a0; ��). The reasons for this are explained below.Our original problem is transformed into that of optimizing f 0(x0) over 
0 \ S.Since nx : nXj=1 xj = 1o \B(a0; �) � S � B(a0; ��) \ nx : nXj=1 xj = 1omin value of f 0(x0)over 
00 \B(a0; �) >= min value of f 0(x0)over 
00 \ S >= min value of f 0(x0)over 
00 \B(a0; ��)Since 
00 \ B(a0; �) for any � is a sphere, optimizing over it is much easier thanoptimizing over 
00 \ S. To optimize f 0(x0) over 
00 \B(a0; �), we approximate f 0(x0)by a linear function, ĉx0, and the minimization of this linear function over 
00\B(a0; �)can be carried out very easily by the simple techniques discussed in Subsection 4.



480 Chapter 11. New LP Algorithms and Some Open ProblemsIf 
0, 
1, 
2 denote the minimum value of this linear function ĉx0 over 
00\B(a0; �),
0 \ S, 
00 \B(a0; ��) respectively, we have 
0 >= 
1 >= 
2, and soĉa0 � 
0 <= ĉa0 � 
1 <= ĉa0 � 
2 = � ����(ĉa0 � 
0)the last equation follows from the results in Subsection 4. Soĉa0 � 
0ĉa0 � 
1 >= 1n� 1
0 � 
1ĉa0 � 
1 <= 1� 1n� 1So by going from the point a0 to the point that minimizes ĉx0 over x0 2 
00 \B(a0; �),we come closer to the minimum value of the objective function by a factor of �1� 1n�1�.In practice, we optimize over a smaller subset 
00 \ B(a0; ��) for 0 < � < 1 forthe following reasons.a) it allows for optimization of f 0(x0) to be approximated closely by optimization ofa linear function.b) Under �nite precision or other approximate arithmetic, it provides us a margin toabsorb errors without going outside the simplex.See Figure 11.4. The choice of � = 14 works (this leads to the factor � discussedlater on in Theorem 11.4 to be > 132 ). In practical implementation, one may want tochoose a value of � much closer to 1 for rapid convergence.
0a

αρ

Figure 11.4 The simplex S, and the inscribed sphere B(a0; ��) \ fx :Pnj=1 xj = 1g inside it, for 0 < � < 1.Since B(a0; ��) is a sphere with center a0, and 
00 is an a�ne space containing thepoint a0, the intersection 
00 \B(a0; ��) is a lower dimensional sphere. As discussedin Subsection 4 above, minimizing a linear function over the lower dimensional sphere
00\B(a0; ��) requires taking a step from the center a0, in the direction of the negativegradient, with step length equal to the radius of the sphere, in the a�ne space 
00. Weprovide the details of this algorithm.



11.4. New Approaches for Linear Programming 481Subroutine to minimize ĉx0 Over x0 2 
00 \B(a0; ��)First project ĉ orthogonally onto the subspace fy : By = 0g. This yieldsĉp = ĉ �I � BT (BBT )�1B�If ĉp = 0, the objective function will have the same value at all feasible solutions,contradicting our assumptions. So ĉp 6= 0. Let~cp = ĉpjjĉpjjg0 = a0 � ��~cpThen g0 is the point which minimizes ĉx0 over x0 2 
00 \B(a0; ��). We will prove thisin Theorem 11.1 given below.Now de�ne xr+1 = T�1(g0) = Dg0eTDg0 :If cxr+1 = 0, xr+1 is optimal to (11.11), terminate. If cxr+1 > 0 but su�cientlysmall (i. e., cxr+1 <= 2�O(L)) terminate with the conclusion that xr+1 is near optimalto (11.11) and convert it into an exact optimal solution as in Subsection 5. If theseconditions are not satis�ed, go to the next step.Proof of the Algorithm and its Polynomial BoundednessTheorem 11.1 The vector g0 minimizes ĉx0 over x0 2 
00 \B(a0; ��).Proof. Let z 2 
00 \ B(a0; ��). Since 
00 is an a�ne space and both g0, z 2 
00, wehave B(g0 � z) = 0. So, BT (BBT )�1B(g0 � z) = 0. Therefore (ĉ � ĉp)(g0 � z) = 0.Thus ĉ(g0 � z) = ĉp(g0 � z) = jjĉpjj~cp(a0 � ��~cTp � z) = jjĉpjj�~cp(a0 � z) � ��� (since~cp~cTp = jj~cpjj = 1). But, ~cp(a0 � z) <= jj~cpjj jja0 � zjj (by Cauchy-Schwartz inequality)= jja0� zjj (since jj~cpjj = 1) <= ��, since z 2 B(a0; ��). Therefore ~cp(a0� z)��� <= 0,and therefore by the above ĉ(g0 � z) <= 0. Hence, ĉg0 <= ĉz for all z 2 
00 \B(a0; ��),that is, g0 minimizes ĉx0 over x0 2 
00 \B(a0; ��).Theorem 11.2 There exists a point �x 2 
00 \B(a0; ��) such thateither (i) ĉ�x = 0or (ii) f 0(�x) <= f 0(a0)� �where � is a positive constant depending on �.Proof. Let x� minimize cx over 
 \ S. By hypothesis cx� = 0. De�ne � = D�1x�eTD�1x� .



482 Chapter 11. New LP Algorithms and Some Open ProblemsCase 1 : � 2 B(a0; ��). In this case let �x = �. Then �x 2 
00 \B(a0; ��) and ĉ�x = 0,so (i) is satis�ed.Case 2 : � 62 B(a0; ��). In this case, let �x be the point at which the line segmentjoining a0 with � intersects the boundary of the sphere B(a0; ��). Then �x = (1��)a0+�� for some 0 < � < 1. Since a0 and � are in 
00, so is �x. So �x 2 
00 \B(a0; ��), andĉ�x = (1� �)ĉa0 + �ĉ� = (1� �)ĉa0 (since ĉ� = cD� = 0 because cx� = 0). Soĉa0ĉ�x = 11� � (11:12)Now f 0(a0)� f 0(�x) = nXj=1 log ĉa0a0j !� nXj=1 log� ĉ�x�xj�= nXj=1 log � ĉa0ĉ�x �� �xja0j �!= nXj=1 log �xj(1� �)a0j! by (11.12)= nXj=1 log (1� �)a0j + ��j(1� �)a0j !
= nXj=1 log 1 + � �1� ��� �ja0j �!It can easily be veri�ed that if 
i >= 0 for all i, then the product Qi(1 + 
i) >= 1 +Pi 
i. Taking logs on both sides we have Pi log(1 + 
i) >= log(1 +Pi 
i). Applyingthis to the above, we havef 0(a0)� f 0(�x) >= log�1 + � �1���Pnj=1 �j(1=n) � ; since a0j = 1=n for all j>= log�1 + n�1���; since Pnj=1 �j = 1Now, �x = (1 � �)a0 + ��. So �x � a0 = �(� � a0). Since �x is on the boundary ofthe sphere B(a0; ��), we have jj�x � a0jj = ��, so from the above �� = jj�x � a0jj =�jj� � a0jj <= ���. So � >= (��)�� = �n�1 . So1 + n�1� � >= 1 + n� �n�1�1� �n� 1 = 1 + n�n� 1� � >= 1 + �Therefore, from the above f 0(a0)� f 0(�x) >= log(1 + �)Thus taking � = log(1 + �) establishes (ii).



11.4. New Approaches for Linear Programming 483Lemma 11.1 Let 
 be a real number. If j
j <= � < 1 then jlog(1+
)�
j <= 
22(1��)2 .Proof. Let  (
) = log(1 + 
). Thendd
 (
) = 11 + 
 ; and d2d
2 (
) = �1(1 + 
)2 :By the mean value theorem of calculus applied to the function log(1 + 
), we havelog(1 + 
) = log(1) + 
� dd
 (
)�
=0 + 
22 � d2d
2 (�
)�for some �
 satisfying j�
j <= j
j. Solog(1 + 
) = 
 � 
22 � 1(1 + �
)2�jlog(1 + 
)� 
j = 
22 � 1(1 + �
)2� <= 
22(1� �)2Lemma 11.2 Let � = �q nn�1 . Then������ nXj=1 log�xjaoj ������� <= �22(1� �)2 for all x 2 B(a0; ��) \ S :Proof. Let x 2 B(a0; ��) \ S. Then jjx� a0jj2 <= �2�2. So (since a0j = 1n for all j)nXj=1�xj � a0ja0j �2 <= �2�2(1=n)2 = �2�2n2 = �2n2n(n� 1) = �2So, 


xj�a0ja0j 


 <= � for all j. Therefore, by Lemma 11.1�����log�1 + xj � a0ja0j �� �xj � a0ja0j ������ <= �xj � a0ja0j �2� 12(1� �)2 �_. . ������ nXj=1 log�xja0j �� nXj=1�xj � a0ja0j �������<=� 12(1� �)2�0@ nXj=1�xj � a0ja0j �21A<= �22(1� �)2This implies that ����� nPj=1 log�xja0j ������ <= �22(1��)2 , since nPj=1�xj�a0ja0j � = 1n  nPj=1(xj � a0j)! = 0(as x and a0 2 S).



484 Chapter 11. New LP Algorithms and Some Open ProblemsTheorem 11.3 The point g0 which minimimizes ĉx0 over x0 2 
00\B(a0; ��) satis�eseither (i) ĉg0 = 0or (ii) f 0(g0) <= f 0(a0)� �where � is a constant depending on �. If � = 14 , � >= 132 .Proof. De�ne ~f(x) = n log� ĉxĉa0� :Let h be the point where f 0(x0) achieves its minimum value over x0 2 
00 \B(a0; ��).Then, f 0(a0)� f 0(g0) =f 0(a0)� f 0(h) + f 0(h)� f 0(g0)=[f 0(a0)� f 0(h)] + �f 0(h)� �f 0(a0) + ~f(h)��� �f 0(g0)� �f 0(a0) + ~f(g0)��+ � ~f(h)� ~f(g0)� (11:13)Now if the minimum value of ĉx0 over x0 2 
00 \B(a0; ��) is zero, condition (i) of thetheorem holds trivially. Let us assume that this is not the case. Then by Theorem11.2 f 0(a0)� f 0(h) >= log(1 + �) : (11:14)For x0 2 B(a0; ��) \ 
00, we havef 0(x0)� �f 0(a0) + ~f(x0)� = nXj=1 log� ĉx0x0j �� nXj=1 log� ĉa0a0j �� n log� ĉx0ĉa0�= � nXj=1 log�x0ja0j �So ��f 0(x0)� �f 0(a0) + ~f(x0)��� = ���� nXj=1 log�x0ja0j �����<= �22(1� �)2 by Lemma 11.2 (11:15)But ~f(x0) depends on ĉx0 in a monotonically increasing manner. So ~f(x0) and ĉx0attain their minimum value over x0 2 
00 \B(a0; ��) at the same point, that is g0. So~f(h) >= ~f(g0) : (11:16)Now from (11.15) we have, for x0 2 
00 \B(a0; ��),f 0(x0)� �f 0(a0) + ~f(x0)� >= � �22(1� �)2 : (11:17)



11.4. New Approaches for Linear Programming 485Also 
00 � 
0. So both h and g0 2 
0. From (11.13), (11.14), (11.15), (11.16), (11.17),we have f 0(a0)� f 0(g0) >= log(1 + �)� �2(1� �)2 :We know that log(1 + �) >= �� �22 , for 0 < � < 1. Also�2(1� �)2 = �2n(n� 1)�1� �� nn�1� 12�2So from the above, we havef 0(a0)� f 0(g0) >= �(n) = �� �22 � �2n(n� 1)�1� �� nn�1� 12�2As n!1, �(n)! �� �22 � �2(1��)2 . If n >= 4, � = 14 , we have �(n) >= 132 .Theorem 11.4 Either cxr+1 = 0, or f(xr+1) <= f(xr) � �, where � is a constantdepending only on �, as in Theorem 11.3.Proof. We have proved in Theorem 11.3 that either ĉg0 = 0, or f 0(g0) <= f 0(a0) � �.Now xr = T�1(a0)xr+1 = T�1(g0)f 0(T (x)) = f(x) for all x 2 S :So, by applying T�1, we have from the above, that either cxr+1 = 0, or f(xr+1) <=f(xr)� �.Theorem 11.5 In O�n(l+ log n)� steps, the algorithm �nds a feasible point x > 0such that either cx = 0or cxca0 <= 2�lProof. Suppose cxr = 0 did not occur in the �rst N steps. Then, by Theorem 11.4f(xr) <= f(xr�1)� �; for r = 1 to N_. . f(xr) <= f(x0)� r�_. . nPj=1 log� cxrxrj � <= nPj=1 log� ca0a0j �� r�i. e., n log� cxrca0 � <= nPj=1 log(xrj)� nPj=1 log(a0j)� r�<= n log(n)� r�; since xrj <= 1 and a0j = 1n for all j_. . log� cxrca0 � <= log n� r�n :



486 Chapter 11. New LP Algorithms and Some Open ProblemsSo if r = �n� (l + log n)�, we have log�cxrca0 � <= �li. e., �cxrca0 � <= 2�lThe computation in each step involves O(n3) arithmetic operations on the data in theworst case. By Theorem 11.5 and the termination conditions used in the algorithmit has to run for at most O(nL) steps, to come within 2�O(L) of the optimum, atwhich point we round the solution to get an exact optimum solution as discussed inSubsection 5. So, the algorithm needs at most O(n4L) arithmetical operations on thedata in the worst case, it is clearly polynomially bounded.The �nal operation of converting the near optimal solution obtained at the ter-mination of the algorithm into an exact optimal solution as discussed in Subsection5 could be computationally expensive (it may need up to O(n) pivot steps). In mostpractical applications the data usually consists of unknown error terms and it makessense to take the near optimal solution as it is, without the expensive �nal conversion.In practical LP applications, because of unknown errors in the data, a near optimaland aproximately feasible solution to the model is the usual goal, and Karmarkar'salgorithm is well suited to achieve this goal.7 E�cient Implementation of the Karmarkar AlgorithmThe major piece of computation in each step of the algorithm is the computation of theprojection ĉp = ĉ[I � BT (BBT )�1B]. For this we have to �nd the inverse, (BBT )�1.Since B = 8>:ADe 9>;, we haveBBT = 8>:AD2AT ADe(ADe)T eTDe9>; = 8>:AD2AT 00 19>;since the point a used in de�ning the diagonal matrix D is in S, and a0 = en 2 
00.(BBT )�1 can be found e�ciently if (AD2AT )�1 can be. The only thing that changesin AD2AT from step to step is the diagonal matrix D. Let Dr = diag(dr11; : : : ; drnn)denote the diagonal matrix D in step r. We do not compute (AD2AT )�1 in each stepfrom scratch. Instead we update it to the extent necessary as we move from one stepto the next.If Dr and Dr+1 di�er in only one entry, the inverse of AD2r+1AT can be computedin O(n2) arithmetic operations from AD2rAT . For this, consider a nonsingular squarematrix M of order n, u = (u1; : : : ; un)T , v = (v1; : : : ; vn)T . Then the Sherman-Morrison formula states that(M + uvT )�1 =M�1 � (M�1u)(M�1v)T1 + uTM�1v



11.4. New Approaches for Linear Programming 487uvT is a rank-one modi�cation of M , and the formula shows that computation of(M + uvT )�1 can be done with O(n2) arithmetical operations given M�1. If Dr andDr+1 di�er in only the ith diagonal entry, thenADr+1AT = AD2rAT + ��dr+1ii �2 � �drii�2�A.i(A.i)T :So, in this case AD2r+1AT is obtained from a rank-one modi�cation of AD2rAT , andthe above formula can be used to get (AD2r+1AT )�1 from (AD2rAT )�1 with O(n2)arithmetical operations. If Dr and Dr+1 di�er in t diagonal entries, we can performt successive rank-one updates as above and obtain (AD2r+1AT )�1 from (AD2rAT )�1with O(n2t) arithmetical operations.We now show that with a simple modi�cation of the algorithm, we get a versionin which (AD2rAT )�1 can be used in place of (AD2r+1AT )�1 as long as Dr and Dr+1are close in some sense.We de�ne the diagonal matrix D = diag(d11; : : : ; dnn) as an approximation toDr+1 = diag (dr+111 ; : : : ; dr+1nn ) if12 <= � �diidr+1ii �2 <= 2 for all i :We will now analyse the e�ect of replacing Dr+1 by such a D. Consider the followingmodi�cation of the optimization problem over the inscribed sphere in the transformedspace. minimize ĉx0subject to x0 2 
00and h(x0) = (x0 � a0)TQ(x0 � ao) <= ��� (11:18)where Q is some positive diagonal matrix. Taking Q = I and �� = � corresponds tothe original problem used in Subsection 6.Letting the row vector �, and scalar � to be the Lagrange multipliers for (11.18),the KKT conditions for (11.18) implyĉ� �B + 2�(x0 � a0)TQ = 0_. . ĉQ�1BT = �BQ�1BT � 2�(x0 � a0)TBT= �BQ�1BTsince both x0; a0 2 
00 implies that B(x0�a0) = 0. Using this we conclude that the op-timum solution of (11.18), x0, satis�es (x0�a0)T = 
ĉ�I�Q�1BT (BQ�1BT )�1B�Q�1where 
 is a positive scalar to be determined so that x0 satis�es (x0�a0)TQ(x0�a0) =���. Computation of this requires (BQ�1BT )�1. Substituting B = 8>:ADr+1eT 9>; we getBQ�1BT = 8>:ADr+1Q�1Dr+1AT ADr+1Q�1eADr+1Q�1eT eTQ�1e 9>; :



488 Chapter 11. New LP Algorithms and Some Open ProblemsIf the inverse of ADr+1Q�1Dr+1AT is known, (BQ�1BT )�1 can be computed withO(n2) arithmetical operations using the formula8>:M ppT q9>; = 1q � pTM�1p 8>>: (q � pTM�1p)M�1 + (M�1p)(M�1p)T :: �M�1p�(M�1p)T :: 1 9>>;Suppose D = Dr+1E where E is a diagonal error matrix such that E = (eij) with12 <= e2ii <= 2 for all i, and we know (ADAT )�1. Then setting Q = E�2, we haveADr+1Q�1Dr+1AT = ADAT . So using the known (ADAT )�1, we can compute theoptimum solution of the modi�ed problem (11.18) using the above formulae.Now we relate the solution of (11.18) to the main optimization problem. SinceQii = e�2ii 2 �12 ; 2�, we have12(x0 � a0)T (x0 � a0) <= (x0 � a0)TQ(x0 � a0) <= 2(x0 � a0)T (x0 � a0)B�a0; � ��2 ��� � fx0 : (x0 � a0)TQ(x0 � a0) <= ���g� B(a0; 2���) :Take �� = �2 where � is the quantity used in Subsection 6 (there, we used typically� = 14 ). SoB�a0; ��4 ��� \ 
00 � fx0 : x0 2 
00 and (x0 � a0)TQ(x0 � a0) <= ���g� B(a0; ��) \ 
00 :From the �rst inclusion we haveminimum value of f 0(x0)subject to x0 2 
00and (x0 � a0)TQ(x0 � a0) <= ��� <= minimum value of f 0(x0)subject to x0 2 
00 \B�a0; ��4 ���and by Theorem 11.2 we haveminimum value of f 0(x0)subject to x0 2 
00 \B�a0; ��4 ��� <= f 0(a0)� log�1 + �4 � :So, for �g0, the optimum solution corresponding to the modi�ed problem (11.18), wecan claim f 0(�g0) <= f 0(a0)� log�1 + �4 �and if we de�ne �xr+1 = T�1(�g0), we can as in Theorem 11.4, claimf(�xr+1) <= f(xr)� ��where �� is rede�ned as �� = log�1 + �4 �� �22(1� �)2 :



11.4. New Approaches for Linear Programming 489This a�ects the number of steps by only a constant factor and the algorithm still works.So, this is what we do, to implement the modi�ed algorithm in an e�cient manner.We maintain (AD2AT )�1. We do not change all diagonal elements of D in each step.Let y = (y1; : : : ; yn)T be the new solution at the end of a step. It is time to update(AD2AT )�1. Before, we de�ned the new D to be diag (y1; : : : ; yn). Instead, we modifyD in two stages.Compute � = 1nPnj=1 yjdjj where djj are the diagonal entries in the current D.First multiply D by �, this needs dividing (AD2AT )�1 by �2 to update it accordingly.This completes stage 1.Then, for each j = 1 to n, if in the matrix D at the end of stage 1, �djjyj �2 62 �12 ; 2�,reset djj = yj and update (AD2AT )�1 corresponding to this change by a rank-onemodi�cation as discussed above.In essence, we carry out fewer updating operations by optimizing (after the pro-jective transformation) over an inscribed ellipsoid (dashed in Figure 11.5) and not theinscribed sphere. (Of course we do not optimize over this sphere or ellipsoid exactly,but scale it by � or �� before the optimization.) We make enough updating operationsto make sure that the current D matrix and current solution y always satisfy �djjyj �2 2�12 ; 2�, this insures that the ellipsoid is close to the inscribed sphere

Figure 11.5
We still need only O(nL) steps to shrink the objective value by the required factorof 2�O(L). With this modi�cation, N . Karmarkar has shown in [11.2] that we need todo only O(n 32L) updating operations. Since each updating operation requires O(n2)arithmetic operations on the data, the overall algorithm needs O(n3:5L) arithmeticoperations on the data in the worst case, with this modi�cation.



490 Chapter 11. New LP Algorithms and Some Open Problems8 The Sliding Objective Function MethodFrom Subsection 6, it is clear that Karmarkar's algorithm solves LPs for which theoptimum objective value is known to be zero. As shown in Subsection 1, any LP can betransformed into one with this property, but this transformation increases the numberof constraints and blows up the order of the problem, and hence may be undesirable inpractical applications. In this subsection, we discuss a sliding objective value approachthat can be used to solve the original problem by itself using Karmarkar's algorithm,when the optimum objective value is unknown.For a given LP, the �rst problem is to determine whether it is feasible or not. Letthe system of constraints be Ax = bx >= 0where A is of order m� n. As shown in Subsection 2, to check whether this system isfeasible, we solve the following LP with the arti�cial variable xn+1. Let x0 > 0 be anyvector. minimize xn+1subject to Ax� xn+1(Ax0 � b) = bx >= 0; xn+1 >= 0 (11:19)(x0; 1) > 0 is a feasible solution to this problem. The original problem is feasible i�the optimum objective value in this problem is zero. Even though the exact optimumobjective value in this problem is unknown, we know that it lies between 0 and 1. Usingit, this problem could be solved by Karmarkar's algorithm with the sliding objectivevalue approach discussed below.Now consider the general LPminimize cxsubject to Ax = bx >= 0 (11:20)This problem can be solved in two stages. First we check whether it is feasible, asdiscussed above. If a feasible solution �x is obtained, c�x is an upper bound on theoptimum objective value in (11.20). We could then check whether the dual problemis feasible. If the dual is infeasible, from the duality theory of linear programming weknow that cx is unbounded below in (11.20) (since (11.20) has already been veri�ed tobe feasible). If the dual is feasible, the dual objective value at the dual feasible solutionobtained is lower bound on the optimum objective value in (11.20).Now, consider the LP in the form discussed in (11.11)minimize dxsubject to x 2 
 \ Swhere 
 = fx : Ax = 0gS = fx : x >= 0;Pnj=1 xj = 1g (11:21)



11.4. New Approaches for Linear Programming 491where A is a matrix of order m�n and rank m. We assusme that an optimum solutionexists and that the optimum objective value is known to be between the given lowerand upper bound l0, u0 (if the original problem is transformed directly into this formusing the techniques discussed in Subsections 2, 3, we could take l0 = �2L and u0 = 2L,where L is the size of the problem, under the assumption that an optimum solutionexists). The di�erence between the current lower and upper bounds on the objectivevalue is called the range. The sliding objective value approach is divided into severalphases. At the end of each phase the range reduces to at least 23 of its length at thebeginning of the phase and takes no more than n(k+log(n)) steps where k is a constantsatisfying �1� �n�kn <= 12 :Let z� denote the unknown optimum objective value in (11.21). We run the algorithmpretending that a selected value, �z is the minimum objective value (the value of �zis updated at the beginning of each phase), that is, we try to minimize dx � �z =(d� �zeT )x. This leads to the problemminimize cxsubject to x 2 
 \ Swith c = d� �zeT . We need to modify the computation of the vector g0 in each step ofthe algorithm as follows. Compute g0 as in the subroutine discussed in Subsection 6.Check if ĉg0 < 0. If so, choose the point g00 on the line segment joining a0 and g0 whichsatis�es ĉg00 = 0, and make the point g00 the output of the subroutine instead of g0.If z� <= �z, let xm be the point where ĉx achieves its minimum over 
00\B(a0; ��).If ĉxm < 0, then de�ne x� to be the point on the line segment joining a0 and xmsatisfying ĉx� = 0. Then all the proofs go through, and each step of the algorithmleads to a reduction of � in the potential function or �nds a point where the originalobjective function is �z.Now a phase in the sliding objective value approach consists of the following. Letl, u be the current lower and upper bounds for the objective value dx at the beginningof the phase. Let �l = l+ 13(u� l)�u = l+ 23(u� l)
l ul uFigure 11.6Run the algorithm as described above with �z = pretended minimum objectivevalue = �l.



492 Chapter 11. New LP Algorithms and Some Open ProblemsIf we obtain a feasible solution x which satis�es dx < �u, then terminate the phase,make dx the new upper bound u, and go to the next phase with the new bounds forthe objective value.Suppose after n(k + log(n)) steps we have not reached a solution x with dx < �u.If z� <= �l, we must have achieved a reduction � in the associated potential function ineach step, forcing the objective value dx to be < �u. So, if after n(k+ log(n)) steps wehave not reached a solution x with dx < �u, we must have z� >= �l. So make �l the newlower bound l, and go to the next phase with the new bounds for the objective value.Thus the length of the range gets multiplied by a factor 23 or less during eachphase. So after O(L) phases (i. e., after O(nL log n) steps) we narrow the range towithin 2�O(L) of the optimum objective value, and then obtain the exact optimumsolution from the solution at that stage.9 Implementation Di�cultiesConsider the LP in standard form, �nd y 2 Rn tominimize gysubject to Gy = dy >= 0 : (11:22)The primal simplex algorithm for solving this problem processes the problem as it isin (11.22). It performs a sequence of operations on the data G, d, g until the problemis solved.To solve (11.22) by Karmarkar's algorithm in the form discussed in Subsection 6,we have to �rst convert the problem into the form (11.11). As pointed out in Subsection3, we add the additional constraintnXj=1 yj + yn+1 =M :Mathematically, takingM to be 2L where L is the size of the LP (11.22), would su�ce;but in practical implementations M could be any practically reasonable upper boundfor Pnj=1 yj in the problem. Using this additional constraint, (11.22) is transformedinto the form minimize gysubject to Gy � � 1M �d n+1Pj=1 yj! = 0n+1Pj=1 yj = 1y >= 0; j = 1 to n+ 1 (11:23)
which is in Karmarkar's form.



11.4. New Approaches for Linear Programming 493LP models arising in practical applications lead to problems of the form (11.22) inwhich the coe�cient matrix G is very sparse, that is, most of the entries in it are zero.Commercial implementations of the primal simplex algorithm exploit this sparsity andare able to take tremendous advantage of it. When the problem is transformed intothe form (11.23) as discussed above, the resulting coe�cient matrix A is usually totallydense, that is, almost all the entries in it are nonzero. This makes it very di�cult toproduce a practically viable implementation of Karmarkar's algorithm, at least for thealgorithm in the form that is stated above. One may be able to overcome this problemby not computing A explicitly, but storing it as G� � 1M �deT .Now, consider the LP in the following formminimize cxsubject to Ax = 0eTx = 1x >= 0 (11:24)The primal simplex algorithm would solve (11.24) by performing operations onthe constraint matrix A directly. Karmarkar's algorithm operates on AAT or AD2ATwhere D is a positive diagonal matrix. The computation of this matrix product is anadditional burden in Karmarkar's algorithm. In fact an implementation of Karmarkar'salgorithm which maintains (AD2AT )�1 in any form and updates it exactly from stepto step in the algorithm, is not likely to be competitive with e�cient implementationsof the primal simplex algorithm.Let Dr denote the diagonal matrix in step r+1 of Karmarkar's algorithm appliedto (11.24). The computations (as discussed in Subsections 6, 7) in this step of thealgorithm can be carried out by doing the following.First solve the following system of equations for the row vector of variables u =(u1; : : : ; um) u(AD2rAT ) = cD2rAT : (11:25)Let ur denote the exact solution of this system. Then compute the 1 � n row vectorĉrp from ĉrp = cDr � urADr � cDreeT :This (ĉrp)T is the direction for moving from a0 to the boundary of the sphere B(a0; ��)in this step. It provides the steepest descent direction for minimizing the linear functionĉx0 over 
00 \ B(a0; ��) in this step. See Figure 11.7. In reality, we dot not need ĉrpexactly. Any approximate vector ~crp that makes a strict acute angle will be adequate(the closer this angle is to 0 the better), it produces a decrease in objective functionwhich may su�ce in practice.
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Figure 11.7 Steepest descent direction ĉrp for linear objective funtion ĉx instep r. Approximate descent direction ~crp.The key point is to get an approximate solution �ur for (11.25) e�ciently, so that if~crp = cDr � �urADr � (cDreeT )that would satisfy ~crpĉrp > 0 (acute angle condition). We also need ADr~crp = 0 andeT ~crp = 0, so that moving from a0 in the direction ~crp keeps the point within 
00. Alsogiven the approximate �ur, how to update it into �ur+1 that works for the (r+1) in stepthe same way, when Dr changes to Dr+1. Some iterative methods for solving linearequations that produce approximate solutions e�ciently may provide the key to thiscomputation, and these are being investigated.Also, once the direction of movement ~crp is obtained, in practical implementationsone may want to move all the way closer to the boundary of the simplex, rather than tothe boundary of the insphere B(a0; ��) as indicated in Figure 11.7. Since the simplexis determined by linear constraints, this can be done e�ciently through a minimumratio computation to determine how far you can move in this direction while retainingfeasibility, and you can stop just a little bit short of it.These and various other ideas are being explored for producing a practically usefulimplementation of Karmarkar's algorithm.10 Solving Quadratic and Convex Programsby Karmarkar's ApproachIt should be possible to extend Karmarkar's algorithm to solve convex quadratic pro-grams and LCPs associated with PSD matrices, and possibly even smooth nonlinearconvex programming problems. These extensions, and the best implementations ofthem, are now active research topics.



11.4. New Approaches for Linear Programming 49511.4.2 Tardos' New Strongly Polynomial Minimum CostCirculation AlgorithmConsider a directed single commodity 
ow capacitated network with n nodes and marcs. In [11.7] E. Tardos developed an algorithm for �nding a minimum cost cir-culation in this network, with worst case computational complexity of O(m 32n5) orO(m2n3 log m) with some improvements. She has applied the idea of this algorithmand developed an algorithm to solve the general linear programming problemminimize cxsubject to Ax = bx >= 0in time polynomial in the size of A.It remains to be investigated whether this approach can be extended to solve LCPs(q;M) when M is PSD, in time polynomial in the size of M .11.4.3 The Ellipsoid Method for Linear ProgrammingA version of the ellipsoid method for solving linear programming problems is presentedin Chapter 15 of [2.26]. The approach outlined there, uses a scheme suggested byP. Gacs and L. Lov�asz in a terminal step in order to obtain an optimum solution ofthe LP. Here we show how that terminal step can be replaced by a much more e�cientscheme similar to the one discussed in Subsection 5 of Section 11.4.1. This has beensuggested by R. Chandrasekaran and K. Truemper.Consider an LP with rational data. By the techniques discussed in Section 1.2and by scaling, this LP can be transformed into the problemmin cu; Fu >= g; u >= 0 (11:26)where F , g, c are integer matrices. Let v denote the column vector of dual variables.By the duality theorem of linear programming (also see Subsection 1 of Section 11.4.1)solving this LP is equivalent to solving the system of linear inequalities (11.27).�Fu <= �gFT v <= cTcu �gT v <= 0�u <= 0�v <= 0 (11:27)
Let x = 8>:uv9>;. The system (11.27) is a system of linear inequalities in which allthe coe�cients are integer. Let D, b denote the coe�cient matrix and right hand



496 Chapter 11. New LP Algorithms and Some Open Problemsside constants vector in (11.27), including the sign restrictions on the variables. Then(11.27) can be written as Dx <= b : (11:28)Let D be of order m�n, and L be the size of (11.28) (that is, L is the total number ofbinary digits in all the data in (11.28), see Section 8.3). Let L1 = 3�(m+1)(n+1)+1�L.As in Section 15.3 of [2.26], consider the perturbed system2L1(Di.x) < 2L1bi + 1; i = 1 to m (11:29)(11.29) is now an open system of linear inequalities with integer data, and hence it canbe solved by the ellipsoid method discussed in Section 15.2 of [2.26] in polynomial time.The method begins with an arbitrary point x0 2 Rn, and the matrix A0 = 22(1+L1)I,where I is the unit matrix of order n, and generates the sequence (xr; Ar), r = 1; 2; : : :using the iterative scheme (8.7) discussed in Section 8.4. For some r, if xr satis�es(11.29), de�ne ~x to be that feasible xr and go to the terminal step discussed below.If xr violates (11.29), �nd a constraint in (11.29) violated by xr, suppose it is the pthconstraint in (11.29). Then de�ne a = 2L1Dp. and d = 1 + 2L1bp, and compute 
r+1as in (8.7) using this a, d, xr and Ar. If 
r+1 <= �1, (11.29) is infeasible, terminate theellipsoid algorithm. If 
r+1 > �1, compute xr+1, Ar+1 as in (8.7), and continue.If the ellipsoid algorithm continues for r = 0 to 6(n+1)2(m+1)(n+1)(L+L1) stepsand all the points xr obtained in the algorithm are infeasible to (11.29), terminate withthe conclusion that (11.29) has no feasible solution. The proofs of this and the otherinfeasibility conclusion stated earlier, are given in Chapter 15 of [2.26]. Under thisinfeasibility termination, (11.28), that is, (11.27), has no feasible solution, this impliesthat either the LP (11.26) is infeasible, or it is feasible and the objective function isunbounded below on its set of feasible solutions, we terminate.Otherwise, let ~x be the feasible solution for (11.29) obtained by the ellipsoidalgorithm discussed above. If ~x = 8>: ~u~v9>; is feasible to (11.28), then ~u is an optimalsolution of (11.26) and ~v is an optimal dual solution, terminate. If not, consider thefollowing system. Dx+ �Dx� + It = b+ e2�L1 (11:30)where x+ = (x+1 ; : : : ; x+n ), x� = (x�1 ; : : : ; x�n ), t = (ti) 2 Rm and e is the columnvector in Rm of all 1's. De�ne for j = 1 to n~x+j = � 0 if ~xj <= 0~xj if ~xj >= 0~x�j = � j~xjj if ~xj <= 00 if ~xj >= 0~ti = �Di. ~x+ bi + 2�L1~x+ = (~x+j ); ~x� = (~x�j ); ~t = (~ti)Then (~x+; ~x�; ~t) is feasible to (11.30). Using the method discussed in Subsection 5 ofSection 11.4.1, or Section 3.5.4 of [2.26] (here there is no objective function involved, so



11.4. New Approaches for Linear Programming 497we just apply this method without worrying about the objective value), obtain a BFS(x̂+; x̂�; t̂) 2 R2n+m to (11.30). Denote the vector (x+; x�; t) 2 R2n+m by y and letŷ = (x̂+; x̂�; t̂). Since ŷ is a BFS of (11.30), there exists a basis B, a square submatrixof (D ...�D ... I) of order m, so that ŷ = (ŷB; ŷE) is given byŷE = 0ŷB = B�1(b+ e2�L1) : (11:31)Here E is the submatrix of (D ...�D ... I) consisting of all the columns other than thosein B, and yB, yE are the basic, nonbasic vectors of variables yj corresponding to thebasic, nonbasic partition (B ... E) of (D ...�D ... I). Now de�ne the vector y� = (y�B; y�E)by y�E = 0y�B = B�1b (11:32)and let y� = (x�+; x��; t�) in terms of the original variables. Letx� = x�+ � x�� :The vector y� is the basic solution of the systemDx+ �Dx� + It = b (11:33)corresponding to the basis B. By Theorem 15.1 of [2.26], jdeterminant of Bj < 2L,and hence using an argument similar to that in Theorem 15.2 of [2.26] we have, fori = 1 to m either t�i = 0 or jt�i j > 2�L : (11:34)Let J = fi : 1 <= i <= m, and i such that ti is a basic variable corresponding to the basisBg. So, from the de�nition of ŷ, and from (11.31), (11.32), we havet̂i = � 0; for all i 62 Jt�i + (B�1e2�L1)i; for i 2 J . (11:35)From well known results in the theory of determinants, B�1 is the adjoint of B mul-tiplied by a scalar, which is the inverse of the determinant of B. The determinantof the basis B is a nonzero integer and hence has absolute value >= 1. Each entry inthe adjoint of B is the determinant of a square submatrix of B, by Theorem 15.1 of[2.26] its absolute value is <= 2Ln . So j(B�1e2�L1)ij <= m2Ln2L1 <= 2L2L1 <= 2�nL. But ŷ isa BFS of (11.30), so t̂i >= 0 for all i. Using this and (11.34) in (11.35) we concludethat t�i must be >= 0 for all i 2 J. We already know that t�i = 0 for all i 62 J. Sot� >= 0. This clearly implies that x� is feasible to (11.28). Therefore if x� = 8>:u�v�9>;,u� is an optimum solution of (11.26) and v� is an optimum dual solution. From u�, a



498 Chapter 11. New LP Algorithms and Some Open Problemsbasic feasible optimum solution of (11.26) can be obtained by the method described inSubsection 5 of Section 11.4.1.The ellipsoid method is the �rst mathematical device used to prove that linearprogramming is in the class P of problems solvable in polynomial time. The modi�edterminal step given above is not adequate to make the ellipsoid method practicallyuseful. However, the ellipsoid method remains a very important mathematical tool inthe study of computational complexity of optimization problems.
11.4.4 The Gravitational Method for Linear ProgrammingHere we brie
y describe an interior point variant of the gradient projection method forlinear programming proposed by K. G. Murty [11.5, 11.6]. We consider the LP in thefollowing form minimize z(x) = cxsubject to Ax >= b (11:36)where A is a matrix of order m � n. Sign restrictions on the variables and any otherlower or upper bound conditions on the variables, if any, are all included in the abovesystem of constraints. Clearly every LP can be put in this form by well known simpletransformations discussed in most LP textbooks (for example, see [2.26]).Note: In practical applications, it usually turns out that the LP model for a practicalproblem is in standard form min p�subject to B� = d� >= 0: (11:37)The dual of this model is directly in form (11.36) and the gravitational method canbe applied to solve the dual of (11.37) directly. As it will be shown later on, when thegravitational method is applied on the dual of (11.37), at termination, it will producean optimum solution for (11.37), if one exists.AssumptionsLet K denote the set of feasible solutions of (11.36). We assume that K 6= ;, and thatK has a nonempty interior in Rn, and that an initial interior feasible solution x0 (thisis a point x0 satisfying Ax0 > b) of (11.36) is available.If these assumptions are not satis�ed, introduce an arti�cial variable xn+1 andmodify the problem as followsminimize cx+ vxn+1subject to Ax+ exn+1 >= b; xn+1 >= 0 (11:38)



11.4. New Approaches for Linear Programming 499where e = (1; : : : ; 1)T 2 Rm and v is a large positive number. For any x̂ 2 Rn, letx̂n+1 > maxfjminf0; Ai.x̂� bigj : i = 1 to mg, then (x̂; x̂n+1) satis�es the constraintsin (11.38) as strict inequalities. Thus the modi�ed problem (11.38) satis�es all theassumptions made in the above paragraph.We also assume that c 6= 0, as otherwise x0 is optimal to (11.36), and we canterminate.The Gravitational MethodThe Euclidean distance of x0 from the hyperplane fx : Ai.x = big is (Ai.x0�bi)=kAi.k.The gravitational approach for solving (11.36) is the following. Assume that theboundary of K is an impermeable layer separating the inside of K from the outside.Introduce a powerful gravitational force inside K pulling everything down in the di-rection �cT . Choose 0 < " < minf(Ai.x0 � bi)=kAi.k : i = 1 to mg. Release a smallspherical n-dimensional drop of mercury of diameter 2" with its center at the initialinterior feasible solution x0 2 K. The drop will fall under the in
uence of gravity. Dur-ing its fall, the drop may touch the boundary, but the center of the drop will alwaysbe in the interior of K at a distance >= " from the nearest point to it on the boundary.Whenever the drop touches a face of K, it will change direction and will continue tomove, if possible, in the gravitational direction that keeps it within K. If the objectivefunction is unbounded below in (11.36), after changing direction a �nite number oftimes, the drop will continue to fall forever along a half-line in K along which theobjective function diverges to �1. If z(x) is bounded below on K, after changingdirection a �nite number of times, the drop will come to a halt. The algorithm tracksthe path of the center of the drop as it falls in free fall under the in
uence of gravity.Let P denote this path of the center of this drop in its fall.The Gravitational Direction at an Interior Point x 2 KSuppose a drop of radius ", with its center at x is inside K. So(Ai.x� bi)=kAi.k >= "; i = 1 to m: (11:39)At every point x on the locus P of the center of the drop in the gravitational method,(11.39) will always be satis�ed. Given a point x on P, de�neJ(x) = fi : (Ai.x� bi)=kAi.k = "g: (11:40)The hyperplane fx : Ai.x = big is touching the drop of radius " when its center is atthe interior point x 2 K only if i 2 J(x). Now, de�ney0 = �cT =kck: (11:41)



500 Chapter 11. New LP Algorithms and Some Open ProblemsIf J(x) = ; (i. e., if (Ai.x � bi)=kAi.k > " for all i = 1 to m), when the drop is ina position with its center at x, it will move in the gravitational direction y0. Thedistance that it will move in this direction is� = minimum � (Ai.x� bi)� "kAi.k�Ai.y0 : 1 <= i <= m and i such that Ai.y0 < 0	(11:42)where we adopt the convention that the minimum in the empty set is +1. If � = +1in (11.42), then the drop continues to move inde�nitely along the half-line fx+ �y0 :� >= 0g, and z(x) is unbounded below on this feasible half-line, terminate. If � is �nitein (11.42), at the end of this move, the drop will be in a position with its center atx + �y0, touching the boundary of K, and it will either halt (see the conditions forthis, discussed later on) or change direction into the gravitational direction at x+ �y0and move in that direction.When x is such that J(x) 6= ;, that is,minf(Ai.x� bi)=kAi.k : i = 1 to mg = " (11:43)the direction that the drop will move next, called the gravitational direction at x,can be de�ned using many di�erent principles. One principle to de�ne the gravitationaldirection at x, where x is an interior point of K satisfying (11.43) is by the followingprocedure, which may take several steps.Step 1 : If the drop moves in the direction y0 from x, the position of its centerwill be x + �y0 for some � > 0. Since (11.39) holds, the ith constraint will block themovement of the drop in the direction y0, only if i 2 J(x) and Ai.y0 < 0. De�neJ1 = fi : i 2 J(x); and Ai.y0 < 0g:Case 1 : J1 = ;: If J1 = ;, y0 is the gravitational direction at x, and the distanceit can move in this direction is determined as in (11.42).Case 2 : J1 6= ;: If J1 6= ;, each of the constraints Ai.x >= bi for i 2 J1, is currentlyblocking the movement of the drop in the direction y0.De�ne T1 = J1, and let D1 be the matrix of order jT1j�n whose rows are Ai. fori 2 T1. Let E1 be the submatrix of D1 of order (rank of D1) � n, whose set of rows isa maximal linearly independent subset of row vectors of D1. Let I1 = fi : Ai. is a rowvector of E1g. So I1 � T1. Let F1 be the subspace fx : D1x = 0g = fx : E1x = 0g,F1 is the subspace corresponding to the set of all constraints which are blocking themovement of the drop in the direction y0. Let �1 be the orthogonal projection of y0 inthe subspace F1, that is �1 = (I � ET1 (E1ET1 )�1E1)y0: (11:44)Subcase 2.1 : �1 6= 0: If �1 6= 0, let y1 = �1=k�1k, go to Step 2.



11.4. New Approaches for Linear Programming 501Subcase 2.2 : �1 = 0: If �1 = 0, let the row vector � = (�i : i 2 I1) =�kck((E1ET1 )�1E1y0)T . Then �E = c.Subcase 2.2.1 : �1 = 0 and � >= 0: If � >= 0, de�ne the row vector � = (�i) by�i = 0; if i 62 I1= �i; if i 2 I1:Then � is a basic feasible solution to the dual of (11.36). In this case, as will be shownlater on, the drop halts in the current position, it cannot roll any further, under thegravitational force.Subcase 2.2.2 : �1 = 0, � 6>= 0: If �1 = 0 and � 6>= 0, delete the i corresponding tothe most negative �i from the set I1 (any other commonly used rule for deleting one ormore of the i associated with negative �i from I1 can be applied in this case). Rede�nethe matrix E1 to be the one whose rows are Ai. for i in the new set I1, compute thenew orthogonal projection �1 as in (11.44) using the new E1 and repeat Subcase 2.1or 2.2 as appropriate with the new �1.General Step r : Let yr�1 be the direction determined in the previous step. De�neJr = fi : i 2 J(x) and Ai.yr�1 < 0g:Case 1 : Jr = ;: If Jr = ;, yr�1 is the gravitational direction at x, and the distancethe drop can move in this direction is determined as in (11.42) with yr�1 replacing y0.Case 2 : Jr 6= ;: De�ne Tr = Srs=1 Js and let Dr be the matrix of order jTrj � nwhose rows are Ai. for i 2 Tr. Let Er be the submatrix of Dr of order (rank of Dr)�n, whose set of rows is a maximal linearly independent subset of row vectors of Dr.Let Ir = fi : Ai. is a row vector of Erg. Let Fr be the subspace fx : Drx = 0g = fx :Erx = 0g. Let �r be the orthogonal projection of y0 in the subspace Fr, that is�r = (I � ETr (ErETr )�1Er)y0:Subcase 2.1 : �r 6= 0: Let yr = �r=k�rk, go to Step r + 1.Subcase 2.2 : �r = 0: Let � = (�i : i 2 Ir) = �kck((ErETr )�1Ery0)T .Subcase 2.2.1 : �r = 0, and � >= 0: De�ne � = (�i) by�i = 0; for i 62 Ir= �i; for i 2 Ir:� is a basic feasible solution to the dual of (11.36). In this case the drop halts, itcannot roll any further under the gravitational force.Subcase 2.2.2 : �r = 0, and � 6>= 0: If �r = 0 and � 6>= 0, proceed exactly as underSubcase 2.2.2 described under Step 1, with Ir replacing P1.



502 Chapter 11. New LP Algorithms and Some Open ProblemsIt can be shown that this procedure does produce the gravitational direction at x,�nitely, if the drop can move at all. Currently work is being carried out on developinge�cient methods for choosing the index set Ir of maximal linearly independent subsetof row vectors of Dr, in Case 2, and on the best strategies for deleting a subset ofconstraints associated with negative �i in Subcase 2.2.2. Other principles for de�ningthe gravitational direction at the interior point x of K, are also being investigated.Conditions for the Halting of the DropLet " be the radius of the drop and x 2 K satisfy (11.39). We have the followingtheorem.Theorem 11.6 When the center of the drop is at x, it halts i� J(x) de�ned in(11.40) is 6= ;, and there exists a dual feasible solution � = (�i) for the dual of (11.36)satisfying �i = 0; for all i 62 J(x): (11:45)Proof. The drop will halt when its center is at x, i� there exists no direction at xalong which the drop could move within the interior of K, that will slide its center ona line of decreasing objective value for some positive length. That is, i� there existsno y satisfying cy < 0(Ai.(x+ �y)� bi)=kAi.k >= "; i = 1 to mfor 0 <= � < �, for some � > 0. Since x satis�es (11.39), and from the de�nition of J(x)in (11.40), this implies that the drop will halt when its center is at x i� the systemAi.y >= 0; for all i 2 J(x)cy < 0has no solution y. By the well known Farkas' lemma, Theorem 3 in Appendix 1, thisholds i� there exists a � = (�i : i = 1 to m) feasible to the dual of (11.36) satisfying(11.45).What to Do When the Drop Halts?Theorem 11.7 Suppose the drop of radius " halts with its center at x 2 K. Thenthe LP (11.36) has a �nite optimum solution. Let z� be the optimum objective valuein (11.36). Let � = (�i) be the dual feasible solution satisfying (11.45) guaranteed toexist by Theorem 11.6. Then cx = �b+ " Xi2J(x)�i (11:46)and



11.4. New Approaches for Linear Programming 503cx <= z� + " Xi2J(x)�i: (11:47)Proof. If the drop halts, by Theorem 11.6, the dual of (11.36) is feasible. So, theLP (11.36) has a �nite optimum solution by the duality theory of LP. Consider theperturbed LP minimize z(x) = cxsubject to Ai.x >= � bi; for i 62 J(x)bi + "; for i 2 J(x). (11:48)The hypothesis in the theorem implies that x, �, together satisfy the primal, dualfeasibility and the complementary slackness optimality conditions for (11.48) and itsdual. Hence, by the duality theorem of LP, (11.46) holds. Also, by the weak dualitytheorem of LP, (11.47) holds.Hence, if the drop halts with its center at position x, and a � satisfying (11.45) isfound, and "Pi2J(x) �i is small, then x can be taken as a near optimum solution to(11.36) and the algorithm terminated. Also, in this case � is an optimum solution forthe dual of (11.36), and the true optimum solution of (11.36) can be obtained by wellknown pivotal methods that move from x to an extreme point without increasing theobjective value (see Subsection 5 in Section 11.4.1).Theorem 11.8 Suppose the drop of radius " halts with its center at x 2 K. If thesystem of equations Ai.x = bi; i 2 J(x) (11:49)has a solution ~x which is feasible to (11.36), then ~x is an optimum feasible solution of(11.36).Proof. Let � be the dual feasible solution satisfying (11.45) guaranteed by Theorem11.6. It can be veri�ed that ~x, � together satisfy the complementary slackness opti-mality conditions for (11.36) and its dual, so ~x is an optimum solution for (11.36). Inthis case � is optimum to the dual of (11.36).If the drop of radius " halts with its center at x 2 K, and there exists no solutionto the system of equations (11.49) which is feasible to (11.36), then this drop is unableto move any further down in K under the gravitational force, even though it is notclose to an optimum solution for (11.36). See Figure 11.8.
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Figure 11.8 The set K is on the side of the arrow marked on each constraint.The gravitational force is pulling the drop straight down, but it cannot moveany further, because it is squeezed between hyperplanes 1 and 2.Suppose the drop of radius " halts with its center at x. If the systemAi.x = bi; i 2 J(x) (11:50)has no feasible solution, the gravitational method reduces the radius of the drop, seebelow, keeping the center at x, and continues.On the other hand, suppose the drop of radius " halts with its center at x, and thesystem (11.50) is feasible. Let E be the matrix whose rows form a maximal linearlyindependent subset of rows of fAi. : i 2 J(x)g. Then the nearest point to x in the 
atfx : Ai.x = bi; i 2 J(x)g is x̂ = x+ET (EET )�1(d�Ex) where d is the column vectorof bi for i such that Ai. is a row of E. If x̂ is feasible to (11.36), then by Theorem 11.8,x̂ is an optimum feasible solution for (11.36) and the method terminates. Otherwise,at this stage the gravitational method reduces the radius of the drop (for example,replace " by "=2), keeping the center at x, and traces the locus of the center of the new



11.5. References 505drop as it now begins to fall under the in
uence of gravity again. The same process isrepeated when the new drop halts.See Figure 11.9 for an illustration of the path of the drop in a convex polyhedronin R3.
cT-      - direction

Figure 11.9 Path of the drop in the gravitational method in a convex poly-hedron in R3.The theoretical worst case computational complexity of this algorithm is currentlyunder investigation. Initial computational trials with the method are very encouraging.The practical e�cienty of this algorithm is also being studied via a computationalproject.
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Appendix
PRELIMINARIES

1. THEOREMS OF ALTERNATIVES FORSYSTEMS OF LINEAR CONSTRAINTSHere we consider systems of linear constraints, consisting of equations or inequalitiesor both. A feasible solution of a system is a vector which satis�es all the constraints inthe system. If a feasible solution exists, the system is said to be feasible. The systemis said to be infeasible if there exists no feasible solution for it. A typical theoremof alternatives shows that corresponding to any given system of linear constraints,system I, there is another associated system of linear constraints, system II, based onthe same data, satisfying the property that one of the systems among I, II is feasiblei� the other is infeasible. These theorems of alternatives are very useful for derivingoptimality conditions for many optimization problems.First consider systems consisting of linear equations only. The fundamentalinconsistent equation is 0 = 1 (1)consider the following system of equationsx1 + x2 + x3 = 2�x1 � x2 � x3 = �1: (2)When we add the two equations in (2), the coe�cients of all the variables on theleft hand side of the sum are zero, and the right hand side constant is 1. Thus the



508 Appendix 1fundamental inconsistent equation (1) can be obtained as a linear combination of thetwo equations in (2). This clearly implies that there exists no feasible solution for (2).Now consider the general system of linear equations Ax = b, written out in full asnXj=1 aijxj = bi; i = 1 to m: (3)A linear combination of system (3) with coe�cients � = (�1; : : : ; �m) isnXj=1� mXi=1 �iaij�xj = � mXi=1 �ibi� (4)(4) is the same as (�A)x = (�b). (4) becomes the fundamental inconsistent equation(1) if mXi=1 �iaij = 0; j = 1 to nmXi=1 �ibi = 1 (5)and in this case, (3) is clearly infeasible. The system of linear equations (3) is saidto be inconsistent i� the fundamental inconsistent equation (1) can be obtained asa linear combination of the equations in (3), that is, i� there exists � = (�1; : : : ; �m)satisfying (5). Clearly an inconsistent system of equations is infeasible. The converseof this statement is also true. So a system of linear equations is infeasible i� it isinconsistent. This is implied by the following theorem of alternatives for systems oflinear equations.Theorem 1 Let A = (aij), b = (bi) be given matrices of orders m � n and m � 1.Let x = (x1; : : : ; xn)T and � = (�1; : : : ; �m). Exactly one of the two following systems(I) and (II) has a solution and the other has no solution.(I)Ax = b (II)�A = 0�b = 1Proof. If (I) has a solution x and (II) has a solution �, then Ax = b, and so �Ax = �b,but (�A)x = 0, �b = 1, so this is impossible. So it is impossible for both (I) and (II)to have solutions.Put (I) in detached coe�cient tabular form and introduce the unit matrix of orderm on the left hand side of this tableau. The tableau at this stage isxI A b



1. Theorems of Alternatives for Systems of Linear Constraints 509Perform Gauss-Jordan pivot steps in this tableau to put A into row echelon normalform. For this, perform Gauss-Jordan pivot steps in rows 1 to m, in that order.Consider the step in which the rth row is the pivot row. Let the entries in the currenttableau in the rth row at this stage be�r1 : : : �rm ar1 : : : arn brLet �r. = (�r1; : : : ; �rm). Then, (ar1; : : : ; arn) = �r.A and br = �r.b. If (ar1; : : : ; arn)= 0 and br = 0, this row at this stage represents a redundant constraint, erase it fromthe tableau and continue. If (ar1; : : : ; arn) = 0 and br 6= 0, de�ne � = �r.=br. Then wehave �A = 0, �b = 1, so � is a feasible solution of system (II) and (I) has no feasiblesolution, terminate. If (ar1; : : : ; arn) 6= 0, select a j such that arj 6= 0, and perform apivot step with row r as the pivot row and column j as the pivot column, make xj thebasic variable in the rth row, and continue. If the conclusion that (I) is infeasible isnot made at any stage in this process, make the basic variable in each row equal to the�nal updated right hand side constant in that row, and set all the nonbasic variablesequal to zero; this is a solution for system (I). Since (II) cannot have a solution when(I) does, (II) has no solution in this case.Example 1Let A = 8>>>>>: 1 �2 2 �1 1�1 0 4 �7 70 �2 6 �8 89>>>>>; ; b = 8>>>>>:� 81669>>>>>; :So, system (I) in Theorem 1 corresponding to this data isx1 x2 x3 x4 x5 b1 �2 2 �1 1 � 8�1 0 4 �7 7 160 �2 6 �8 8 6We introduce the unit matrix of order 3 on the left hand side and apply the Gauss-Jordan method on the resulting tableau. This leads to the following work. Pivotelements are inside a box.



510 Appendix 1x1 x2 x3 x4 x51 0 0 1 �2 2 �1 1 � 80 1 0 �1 0 4 �7 7 160 0 1 0 �2 6 �8 8 61 0 0 1 �2 2 �1 1 � 81 1 0 0 �2 6 �8 8 80 0 1 0 �2 6 �8 8 60 �1 0 1 0 �4 7 �7 �16�12 �12 0 0 1 �3 4 �4 � 4�1 �1 1 0 0 0 0 0 � 2From the last row in the last tableau, we conclude that this system is inconsistent.De�ning � = (�1;�1; 1)=(�2) = (1=2; 1=2;�1=2), we verify that � is a solution forsystem (II) in Theorem 1 with data given above.Now consider a system of linear inequalities. The fundamental inconsistentinequality is 0 >= 1 (6)Consider the following system of inequalities.x1 + x2 + x3 >= 2�x1 � x2 � x3 >= �1: (7)Adding the two inequalities in (7) yields the fundamental inconsistent inequality (6),this clearly implies that no feasible solution exists for (7).Given the system of linear inequalitiesnXj=1 aijxj >= bi; i = 1 to m (8)a valid linear combination of (8) is a linear combination of the constraints in (8)with nonnegative coe�cients, that isnXj=1� mXi=1 �iaij�xj >= mXi=1 �ibi (9)



1. Theorems of Alternatives for Systems of Linear Constraints 511where � = (�1; : : : ; �m) >= 0. (9) is the fundamental inconsistent equation (6) i�nXj=1 �iaij = 0; j = 1 to mmXi=1 �ibi = 1 (10)and if (10) has a solution � >= 0, (8) is clearly infeasible. The system of linear inequal-ities (8) is said to be inconsistent i� the fundamental inconsistent inequality (6) canbe obtained as a valid linear combination of it. We will prove below, that a system oflinear inequalities is infeasible i� it is inconsistent. In fact, given any system of linearconstraints (consisting of equations and/or inequalities) we will prove that it has nofeasible solution i� the fundamental inconsistent inequality (6) can be obtained as avalid linear combination of it. This leads to a theorem of alternatives for that system.These theorems of alternatives can be proven in several ways. One way is by usingthe duality theorem of linear programming (see [2.26]). Another way is to prove themdirectly using a lemma proved by A. W. Tucker. We �rst discuss this Tucker's lemma[see A 10].Theorem 2 (Tucker's Lemma). If A is a given m� n real matrix, the systemsAx >= 0 (11)�A = 0; � >= 0 (12)where x = (x1; : : : ; xn)T and � = (�1; : : : ; �m), have feasible solutions x, � respectively,satisfying (�)T +Ax > 0: (13)Proof. We will �rst prove that there exist feasible solutions x1, �1 = (�11; : : : ; �1m) to(11), (12) respectively, satisfying A1.x1 + �11 > 0: (14)The proof is by induction on m, the number of rows in the matrix A. If m = 1 let�1 = (�11) = (1); x1 = 0; if A1. = 0�1 = 0; x1 = (A1.)T ; if A1. 6= 0and verify that these solutions satisfy (14). So the theorem is true if m = 1. We nowset up an induction hypothesis.Induction Hypothesis. If D is any real matrix of order (m � 1) � n, there existvectors x = (xj) 2 Rn, u = (u1; : : : ; um�1) satisfying: Dx >= 0; uD = 0, u >= 0;u1 +D1.x > 0.



512 Appendix 1Under the induction hypothesis we will now prove that this result also holds forthe matrix A of order m�n. Let A0 be the (m�1)�n matrix obtained by deleting thelast row Am. from A. Applying the induction hypothesis on A0, we know that thereexist x0 2 Rn, u0 = (u01; : : : ; u0m�1) satisfyingA0x0 >= 0; u0A0 = 0; u0 >= 0; u01 + A1.x0 > 0: (15)If Am.x0 >= 0, de�ne x1 = x0, �1 = (u0; 0), and verify that x1, �1 are respectivelyfeasible to (11), (12) and satisfy (14), by (15). On the other hand, suppose Am.x0 < 0.We now attempt to �nd a vector ~x 2 Rn and real number � such thatx1 = ~x+ �x0 and vector �1together satisfy (14). We have to determine ~x, �, �1 so that this will be true. For thiswe require Am.x1 = Am.~x+ �Am.x0 >= 0 that is� <= (Am.~x)=(�Am.x0):So it su�ces if we de�ne � = (Am.~x)=(�Am.x0). We still have to determine ~x and �1appropriately. The vector x1 should also satisfy for i = 1 to m� 1Ai.x1 = Ai.~x+ �Ai.x0 = (Ai. + �iAm.)~x >= 0where �i = (Ai.x0)=(�Am.x0). Now de�ne Bi. = Ai. + �iAm., for i = 1 to m � 1 andlet B be the (m� 1)� n matrix whose rows are Bi., i = 1 to m� 1. By applying theinduction hypothesis on B, we know that there exists x00 2 Rn, u00 = (u001 ; : : : ; u00m�1)satisfying Bx00 >= 0; u00B = 0; u00 >= 0; u001 +B1.x00 > 0: (16)We take this vector x00 to be the ~x we are looking for, and therefore de�nex1 = x00 � x0(Am.x00)=(Am.x0)�1 = �u00; mXi=1 �iu00i �:Using (15), (16) and the fact that Am.x0 < 0 in this case, verify that x1, �1 are respec-tively feasible to (11) and (12) and satisfy (14). So under the induction hypothesis,the result in the induction hypothesis also holds for the matrix A of order m�n. Theresult in the induction hypothesis has already been veri�ed to be true for matrices with1 row only. So, by induction, we conclude that there exist feasible solutions x1, �1 to(11), (12) respectively, satisfying (14).For any i = 1 to m, the above argument can be used to show that there existfeasible solutions xi, �i = (�i1; : : : ; �im) to (11) and (12) respectively satisfying�ii + Ai.xi > 0: (17)De�ne x =Pmi=1 xi, � = Pmi=1 �i, and verify that x, � together satisfy (11) and (12)and (13).



1. Theorems of Alternatives for Systems of Linear Constraints 513Corollary 1. Let A, D be matrices of orders m1 � n and m2 � n respectively withm1 >= 1. Then there exist x = (x1; : : : ; xn)T , � = (�1; : : : ; �m1): � = (�1; : : : ; �m2)satisfying (18)Ax >= 0Dx = 0 (19)�A+ �D = 0� >= 0 (20)�T + Ax > 0 :Proof. Applying Tucker's lemma to the systems(21)Ax >= 0Dx >= 0�Dx >= 0
(22)�A+ 
D � �D = 0�; 
; � >= 0we know that there exist x, �, 
, � feasible to them, satisfying �T + Ax > 0. Verifythat x, �, � = 
 � � satisfy (18), (19) and (20).We will now discuss some of the most useful theorems of alternatives for linearsystems of constraints.Theorem 3 (Farkas' Theorem). Let A, b be given matrices of orders m�n and m�1respectively. Let x = (x1; : : : ; xn)T , � = (�1; : : : ; �m). Exactly one of the followingtwo systems (I), (II) is feasible. (I)Ax = bx >= 0 (II)�A <= 0�b > 0:Proof. Suppose both systems are feasible. Let x be feasible to (I) and � be feasibleto (II). Then (�A)x <= 0 since �A <= 0 and x >= 0. Also �(Ax) = �b > 0. So there is acontradiction. So it is impossible for both systems (I) and (II) to be feasible.Suppose (II) is infeasible. Let y = �T . So this implies that in every solution of8>: bT�AT 9>; y >= 0 (23)the �rst constraint always holds as an equation. By Tucker's lemma (Theorem 2) thereexists a y feasible to (23) and (�; �1; : : : ; �n) >= 0 feasible to(�; �1; : : : ; �n)8>: bT�AT 9>; = 0 (24)which together satisfy bT y+� > 0. But since y is feasible to (23) we must have bT y = 0as discussed above (since (II) is infeasible) and so � > 0. De�ne xj = �j=� for j = 1to n and let x = (x1; : : : ; xn)T . From (24) we verify that x is feasible to (I). So if (II)is infeasible, (I) is feasible. Thus exactly one of the two systems (I), (II) is feasible.



514 Appendix 1Note 1. Given A, b, the feasibility of system (I) in Farkas' theorem can be deter-mined using Phase I of the Simplex Method for linear programming problems. If (I) isfeasible, Phase I terminates with a feasible solution of (I), in this case system (II) hasno feasible solution. If Phase I terminates with the conclusion that (I) is infeasible, thePhase I dual solution at termination provides a vector � which is feasible to system(II).Note 2. Theorem 3, Farkas' theorem, is often called Farkas' lemma in the literature.An Application of Farkas' Theorem to DeriveOptimality Conditions for LPTo illustrate an application of Farkas' theorem, we will now show how to derive thenecessary optimality conditions for a linear program using it. Consider the LPminimize f(x) = cxsubject to Ax >= b (25)where A is a matrix of orderm�n. The constraints in (25) include all the conditions inthe problem, including any bound restrictions, lower or upper, on individual variables.If there are any equality constraints in the problem, each of them can be representedby the corresponding pair of opposing inequality constraints and expressed in the formgiven in (25) (for example, the equality constraint x1 + x2 � x3 = 1 is equivalent tothe pair of inequality constraints x1 + x2 � x3 >= 1, �x1 � x2 + x3 >= �1). Thus everylinear program can be expressed in this form. We now state the necessary optimalityconditions for a feasible solution x to be optimal to this LP, and prove it using Farkas'theorem.Theorem 4. If x is a feasible solution for (25), and x is optimal to (25), there mustexist a vector � = (�1; : : : ;�m) which together with x satis�esc� �A = 0� >= 0�i(Ai.x� bi) = 0; i = 1 to m: (26)Proof. Consider the case c = 0 �rst. In this case the objective value is a constant,zero, and hence every feasible solution of (25) is optimal to it. It can be veri�ed that� = 0 satis�es (26) together with any feasible solution x for (25).Now consider the case c 6= 0. We claim that the fact that x is optimal to (25)implies that Ax 6> b in this case. To prove this claim, suppose Ax > b. For any y 2 Rn,A(x+ �y) = Ax+ �Ay >= b as long as � is su�ciently small, since Ax > b.Take y = �cT . Then, for � > 0, c(x+ �y) < cx and x+ �y is feasible to (25) aslong as � is positive and su�ciently small, contradicting the optimality of x to (25).So, if x is optimal to (25) in this case (c 6= 0) at least one of the constraints in (25)must hold as an equation at x.



1. Theorems of Alternatives for Systems of Linear Constraints 515Rearrange the rows of A, and let A1 be the matrix of order m1 � n consisting ofall the rows in A corresponding to constraints in (25) which hold as equations in (25)when x = x, and let A2, of order m2�n, be the matrix consisting of all the other rowsof A.By the above argument A1 is nonempty, that is, m1 >= 1. Let b1, b2 be thecorresponding partition of b. SoA = 8>:A1A29>; ; b = 8>: b1b29>; (27)and A1x = b1A2x > b2: (28)We now show that if x is optimal to (25), the systemA1y >= 0cy < 0 (29)cannot have a solution y. Suppose not. Let y be a solution for (29). Then for � > 0,A1(x + �y) = A1x + �A1y >= b1; and A2(x + �y) = A2x + �A2y >= b2 as long as� is su�ciently small, since A2x > b2. So when � is positive but su�ciently small,x+ �y is feasible to (25) and since c(x+ �y) = cx+ �cy < cx, since cy < 0, we havea contradiction to the optimality of x for (25).So, (29) has no solution y. By taking transposes, we can put (29) in the form ofsystem (II) under Theorem 3 (Farkas' theorem). Writing the corresponding system (I)and taking transposes again, we conclude that since (29) has no solution, there existsa row vector �1 satisfying �1A1 = c�1 >= 0 (30)De�ne �2 = 0 and let � = (�1;�2). From the fact that A1, A2 is a partition of A asin (27), and using (30), (28), we verify that � = (�1;�2) satis�es (26) together withx.Example 2Consider the LPminimize f(x) = �3x1+ x2+3x3 +5x5subject to x1+ x2� x3+2x4 � x5 >= 5�2x1 +2x3� x4 +3x5 >= �8x1 >= 6�3x2 +3x4 >= �55x3� x4 +7x5 >= 7:Let x = (6; 0;�1; 0; 2)T . Verify that x satis�es constraints 1,2 and 3 in the problem asequations and the remaining as strict inequalities. We have



516 Appendix 1A1 = 8>>>>>: 1 1 �1 2 �1�2 0 2 �1 31 0 0 0 09>>>>>; ;b1 = 8>>>>>: 5�869>>>>>;A2 = 8>: 0 �3 0 3 00 0 5 �1 79>; ;b2 = 8>:�579>;c = (�3; 1; 3; 0; 5); f(x) = cxand A1x = b1, A2x > b2. If we take �1 = (1; 2; 0) then �1A1 = c, �1 >= 0. Let�2 = (0; 0), and � = (�1;�2) = (1; 2; 0; 0; 0). These facts imply that �, x togethersatisfy the necessary optimality conditions (26) for this LP.We leave it to the reader to verify that if x is feasible to (25), and there exists avector � such that x, � together satisfy (26), then x is in fact optimal to (25), from �rstprinciples. Thus the conditions (26) and feasibility are together necessary and su�cientoptimality conditions for the LP (25). It can also be veri�ed that any � satisfying (26)is an optimum dual solution associated with the LP (25); and that (26) are in fact thedual feasibility and complementary slackness optimality conditions for the LP (25).See [2.26, A10]. Thus Farkas' theorem leads directly to the optimality conditions forthe LP (25). Later on, in Appendix 4, we will see that Theorems of alternatives likeFarkas' theorem and others discussed below are very useful for deriving optimalityconditions in nonlinear programming too. We will now discuss some more theorems ofalternatives.Some Other Theorems of AlternativesTheorem 5 (Motzkin's Theorem of the Alternatives). Let m >= 1, and let A, B, C begiven matrices of ordersm�n,m1�n,m2�n. Let x = (x1; : : : ; xn)T , � = (�1; : : : ; �m),� = (�1; : : : ; �m1), 
 = (
1; : : : ; 
m2). Then exactly one of the following two systems(I), (II) is feasible. (I)Ax > 0Bx >= 0Cx = 0
(II)�A+ �B + 
C = 0� � 0; � >= 0Proof. As in the proof of Theorem 3, it can be veri�ed that if both (I), (II) arefeasible, there is a contradiction. Suppose system (I) is infeasible. This implies that



1. Theorems of Alternatives for Systems of Linear Constraints 517every feasible solution of Ax >= 0Bx >= 0Cx = 0 (31)satis�es Ai.x = 0 for at least one i = 1 to m. By Corollary 1, there exists x feasible to(31) and �, �, 
 feasible to �A+ �B + 
C = 0� >= 0; � >= 0 (32)satisfying (�)T + Ax > 0. But since x is feasible to (31), Ai.x = 0 for at least one ias discussed above. This implies that for that i, �i > 0, that is, � � 0. So (�; �; 
)satis�es (II). So if (I) is infeasible, (II) is feasible. Thus exactly one of the two systems(I), (II) is feasible.Theorem 6 (Gordan's Theorem of the Alternatives). Give a matrix A of orderm�n,exactly one of the following systems (I) and (II) is feasible.(I)Ax > 0 (II)�A = 0� � 0Proof. Follows from Theorem 5 by selecting B, C = 0 there.Theorem 7 (Tucker's Theorem of the Alternatives). Let m >= 1, and let A, B, C begiven matrices of orders m � n, m1 � n, m2 � n respectively. Let x = (x1; : : : ; xn)T ,� = (�1; : : : ; �m), � = (�1; : : : ; �m1), 
 = (
1; : : : ; 
m2). Exactly one of the followingsystems (I), (II) is feasible. (I)Ax � 0Bx >= 0Cx = 0
(II)�A+ �B + 
C = 0� > 0; � >= 0Proof. As in the proof of Theorem 3, it can be veri�ed that if both (I), (II) are feasible,there is a contradiction. Suppose that (I) is infeasible. This implies that every feasiblesolution of Ax >= 0Bx >= 0Cx = 0 (33)



518 Appendix 1must satisfy Ax = 0. By Corollary 1, there exists x feasible to (33) and �, �, 
 feasibleto �A+ �B + 
C = 0� >= 0; � >= 0 (34)satisfying (�)T +Ax > 0. But since x is feasible to (33), Ax = 0 as discussed above; so(�)T > 0. So (�; �; 
) satis�es (II). So if (I) is infeasible, (II) is feasible. Thus exactlyone of the two systems (I), (II) is feasible.Theorem 8 (Gale's Theorem of Alternatives). Let A, b be given matrices of ordersm � n, m � 1 respectively. Let x = (x1; : : : ; xn)T , � = (�1; : : : ; �m). Exactly one ofthe following systems (I), (II) is feasible.(I)Ax >= b (II)�A = 0�b = 1� >= 0Proof. System (I) is equivalent to(A �b ) 8>: xxn+19>; >= 0d8>: xxn+19>; > 0 (35)where d = (0; 0; : : : ; 0; 1) 2 Rn+1. (I) is equivalent to (35) in the sense that if a solutionof one of these systems is given, then a solution of the other system in the pair can beconstructed from it. For example if x is a feasible solution of (I), then (x; xn+1 = 1) isa feasible solution of (35). Conversely, if (x̂; x̂n+1) is a feasible solution of (35), thenx̂n+1 > 0 and (1=x̂n+1)x̂ is a feasible solution of (I).This theorem follows from Theorem 5 applied to (35).For a complete discussion of several other Theorems of alternatives for linearsystems and their geometric interpretation, see O. L. Mangasarian's book [A10].Exercises1. Let K be the set of feasible solutions ofnXj=1 aijxj >= bi; i = 1 to m: (36)



2. Convex Sets 519Assume that K 6= ;. Prove that all x 2 K satisfynXj=1 cjxj >= d (37)i�, for some � >= d, the inequality Pnj=1 cjxj >= � is a valid linear combination ofthe constraints in (36), that is, i� there exists � = (�1; : : : ; �m) >= 0, satisfying cj =Pmi=1 �iaij , j = 1 to n, and � =Pmi=1 �ibi.2. Let M be a square matrix of order n. Prove that for each q 2 Rn, the system\Mx + q >= 0, x >= 0" has a solution x 2 Rn i� the system \My > 0, y >= 0" has asolution y. (O. L. Mangasarian [3.42])3. Let M be a square matrix of order n and q 2 Rn. Prove that the following areequivalenti) the system Mx+ q > 0, x >= 0 has a solution x 2 Rn,ii) the system Mx+ q > 0, x > 0 has a solution x 2 Rn,iii) the system MTu <= 0, qTu <= 0, 0 � u has no solution u 2 Rn.(O. L. Mangasarian [3.42])4. Prove that (36) is infeasible i� it is inconsistent (that is, the fundamental inconsis-tent inequality (6) can be obtained as a valid linear combination of it) as a corollaryof the result in Exercise 1.5. Let A be an m � n matrix, and suppose the system: Ax = b, has at least onesolution; and the equation cx = d holds at all solutions of the system Ax = b. Thenprove that the equation cx = d can be obtained as a linear combination of equationsfrom the system Ax = b. That is, there exists � = (�1; : : : ; �m), such that c = �A andd = �b.
2. CONVEX SETSA subset K � Rn is said to be convex if x1; x2 2 K implies that �x1 + (1� �)x2 2 Kfor all 0 <= � <= 1. Thus, a subset of Rn is convex i� given any pair of points in it, theentire line segment connecting these two points is in the set. See Figures 1, 2.
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(a) (b)Figure 1 Convex sets. (a) All points inside or on the circle. (b) All pointsinside or on the polygon.

(a) (b) (c)Figure 2 Non-convex sets. (a) All points inside or on the cashew nut. (b)All points on or between two circles. (c) All points on at least one of the twopolygons.2.1 Convex Combinations, Convex HullLet (x1; : : : ; xrg be any �nite set of points in Rn. A convex combination of this set isa point of the form�1x1 + : : :+ �rxr; where �1 + : : :+ �r = 1 and �1; : : : ; �r >= 0:The set of all convex combinations of fx1; : : : ; xrg is known as the convex hull offx1; : : : ; xrg.Given��� � Rn, the convex hull of ��� is the set consisting of all convex combinationsof all �nite sets of points from ���.
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Figure 3 Convex hull of fx1; : : : ; x5g in R2.The following results can be veri�ed to be true:1. K � Rn is convex i� for any �nite number r, given x1; : : : ; xr 2 K, �1x1 + : : :+�rxr 2 K for all �1; : : : ; �r satisfying �1 + : : :+ �r = 1, �1 >= 0; : : : ; �r >= 0.2. The intersection of any family of convex subsets of Rn is convex. The union oftwo convex sets may not be convex.3. The set of feasible solutions of a system of linear constraintsAi.x = bi; i = 1 to m>= bi; i = m+ 1 to m+ pis convex. A convex set like this is known as a convex polyhedron. A boundedconvex polyhedron is called a convex polytope.4. The set of feasible solutions of a homogeneous system of linear inequalities inx 2 Rn, Ax >= 0 (38)is known as a convex polyhedral cone. Given a convex polyhedral cone, thereexists a �nite number of points x1; : : : ; xs such that the cone is fx : x = �1x1 +: : : + �sxs; �1 >= 0; : : : ; �s >= 0g = Posfx1; : : : ; xsg. The polyhedral cone whichis the set of feasible solutions of (38) is said to be a simplicial cone if A is anonsingular square matrix. Every simplicial cone of dimension n is of the formPosfB.1; : : : ; B.ng where fB.1; : : : ; B.ng is a basis for Rn.5. Given two convex subsets ofRn,K1,K2, their sum, denoted byK1+K2 = fx+y :x 2 K1; y 2 K2g is also convex.



522 Appendix 2Separating Hyperplane TheoremsGiven two nonempty subsets K1, K2 of Rn, the hyperplane H = fx : cx = �g is saidto separate K1 and K2 if cx � � has the same sign for all x 2 K1, say >= 0, and theopposite sign for all x 2 K2, that is, ifcx >= � for all x 2 K1<= � for all x 2 K2:Here we will prove that if two convex subsets ofRn are disjoint, there exists a separatinghyperplane for them. See Figures 4, 5.
H

K2

K1

Figure 4 The hyperplane H separates the two disjoint convex sets K1 andK2.
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Figure 5 Even though the two cashew nuts (both nonconvex) are disjoint,they cannot be separated by a hyperplane.Theorem 9. Let K be a nonempty closed convex subset of Rn and 0 62 K. Thenthere exists a hyperplane containing the origin separating it from K.Proof. Take any point x̂ 2 K, and let E = fx : kxk <= kx̂kg. Since 0 62 K, x̂ 6= 0, andhence E is a nonempty ball. Let ��� = E\K. ��� is a bounded closed convex subset ofRn,not containing the origin. The problem: minimize kxk over x 2 ���, has an optimumsolution, since a continuous function attains its minimum on a compact set. We willshow that this problem has a unique optimum solution. Suppose not. Let x1; x2 2 ���,x1 6= x2, minimize kxk over x 2 ���. Let x3 = (x1 + x2)=2. By Cauchy-Schwartzinequality j(x1)Tx2j <= kx1k � kx2k with equality holding i� x1 = �x2 for some realnumber �. So kx3k2 = (kx1k2+kx2k2+2j(x1)Tx2j)=4 <= (kx1k2+kx2k2+2kx1k�kx2k)=4by Cauchy-Schwartz inequality. Let kx1k = 
. So kx2k = 
 also, since both x1, x2minimize kxk over x 2 ���. So, from the above, we have kx3k2 <= 
2. Since x3 2 ���and 
2 is the minimum of kxk2 over x 2 ���, kx3k2 <= 
2 implies that kx3k2 = 
2. ByCauchy-Schwartz inequality, this equality holds i� x1 = �x2 for some scalar �. Butsince kx1k = kx2k, we must have � = +1 or �1. If � = �1, x3 = 0, and this contradictsthe fact that 0 62 ���. So � = +1, that is, x1 = x2. So the problem of minimizing kxkover x 2 ���, has a unique optimum solution, say x. We will now prove that(x� x)Tx >= 0 for all x 2 K: (39)xminimizes kxk over x 2 ���, and from the de�nition of ���, it is clear that x also minimizeskxk over x 2 K. Let x 2 K. By convexity of K, x+ �(x� x) 2 K for all 0 <= � <= 1.So kx+ �(x� x)k2 >= kxk2 for all 0 <= � <= 1. That is, �2kx� xk2 + 2�(x� x)Tx >= 0for all 0 <= � <= 1. So for 0 < � <= 1, we have �kx� xk2 + 2(x� x)Tx >= 0. Making �approach zero through positive values, this implies (39).



524 Appendix 2Conversely, if x 2 K satis�es (39), then for any x 2 K, kxk2 = k(x� x) + xk2 =kx � xk2 + kxk2 + 2(x � x)Tx >= kxk2 (by (39)), and this implies that x minimizeskxk over x 2 K. Thus (39) is a necessary and su�cient optimality condition for theproblem of minimizing kxk over x 2 K.Since 0 62 K, x 6= 0. From (39) we have (x)Tx >= kxk2 > 0 for all x 2 K. So thehyperplane fx : (x)Tx = 0g through the origin separates K from 0.Theorem 10. Let K be a nonempty convex subset of Rn, b 62 K. Then K can beseparated from b by a hyperplane.Proof. IfK is a closed convex subset, by translating the origin to b and using Theorem9 we conclude that K and b can be separated by a hyperplane.If K is not closed, let K be the closure of K. If b 62 K, then again by the previousresult b and K can be separated by a hyperplane, which also separates b and K.So assume that b 2 K. Since b 2 K but 62 K, b must be a boundary point of K.So every open neighborhood of b contains a point not in K. So we can get a sequenceof points fbr : r = 1 to 1g such that br 62 K for all r, and br converges to b as r tendsto 1. Since br 62 K, by the previous result, there exists cr such that cr(x � br) >= 0for all x 2 K, with kcrk = 1. The sequence of row vectors fcr : r = 1; : : :g all lying onthe unit sphere in Rn (which is a closed bounded set) must have a limit point. Let cbe a limit point of fcr : r = 1; 2; : : :g. So kck = 1. Let S be a monotonic increasingsequence of positive integers such that cr converges to c as r tends to1 through r 2 S.But cr(x � br) >= 0 for all x 2 K. Taking the limit in this inequality, as r tends to1 through r 2 S we conclude that c(x � b) >= 0 for all x 2 K. So the hyperplanefx : cx = cbg separates K from b.Corollary 2. Let K be a convex subset of Rn, and let b be a boundary point ofK. Then there exists a row vector c 6= 0, c 2 Rn such that cx >= cb for all x 2 K.Proof. Follows from the arguments in the proof of Theorem 10.The hyperplane fx : cx = cbg in Corollary 2 is known as a supporting hyper-plane for the convex set K at its boundary point b.Theorem 11. If K1, K2 are two mutually disjoint convex subsets of Rn, thereexists a hyperplane separating K1 from K2.Proof. Let ��� = K1 �K2 = fx� y : x 2 K1; y 2 K2g. Since K1, K2 are convex, ��� isa convex subset of Rn. Since K1 \K2 = ;, 0 62 ���. So by Theorem 10, there exists arow vector c 6= 0, c 2 Rn, satisfyingcz >= 0 for all z 2 ���: (40)Let � = In�mum fcx : x 2 K1g, � = Supremum fcx : x 2 K2g. By (40), we must



2. Convex Sets 525have � >= �. So if 
 = (�+ �)=2, we havecx >= 
 for all x 2 K1<= 
 for all x 2 K2:So x : fcx = 
g is a hyperplane that separates K1 from K2.The theorems of alternatives discussed in Appendix 1, can be interpreted as sep-arating hyperlane theorems about separating a point from a convex polyhedral conenot containing the point.Exercises6. Let K be a closed convex subset of Rn and x 2 Rn and let y be the nearest point(in terms of the usual Euclidean distance) in K to x. Prove that (x� y)T (y � z) >= 0for all z 2 K. Also prove that ky � zk <= kx� zk for all z 2 K.7. Given sets ���, ��� de�ne ���� = f�x : x 2 ���g and ��� +��� = fx+ y : x 2 ���; y 2 ���g. Is��� +��� = 2���? Also, when ��� = f(x1; x2)T : (x1 � 1)2 + (x2 � 1)2 <= 1g, ��� = f(x1; x2)T :(x1 + 4)2 + (x2 + 4)2 <= 4g, �nd ��� +���, 2���, ��� +��� and draw a �gure in R2 illustratingeach of these sets.8. Prove that a convex cone in Rn is either equal to Rn or is contained in a half-spacegenerated by a hyperplane through the origin.9. Let ���1 = fx1; : : : ; xrg � Rn. If y1; y2 2 Rn, y1 6= y2 are such thaty1 2 convex hull of fy2g [���1y2 2 convex hull of fy1g [���1prove that both y1 and y2 must be in the convex hull of ���1. Using this and an inductionargument, prove that if fy1; : : : ; ymg is a set of distinct points in Rn and for each j = 1to m yj 2 convex hull of ���1 [ fy1; : : : ; yj�1; yj+1; : : : ; ymgthen each yj 2 convex hull of ���1.



526 Appendix 2On Computing a Separating HyperplaneGiven a nonempty convex subset K � Rn, and a point b 2 Rn, b 62 K, Theorem 10guarantees that there exists a hyperplane H = fx : cx = �; c 6= 0g which separates bfrom K. It is a fundamental result, in mathematics such results are called existencetheorems. This result can be proved in many di�erent ways, and most books onconvexity or optimization would have a proof for it. However, no other book seems todiscuss how such a separating hyperplane can be computed, given b and K in someform (this essentially boils down to determining the vector c in the de�nition of theseparating hyperplane H), or how di�cult the problem of computing it may be. Forthis reason, the following is very important. In preparing this, I bene�tted a lot fromdiscussions with R. Chandrasekaran.However elegant the proof may be, an existence theorem cannot be put to practicaluse unless an e�cient algorithm is known for computing the thing whose existence thetheorem establishes. In order to use Theorem 10 in practical applications, we should beable to compute the separating hyperplaneH given b andK. Procedures to be used forconstructing an algorithm to compute H depend very critically on the form in whichthe set K is made available to us. In practice, K may be speci�ed either as the set offeasible solutions of a given system of constraints, or as the set of points satisfying awell speci�ed set of properties, or as the convex hull of a set of points satisfying certainspeci�ed properties or constraints or those that can be obtained by a well de�nedconstructive procedure. The di�culty of computing a separating hyperplane dependson the form in which K is speci�ed.K Represented by a System of Linear InequalitiesConsider the case, K = fx : Ai.x >= di; i = 1 to mg, where Ai., di are given for alli = 1 to m. If b 62 K, there must exist an i between 1 to m satisfying Ai.b < di. Findsuch an i, suppose it is r. Then the hyperplane fx : Ar.x = drg separates K from b inthis case.K Represented by a System of Linear Equations and InequalitiesConsider the case, K = fx : Ai.x = di; i = 1 to m, and Ai.x >= di, i = m+1 to m+ pgwhere Ai., di are given for all i = 1 to m+ p. Suppose b 62 K. If one of the inequalityconstraints Ai.x >= di, i = m + 1 to m + p, is violated by b, a hyperplane separatingK from b, can be obtained from it as discussed above. If b satis�es all the inequalityconstraints in the de�nition of K, it must violate one of the equality constraints. Inthis case, �nd an i, 1 <= i <= m, satisfying Ai.b 6= di, suppose it is r, then the hyperplanefx : Ar.x = drg separates K from b.



2. Convex Sets 527K Represented as a Nonnegative Hull of a Speci�ed Set of PointsConsider the case, K = nonnegative hull of fA.j : j = 1 to tg � Rn, t �nite. Let Abe the n � t matrix consisting of column vectors A.j , j = 1 to t. Then K = Pos(A),a convex polyhedral cone, expressed as the nonnegative hull of a given �nite set ofpoints from Rn. In this special case, the separating hyperplane theorem becomesexactly Farkas' theorem (Theorem 3). See Section 4.6.7 of [2.26] or [1.28]. Sinceb 62 Pos(A), system (I) of Farkas' theorem, Theorem 3, has no feasible solution, andhence system (II) has a solution �. Then the hyperplane fx : �x = 0g separates b fromPos(A). The solution � for system (II) can be computed e�ciently using Phase I ofthe simplex method, as discussed in Note 1 of Appendix 1. Given any point b 2 Rn,this provides an e�cient method to check whether b 2 Pos(A) (which happens whensystem (I) of Farkas' theorem, Theorem 3, with this data, has a feasible solution); andif not, to compute a hyperplane separating b from Pos(A), as long as the number ofpoints in the set fA.j : j = 1 to tg, t is not too large. If t is very large, the methoddiscussed here for computing a separating hyperplane, may not be practically useful,this is discussed below using some actual examples.K Represented as the Convex Hull of a Speci�ed Set of PointsConsider the case where K is speci�ed as the convex hull of a given set of pointsfA.j : j = 1 to tg � Rn. So, in this case, b 62 K, i� the systemtXj=1A.jxj = btXj=1 xj = 1xj >= 0; j = 1 to thas no feasible solution x = (xj). This system is exactly in the same form as system(I) of Farkas' theorem, Theorem 3, and a separating hyperplane in this case can becomputed using this theorem, as discussed above, as long as t is not too large.K Represented by a System of \<=" InequalitiesInvolving Convex FunctionsNow consider the case whereK is represented as the set of feasible solutions of a systemof inequalities fi(x) <= 0; i = 1 to m



528 Appendix 2where each fi(x) is a di�erentiable convex function de�ned on Rn. See the followingsection, Appendix 3, for de�nitions of convex functions and their properties. In thiscase, b 62 K, i� there exists an i satisfying fi(b) > 0. If b 62 K, �nd such an i, sayr. Then the hyperplane H = fx : fr(b) + rfr(b)(x� b) = 0g separates b from K, byTheorem 15 of Appendix 3 (see Exercise 11 in Appendix 3).K Represented by a System of \<=" InequalitiesInvolving General FunctionsNow consider the case in which the convex set K is represented by a system of con-straints gi(x) <= 0; i = 1 to mwhere the functions gi(x) are not all convex functions. It is possible for the set offeasible solutions of such a system to be convex set. As an example let n = 2, x =(x1; x2)T , and consider the system�x1 �x2+2 <= 0x1 � 1 <= 0x2� 1 <= 0�x41 �x42+2 <= 0:This system has the unique solution x = (1; 1)T , and yet, not all the functions in thesystem are convex functions. As another example, letM be a P -matrix of order n whichis not a PSD matrix, and q 2 Rn. Consider the system in variables z = (z1; : : : ; zn)T�z <= 0�q �Mz <= 0zT (q +Mz) <= 0:This system has the unique solution z (z is the point which leads to the unique solutionof the LCP (q;M)), so the set of feasible solutions of this system is convex, being asingleton set, and yet the constraint function zT (q+Mz) is not convex, since M is notPSD.In general, when the functions gi(x), i = 1 to m are not all convex, even thoughthe setK = fx : gi(x) <= 0; i = 1 to mg may be convex, and b 62 K, there is no e�cientmethod known for computing a hyperplane separating b from K. See Exercise 40.Now we consider some cases in which K is the convex hull of a set of pointsspeci�ed by some properties.K Is the Convex Hull of the Tours of a Traveling Salesman ProblemConsider the famous traveling salesman problem in cities 1; 2; : : : ; n. See [1.28]. In thisproblem, a salesman has to start in some city, say city 1, visit each of the other cities



2. Convex Sets 529exactly once in some order, and in the end return to the starting city, city 1. If hetravels to cities in the order i to i + 1, i = 1 to n � 1 and then from city n to city1, this route can be represented by the order \1; 2; : : : ; n; 1". Such an order is knownas a tour. So, a tour is a circuit spanning all the cities, that leaves each city exactlyonce. From the starting city, city 1, he can go to any of the other (n � 1) cities. Sothere are (n� 1) di�erent ways in which he can pick the city that he travels from thestarting city, city 1. From that city he can travel to any of the remaining (n�2) cities,etc. Thus the total number of possible tours in an n city traveling salesman problemis (n� 1)(n� 2) : : :1 = (n� 1)! Given a tour, de�ne a 0� 1 matrix x = (xij) byxij = n 1 if the salesman goes from city i to city j in the tour0 otherwise.Such a matrix x = (xij) is called the tour assignment corresponding to the tour. Anassignment (of order n) is any 0� 1 square matrix x = (xij) of order n satisfyingnXj=1 xij = 1; i = 1 to nnXi=1 xij = 1; j = 1 to nxij = 0 or 1 for all i; j:Every tour assignment is an assignment, however not all assignments may be tourassignments. For example, if n = 5x1 = 8>>>>>>>>>>>>: 0 0 0 1 00 0 0 0 11 0 0 0 00 1 0 0 00 0 1 0 0
9>>>>>>>>>>>>;is a tour assignment representing the tour 1, 4, 2, 5, 3; 1 covering all the cities 1 to 5.But the assignment x2 = 8>>>>>>>>>>>>: 0 1 0 0 00 0 1 0 01 0 0 0 00 0 0 0 10 0 0 1 0
9>>>>>>>>>>>>;is not a tour assignment, since it consists of two subtours 1, 2, 3; 1 and 4, 5; 4 eachspanning only a proper subset of the original set of cities.Let KT be the convex hull of all the (n � 1)! tour assignments of order n. KTis well de�ned, it is the convex hull of a �nite set of points in Rn�n. However, if nis large (even n >= 10), the number of tour assignments, (n� 1)! is very large. KT isof course a convex polytope. It can be represented as the set of feasible solutions of asystem of linear constraints, but that system is known to contain a very large number



530 Appendix 2of constraints. Deriving a linear constraint representation of KT remains an unsolvedproblem. In this case, if b = (bij) is a given square matrix of order n satisfying theconditions bii = 0; i = 1 to nnXj=1 bij = 1; i = 1 to nnXi=1 bij = 1; i = 1 to n0 <= bij <= 1; for all i; j = 1 to neven to check whether b 2 KT is a hard problem for which no e�cient algorithm isknown. Ideally, given such a b, we would like an algorithm whicheither determines that b 2 KTor determines that b 62 KT and produces in this case a hyperplane separatingb from KTand for which the computational e�ort in the worst case is bounded above by a poly-nomial in n. No such algorithm is known, and the problem of constructing such analgorithm, or even establishing whether such an algorithm exists, seems to be a veryhard problem. If such an algorithm exists, using it we can construct e�cient algorithmsfor solving the traveling salesman problem, which is the problem of �nding a minimumcost tour assignment that minimizesPni=1Pnj=1 cijxij for given cost matrix c = (cij).K Is the Convex Hull of Feasible Solutionsof an Integer Linear SystemLet A, d be given integer matrices of orders m � n and m � 1 respectively. Considerthe following systems: x = (xj) 2 RnAx = dx >= 0x an integer vectoror the system Ax = dx >= 00 <= xj <= 1; j = 1 to nxj integer for all j.Let KI denote the convex hull of all feasible solutions of such a system. Again, KI is awell de�ned set, it is the convex hull of integer feasible solutions to a speci�ed systemof linear constraints. Given a point b 2 Rn, ideally we would like an algorithm which



3. Convex, Concave Functions, their Properties 531either determines that b 2 KIor determines that b 62 KI and produces in this case a hyperplane separatingb from KIand for which the computational e�ort in the worst case is bounded above by a poly-nomial in the size of (A; b). No such algorithm is known.K Is the Convex Hull of Extreme Pointsof an Unbounded Convex PolyhedronLet A, d be given integer matrices of orders m � n and m � 1 respectively, withrank (A) = m. Let ��� be the set of feasible solutions of the systemAx = dx >= 0:Suppose it is known that ��� is an unbounded convex polyhedron. ��� has a �nite set ofextreme points, each of these is a BFS of the above system. Let K be the convex hullof all these extreme points ���. Here again K is a well de�ned convex polytope, butit is the convex hull of extreme points of ���, and the number of these extreme pointsmay be very large. See Section 3.7 of [2.26]. In general, given a point b 2 ���, theproblem of determining whether b 2 K, and the problem of determining a separatinghyperplane separating b and K when b 62 K, are very hard problems for which noe�cient algorithms are known (the special case when n = m + 2 or m + 1 are easy,because in this case the dimension of ��� is at most two).SummaryThis discussion clearly illustrates the fact that even though we have proved the ex-istence of separating planes, at the moment algorithms for computing one of theme�ciently are only known when K can be represented in very special forms.
3. CONVEX, CONCAVE FUNCTIONS,THEIR PROPERTIESLet ��� be a convex subset of Rn and let f(x) be a real valued function de�ned on ���.f(x) is said to be a convex function i� for any x1; x2 2 ���, and 0 <= � <= 1, we havef(�x1 + (1� �)x2) <= �f(x1) + (1� �)f(x2): (41)



532 Appendix 3This inequality is called Jensen's inequality after the Danish mathematician who�rst discussed it. The important property of convex functions is that when you jointwo points on the surface of the function by a chord, the function itself lies underneaththe chord on the interval joining these points, see Figure 6.Similarly, if g(x) is a real valued function de�ned on the convex set ��� � Rn, it issaid to be a concave function i� for any x1; x2 2 ��� and 0 <= � <= 1, we haveg(�x1 + (1� �)x2) >= �g(x1) + (1� �)g(x2): (42)
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Figure 6 A convex function de�ned on the real line.
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Figure 7 A concave function de�ned on the real line.Clearly, a function is concave i� its negative is convex. Also, a concave function liesabove the chord on any interval, see Figure 7. Convex and concave functions �gureprominently in optimization. In mathematical programming literature, the problem of



3. Convex, Concave Functions, their Properties 533either minimizing a convex function, or maximizing a concave function, on a convexset, are known as convex programming problems. For a convex programming problem,a local optimum solution is a global optimum solution (see Theorem 12 below) andhence any techniques for �nding a local optimum will lead to a global optimum onthese problems.The function f(x) de�ned above is said to be strictly convex, if (41) holds asa strict inequality for 0 < � < 1 and for all x1; x2 2 ���. Likewise g(x) is said to be astrictly concave function if (42) holds as a strict inequality for 0 < � < 1 and forall x1; x2 2 ���.The following results can be veri�ed to be true.1. A nonnegative combination of convex functions is convex. Likewise a nonnegativecombination of concave functions is concave.2. If f(x) is a convex function de�ned on the convex set ��� � Rn, fx : f(x) <= �g is aconvex set for all real numbers �. Likewise, if g(x) is a concave function de�nedon the convex set ��� � Rn, fx : g(x) >= �g is a convex set for all real numbers �.3. If f1(x); : : : ; fr(x) are all convex functions de�ned on the convex set ��� � Rn, thepointwise supremum function f(x) = maximum ff1(x); : : : ; fr(x)g is convex.4. If g1(x); : : : ; gr(x) are all concave functions de�ned on the convex set ��� � Rn, thepointwise in�mum function g(x) = minimum fg1(x); : : : ; gr(x)g is concave.5. A convex or concave function de�ned on an open convex subset ofRn is continuous(see [A10] for a proof of this).6. Let f(x) be a real valued function de�ned on a convex subset ��� � Rn. In Rn+1,plot the objective value of f(x) along the xn+1-axis. The subset of Rn+1, F =fX = (x1; : : : ; xn; xn+1) : x = (x1; : : : ; xn) 2 ���; xn+1 >= f(x)g is known as theepigraph of the function f(x). It is the set of all points in Rn+1 lying above(along the xn+1-axis) the surface of f(x). See Figure 8 for an illustration of theepigraph of a convex function de�ned on an interval of the real line R1. It can beshown that f(x) is convex i� its epigraph is a convex set, from the de�nitions ofconvexity of a function and of a set. See Figures 8, 9.7. Let g(x) be a real valued function de�ned on a convex subset ��� � Rn. In Rn+1,plot the objective value of f(x) along the xn+1-axis. The subset of Rn+1, G =fX = (x1; : : : ; xn; xn+1) : x = (x1; : : : ; xn) 2 ���; xn+1 <= g(x)g is known as thehypograph of the function g(x). It is the set of all points in Rn+1 lying below(along the xn+1-axis) the surface of g(x). See Figure 10. It can be shown fromthe de�nitions, that g(x) is concave, i� its hypograph is a convex set.
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Figure 8 The epigraph of a convex function de�ned on the interval a <= x1<= b is a convex subset of R2.
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Figure 9 The epigraph of a nonconvex function f(x1) de�ned on the intervala <= x1 <= b, is not a convex subset of R2.
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Figure 10 The hypograph of a concave function de�ned on the interval a <=x1 <= b is a convex subset of R2.Theorem 12. For the problem of minimizing a convex function f(x) on a convexset ��� � Rn, every local minimum is a global minimum.Proof. Let x1 be a local minimum for this problem. Suppose there exists an x2 2 ���such that f(x2) < f(x1). Then, by convexity, for 0 < � < 1,f(x1 + �(x2 � x1)) = f(�x2 + (1� �)x1) <= (1� �)f(x1) + �f(x2) < f(x1): (43)So when � is positive but su�ciently small, the point x1+�(x2�x1) contained in theneighborhood of x1 satis�es (43), contradicting the local minimum property of x1. Sowe cannot have an x2 2 ��� satisfying f(x2) < f(x1), that is, x1 is in fact the globalminimum for f(x) in ���.Theorem 13. Let f be a real valued convex function de�ned on the convex set��� � Rn. The set of optimum solutions for the problem of minimizing f(x) over x 2 ���is a convex set.Proof. Let L denote the set of optimum solutions for the problem: minimize f(x) overx 2 ���. Let x1; x2 2 L. So f(x1) = f(x2) = � = minimum value of f(x) over x 2 ���.Let 0 <= � <= 1. By convexity of f(x), f(�x1+ (1��)x2) <= �f(x1)+ (1��)f(x2) = �



536 Appendix 3and �x1+(1��)x2 2 ���, since ��� is convex. Since � is the minimum value of f(x) overx 2 ���, the above inequality must hold as an equation, that is, f(�x1+(1��)x2) = �,which implies that �x1 + (1� �)x2 2 L also. So L is a convex set.Theorem 14. For the problem of maximizing a concave function g(x) on a convexset ��� � Rn, every local maximum is a global maximum.Proof. Similar to Theorem 12.A real valued function �(x) de�ned on an open set ��� � Rn is said to be di�er-entiable at a point x 2 ��� if the partial derivative vector r�(x) exists, and for eachy 2 Rn, limit ((�(x + �y) � �(x) � �(r�(x))y)=�) as � tends to zero is zero. �(x) issaid to be twice di�erentiable at x if the Hessian matrix H(�(x)) exists and for eachy 2 Rn, limit [(�(x+ �y)� �(x)� �(r�(x))y � (�2=2)yTH(�(x))y]=�2) as � tends tozero is zero.The real valued function �(x) de�ned on an open set ��� � Rn is said to be continu-ously di�erentiable at a point x 2 ��� if it is di�erentiable at x and the partial derivatives@�(x)@xj are all continuous at x. The function �(x) is said to continuously di�erentiable ata point x 2 ��� if it is twice di�erentiable at x and the second order partial derivatives@2�(x)@xi@xj are all continuous at x. The function is said to be di�erentiable, continuouslydi�erentiable, etc., over the set ���, if it satis�es the corresponding property for eachpoint in ���.Theorem 15 (Gradient Support Inequality): Let f(x) be a real valued convexfunction de�ned on an open convex set ��� � Rn. If f(x) is di�erentiable at x 2 ���,f(x)� f(x) >= (rf(x))(x� x) for all x 2 ���: (44)Conversely, if f(x) is a real valued di�erentiable function de�ned on ��� and (44) holdsfor all x; x 2 ���, f(x) is convex.Proof. Suppose f(x) is convex. Let x 2 ���. By convexity of ���, �x + (1 � �)x = x +�(x�x) 2 ��� for all 0 <= � <= 1. Since f(x) is convex we have f(x+�(x�x)) <= �f(x)+(1� �)f(x). So for 0 < � <= 1, we havef(x)� f(x) >= (f(x+ �(x� x))� f(x))=�: (45)By de�nition of di�erentiability, the right hand side of (45) tends to rf(x)(x� x) as� tends to zero through positive values. Since (45) holds for all 0 < � <= 1, this implies(44) as � tends to zero through positive values in (45).Conversely, suppose f(x) is a real valued di�erentiable function de�ned on ��� andsuppose (44) holds for all, x; x 2 ���. Given x1; x2 2 ���, from (44) we have, for 0 < � < 1,f(x1)� f((1� �)x1 + �x2) >= �(rf(1� �)x1 + �x2)(x1 � x2)f(x2)� f((1� �)x1 + �x2) >= �(1� �)(rf((1� �)x1 + �x2))(x1 � x2):



3. Convex, Concave Functions, their Properties 537Multiply the �rst inequality by (1� �) and the second by � and add. This leads to(1� �)f(x1) + �f(x2)� f((1� �)x1 + �x2) >= 0: (46)Since (46) holds for all x1; x2 2 ��� and 0 < � < 1, f(x) is convex.Theorem 16. Let g(x) be a concave function de�ned on an open convex set ��� � Rn.If g(x) is di�erentiable at x 2 ���,g(x) <= g(x) + (rg(x))(x� x); for all x 2 ���: (47)Conversely, if g(x) is a di�erentiable function de�ned on ��� and (47) holds for allx; x 2 ���, g(x) is concave.Proof. Similar to the proof of Theorem 15.Figures 11, 12 provide illustrations of gradient support inequalities for convex andconcave functions.
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Figure 11 f(x) is a di�erentiable convex function. l(x) = f(x) +(rf(x))(x � x), an a�ne function (since x is a given point), is the �rst orderTaylor series approximation for f(x) around x. It underestimates f(x) at eachpoint.
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Figure 12 g(x) is a di�erentiable concave function. l(x) = g(x) + (rg(x)(x � x)) is the �rst order Taylor series approximation for g(x) around x. Itoverestimates g(x) at each point.Theorem 17. Let f(x) be a real valued convex function de�ned on an open convexsubset ��� � Rn. If f(x) is twice di�erentiable at x 2 ���, H(f(x)) is PSD. Conversely,if f(x) is a twice di�erentiable real valued function de�ned on ��� and H(f(x)) is PSDfor all x 2 ���, f(x) is convex.Proof. Let x 2 ��� and y 2 Rn. Suppose f(x) is convex. For � > 0 and su�cientlysmall, by Theorem 15 we have(f(x+ �y)� f(x)� �(rf(x))y)=� >= 0: (48)Taking the limit as � tends to zero through positive values, from (48) we haveyTH(f(x))y >= 0, and since this holds for all y 2 Rn, H(f(x)) is PSD.



3. Convex, Concave Functions, their Properties 539Suppose f(x) is twice di�erentiable on ��� and H(f(x)) is PSD for all x 2 ���. ByTaylor's theorem of calculus we have, for x1; x2 2 ���, f(x2)�f(x1)�(rf(x1))(x2�x1) =(x2 � x1)TH(f(x1 + �(x2 � x1)))(x2 � x1)=2 for some 0 < � < 1. But the latterexpression is >= 0 since H(f(x)) is PSD for all x 2 ���. So f(x2)�f(x1)� (rf(x1))(x2�x1) >= 0 for all x1; x2 2 ���. By Theorem 15, this implies that f(x) is convex.Given a general twice continuously di�erentiable real valued function f(x) de�nedon Rn, it may be hard to check whether it is convex. For some x 2 Rn, if H(f(x)) isPD, we know that in a small convex neighborhood of x, H(f(x)) is PSD, and hencef(x) is locally convex in this neighborhood.Theorem 18. Let g(x) be a real valued concave function de�ned on an open convexsubset ��� � Rn. If g(x) is twice di�erentiable at x 2 ���, H(g(x)) is NSD. Conversely, ifg(x) is a twice di�erentiable real valued function de�ned on ��� and H(g(x)) is NSD forall x 2 ���, g(x) is concave.Proof. Similar to the proof of Theorem 17.Exercises10. Let Xr = (xr1; : : : ; xrn; xrn+1)T r = 1 to m be given points in Rn+1. Let xr = (xr1;: : : ; xrn)T r = 1 to m. It is required to check whether there exists a convex function�(x) de�ned on Rn (with the objective value plotted along the xn+1-axis in Rn+1)satisfying the property �(xr) = xrn+1 for r = 1 to m. Formulate this as a linearprogramming problem.11. Let f(x) be a real valued continuously di�erentiable convex function de�ned onRn. Let � be a real number and K = fx : f(x) <= �g. Given a point x0 62 K,develop an e�cient method for �nding a separating hyperplane separating x0 from K.Generalize this to the case where f(x) = (f1(x); : : : ; fm(x)), each fi(x) being a realvalued continuously di�erentiable function de�ned on Rn, and � 2 Rm.12. Let �(x) be a di�erentiable convex function de�ned over a convex set K � Rn.Let x be a given point in K. If x satis�es the property that it minimizes the linearfunction (r�(x))x over x 2 K, prove that x also minimizes �(x) over x 2 K.Convexity, Concavity of a Vector FunctionLet f(x) be the vector (fi(x)) where each fi(x) is a real valued function de�nedon the convex set ��� � Rn. f(x) is said to be convex or concave on ���, i� each fi(x)has the same property.



540 Appendix 3Subgradients, and Subdi�erential SetsLet f(x) be a real valued convex function de�ned on Rn. As de�ned in Section 2.7.1,the vector d = (d1; : : : ; dn)T is said to be a subgradient of f(x) at a point x0 2 Rn,if f(x) >= f(x0) + dT (x� x0); for all x 2 Rn:The set of all such vectors d satisfying this condition is known as the subdi�erentialset for f(x) at x0, and denoted by the symbol @f(x0).By Theorem 15, if f(x) is di�erentiable at x0, the gradient vector (rf(x0))T 2@f(x0), and in fact it can be shown that in this case @f(x0) = frf(x0)Tg. Also,as mentioned in Section 2.7.1, if f(x) = maxff1(x); : : : ; fr(x)g where each fi(x) is adi�erentiable convex function de�ned on Rn, then for any x 2 Rn,@f(x) = convex hull of frfi(x) : i such that f(x) = fi(x)g:See Section 2.7.1 for �gures illustrating the subgradient property. The de�nition impliesthat if f(x) is convex and d 2 @f(x), then the a�ne function l(x) = f(x) + dT (x� x)is equal to f(x) at x = x, and is an underestimate for f(x) at all points x.So the error f(x)� l(x) = f(x)� (f(x) + dT (x� x)) >= 0 for all x and d 2 @f(x).See Section 2.7.1 for �gures illustrating this property. The a�ne function l(x) de�nedabove is known as a linearization of f(x) at x.If h(x) is a concave function de�ned on Rn, the vector d is said to be a subgradientof h(x) at x if h(x) <= h(x) + dT (x� x) for all x 2 Rnand the set of all subgradients to h(x) at x is denoted by @h(x). With this de�nition,analogous results to those stated above, can be constructed for concave functions.Let g(x) be a real valued function de�ned on Rn which is neither convex norconcave. If g(x) is di�erentiable at a point x 2 Rn, the a�ne function l(x) = g(x) +rg(x)(x � x) is known as the linearization of g(x) at x. However, since g(x) isneither convex nor concave, it is possible for the error g(x)� l(x) to take both positiveand negative values over Rn. See Figure 13.
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Figure 13 The linearization at x, l(x), of a di�erentiable function g(x) whichis neither convex nor concave may be > g(x) at some points x, and < g(x) atother points.For this general function g(x), if it is di�erentiable at x, we de�ne @g(x) = frg(x)g.If g(x) is not di�erentiable at x, we let @f(x) denote the convex hull of all limits ofsequences of the form frg(xr) : fxrg is a sequence converging to x, such that g(x)is di�erentiable at each xr in the sequenceg. In this case, vectors in the set @g(x)are called generalized gradients or subgradients of g(x) at x. See F. H. Clarke [A1].With this de�nition, it can be shown that if g(x) = maxfg1(x); : : : ; gm(x)g, where eachgi(x) is a continuously di�erentiable function, then @g(x) = convex hull of frgi(x) : isuch that g(x) = gi(x)g. If g(x) is convex, the set @g(x) de�ned here equals thesubdi�erential set of g(x) at x as de�ned earlier. Also, it can be shown under fairlygeneral conditions on g(x) (for example, if g(x) is a locally Lipschitz function, thatis, if there exists an � > 0 such that jg(x) � g(y)j <= �kx � yk for all x, y) that thefollowing mean value result holds: there exists an x̂ on the line segment joining x andy and a d̂ 2 @g(x̂), satisfying g(x)� g(y) = d̂T (x� y):



542 Appendix 4This de�nition of subgradients or generalized gradients for general functions is usedin Section 10.7.9 in constructing an algorithm for constrained line minimization. Alsosee N. Z. Shor [A13] for a detailed treatment of various types of generalized gradients,and their applications in subgradient algorithms for nondi�erentiable minimization.
4. OPTIMALITY CONDITIONS FORSMOOTH OPTIMIZATION PROBLEMSHere we brie
y survey the known optimality conditions for NLPs in which the objectiveand constraint functions are continuously di�erentiable.The Principles on Which Optimality Conditions are BasedLet K denote the set of feasible solutions for an optimization problem in which theobjective function �(x) is to be minimized. Let x 2 K be a feasible solution. A feasibledirection at x for K is a direction y satisfying the property that beginning at x, youcan move a positive length along a straight line in the direction y, without leaving K.Necessary optimality conditions for this optimization problem are derived, based ontwo very simple principles. These are the following:1. If x is a local minimum for this optimization problem, then, as you move from xstraight along any feasible direction at x for K, in a small neighborhood of x, theobjective value cannot decrease.2. Take a one dimensional, nonlinear, di�erentiable curve in the feasible region K,passing through x. If x is a local minimum for this optimization problem, then, as youmove from x along this curve, in a small neighborhood of x, the objective value cannotdecrease (in e�ect this says that if x is a local minimum for �(x) in K, then x must bea local minimum for the one dimensional optimization problem of minimizing �(x) onthe curve).Of course 1 is a special case of 2, since a straight line is a di�erentiable curve. Theseprinciples make it possible for us to derive necessary conditions for local minimalityin higher dimensional feasible regions using well known necessary conditions for localminimality in one-dimensional optimization problems.All the necessary optimality conditions are derived using the above principles.Even though the principles are the same, their application leads to optimality condi-tions which depend on the structure of the problem.We will now derive optimality conditions for di�erent types of nonlinear program-ming problems.



4. Optimality Conditions for Smooth Optimization Problems 543Unconstrained MinimizationFirst consider the unconstrained minimization problemminimize �(x)over x 2 Rn: (49)Given x 2 Rn, y 2 Rn, y 6= 0, by di�erentiability of �(x), we know that limit of(�(x+ �y)� �(x) � �(r�(x))y)=� as � tends to zero is zero. So, if (r�(x))y < 0 bychoosing � positive and su�ciently small, we will have �(x + �y) < �(x). Similarly,if (r�(x))y > 0, by choosing � negative with su�ciently small absolute value we willhave again �(x + �y) < �(x). So if x is a local minimum for (49), we must have(r�(x))y = 0 for all y 2 Rn, that is r�(x) = 0 (50)(50) is the �rst order necessary condition for x to be a local minimum for (49).If �(x) is twice continuously di�erential at x, we know that the limit of (�(x+�y)��(x)� �(r�(x))y � (�2=2)yTH(�(x))y)=�2 as � tends to zero is zero, where H(�(x))is the Hessian matrix (the matrix of second order partial derivatives) of �(x) at x. Soif x is such that (50) is satis�ed, and y is such that yTH(�(x))y < 0 then for � 6= 0and su�ciently small, we will have �(x+ �y) < �(x). So, if x is a local minimum for(49) we must have yTH(�(x))y >= 0 for all y 2 Rn, when x satis�es (50), that isH(�(x)) must be PSD: (51)(50) and (51) together are the second order necessary conditions for x to be alocal minimum to (49).We now state a su�cient optimality condition for (49) in the form of a theorem.Theorem 19. Suppose �(x) is twice continuously di�erentiable, and x is a pointsatisfying r�(x) = 0; and H(�(x))is PD (52)then x is a local minimum for (49).Proof. Since H(�(x)) is PD, all its principal subdeterminants are > 0. Since �(x) istwice continuously di�erentiable, all principal subdeterminants of the Hessian matrixH(�(x)) are continuous functions. These facts imply that there exists an " > 0, suchthat if ��� = fx : kx� xk < "g, all principal subdeterminants of H(�(x)) are > 0 for allx 2 ���. Being a Hessian matrix H(�(x)) is also symmetric, by Theorem 1.9 of Section1.3.1, these facts imply that H(�(x)) is PSD for all x 2 ���. By Theorem 17 of Appendix3, this implies that �(x) is convex over x 2 ���. So by Theorem 15 of Appendix 3 (thegradient support inequality)�(x)� �(x) >= (r�(x))(x� x) for all x 2 ���>= 0; since r�(x) = 0 by (52):



544 Appendix 4This proves that x is a local minimum for �(x).Thus a su�cient condition for x to be a local minimum for (49) is (52).Example 3Consider the problemminimize �(x) = 2x21 + x22 + x23 + x1x2 + x2x3 + x3x1 � 9x1 � 9x2 � 8x3over x 2 R3:From the necessary optimality conditions, we know that every local minimum for thisproblem must satisfy @�(x)@x1 = 4x1 + x2 + x3 � 9 = 0@�(x)@x2 = x1 + 2x2 + x3 � 9 = 0@�(x)@x3 = x1 + x2 + 2x3 � 8 = 0:This system of equations has the unique solution x = (1; 3; 2)T . The Hessian matrix isH(�(x)) = 8>>>>>: 4 1 11 2 11 1 29>>>>>; :This matrix is PD. So x satis�es the su�cient conditions for a local minimum. Clearly,here, �(x) is convex and hence x is a global minimum for �(x).Example 4Consider the problemminimize �(x) = 2x21 + x23 + 2x1x2 + 2x1x3 + 4x2x3 + 4x1 � 8x2 + 2x3over x 2 R3:The �rst order necessary conditions for a local minimum are@�(x)@x1 = 4x1 + 2x2 + 2x3 + 4 = 0@�(x)@x2 = 2x1 + 4x3 � 8 = 0@�(x)@x3 = 2x1 + 4x2 + 2x3 + 2 = 0:



4. Optimality Conditions for Smooth Optimization Problems 545This system has the unique solution ~x = (�2;�1; 3)T . The Hessian matrix isH(�(~x)) = 28>>>>>: 2 1 11 0 21 2 19>>>>>;which is not PSD. So ~x violates the second order necessary conditions for a localminimum. So the function �(x) here does not have a local minimum. It can be veri�edthat in fact �(x) is unbounded below on R3.Example 5Let �(x) = �2x21 � x22 + x1x2 � 10x1 + 6x2 and consider the problem of minimizing�(x) over x 2 R2. The �rst order necessary conditions for a local minimum are@�(x)@x1 = �4x1 + x2 � 10 = 0@�(x)@x2 = x1 � 2x2 + 6 = 0which has the unique solution x̂ = (�2; 2)T . The Hessian matrix isH(�(x̂)) = 8>:�4 11 �29>; :Since H(�(x̂)) is not PSD, x̂ violates the second order necessary conditions for beinga local minimum of �(x). So �(x) has no local minimum. In fact, it can be veri�edthat the Hessian matrix is ND, so x̂ satis�es the su�cient condition for being a localmaximum for �(x) (a local maximum for �(x) is a local minimum for ��(x)). Actually,�(x) here is concave and x̂ is a global maximum point for �(x). It can be veri�ed that�(x) is unbounded below on R2.An Important Caution for NLP UsersThese examples point out one important aspect of using nonlinear programming al-gorithms in practical applications. One should not blindly accept any solution of the�rst order necessary optimality conditions as a solution to the problem, if it is a non-convex programming problem (this caution can be ignored if the problem being solvedis a linear or other convex programming problem). An e�ort should be made to checkwhether the solution is at least a local minimum by using second order necessary op-timality conditions, or the su�cient optimality conditions, or at least through a localsearch in the neighborhood of the point.



546 Appendix 4Stationary Point Necessary Optimality Conditionsfor Constrained MinimaConsider the problem minimize �(x)subject to x 2 ��� (53)where ��� is a speci�ed subset of Rn, and �(x) is a real valued continuously di�erentiablefunction de�ned on Rn.Given x 2 ���, y 6= 0, y 2 Rn is said to be a feasible direction for ��� at x ifx + �y 2 ��� for all 0 <= � <= � for some positive �. As an example, if ��� = fx : x =(x1; x2)T ; x1 >= 0; x2 >= 0g and x = (1; 0)T , then fy : y = (y1; y2); y2 >= 0g is the set offeasible directions at x.Using the de�nition of di�erentiability, it follows that if x 2 ��� is a local minimumfor (53), and �(x) is continuously di�erentiable at x, then we must have(r�(x))y >= 0 for all feasible directions y at x to ���. (54)(54) are the �rst order necessary conditions for x to be a local minimum for (53).If �(x) is twice continuously di�erentiable at x 2 ���, and x is a local minimum for (53),we must have(54), and yTH(�(x))y >= 0 for all feasible directions y satisfying (r�(x))y = 0. (55)The conditions (54), (55) become simpli�ed if ��� is a convex set. In this case, a feasibledirection y at x to ��� is y = x� x for any x 2 ���. See Figure 14. So in case ��� is convex,the necessary conditions for x 2 ��� to be a local minimum is that (54), (55) hold for ally = x� x, x 2 ���.

x

Γ
x

Figure 14 If ��� is a convex set, feasible directions at x to ��� are of the formx� x for any x 2 ���, x 6= x.



4. Optimality Conditions for Smooth Optimization Problems 547Example 6Consider the problem minimize �(x)= 3x1x2�x1 � x2subject to x1 >= 1x2 >= 1:The set of feasible solutions, K, is marked in Figure 15.

x1

(2,1)

(1,1)

x2

Figure 15We have r�(x) = (3x2 � 1; 3x1 � 1)H(�(x)) = 8>: 0 33 09>; :Let x = (2; 1)T . The set of feasible directions at x to K is clearly fy : y = (y1; y2)T ;y2 >= 0g. r�(x) = (2; 5). y = (�1; 0)T is a feasible direction to K at x, and yet(r�(x))y = �2 < 0 and hence the necessary condition (54) is violated at x.Let x̂ = (1; 1)T . The set of feasible directions to K at x̂ is clearly fy : y >= 0g.r�(x̂) = (2; 2) and we verify that both the necessary optimality conditions (54) and(55) are satis�ed at x̂. Acutally, x̂ is the global minimum for this problem.The conditions (54), (55) are respectively the �rst and second order stationarypoint necessary optimality conditions for the NLP (53).Variational Inequality ProblemThe stationary point necessary optimality conditions discussed above, lead to a problemcommonly known as the variational inequality problem. In this problem we are given a



548 Appendix 4real vector function f(x) = (f1(x); : : : ; fn(x))T de�ned over Rn, and a subset K � Rn.The variational inequality problem with this data, is to �nd a point x� 2 K satisfying(x� x�)T f(x�) >= 0 for all x 2 K:Suppose K = fx : Ax >= b; x >= 0g where A, b are given matrices of orders m � nand m � 1, the above variational inequality problem is equivalent to the nonlinearcomplementarity problem: �nd z 2 Rn+m satisfyingz >= 0; g(z) >= 0; zT g(z) = 0where z = (x1; : : : ; xn; y1; : : : ; ym)T , y = (y1; : : : ; ym)T andg(z) = 8>: f(x) �AT yAx �b 9>; :Optimality Conditions for Equality Constrained MinimizationConsider the NLP minimize �(x)subject to hi(x) = 0; i = 1 to m (56)where �(x), hi(x) are all real valued continuously di�erentiable functions de�ned onRn. Let h(x) = (h1(x); : : : ; hm(x))T . The set of feasible solutions is a surface in Rn,and it is smooth if each hi(x) is a smooth function (i. e., continuously di�erentiable).If x is a feasible point, when some of the hi(x) are nonlinear, there may be no feasibledirection at x. In order to retain feasibility while moving from x, one has to follow anonlinear curve through x which lies on the feasible surface. See Figure 16.
x

Figure 16 Feasible surface ��� = fx : h1(x) = 0g satisfying a nonlinear equa-tion. At x 2 ���, the direction marked by the arrow is not a feasible direction,since any move of positive length in that direction takes the point out of ���. Tomove from x and remain inside ��� one has to follow a curve like the dashed curve.A curve in Rn is the locus of a point x(�) = (xj(�)), where each xj(�) is a real valuedfunction of the real parameter �, as the parameter varies over some interval of the realline. See Figure 17.
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1-1Figure 17 A curve in R2. fx(�) = (�; �2) : �1 <= � <= 1g is a piece of a curve(parabola) in R2 through the origin x = (0; 0)T .The curve x(�) = (xj(�) is said to be di�erentiable at � if dxj(�)d� exists for all j, andtwice di�erentiable if d2xj(�)d�2 exists for all j. The curve x(�) is said to pass throughthe point x if x = x(�) for some �.If the curve x(�) de�ned over a < � < b is di�erentiable at �, a < � < b, then theline fx = x(�) + � dxd� (�) : � realg is the tangent line to the curve at the point x(�) onit. See Figure 18.
(  )λx

(  )λx

curve at

a bλ

Tangent line to the

Figure 18The tangent plane at a feasible point x to (56) is de�ned to be the set of all directions(dx(�)d� )�=0, where x(�) is a di�erential curve in the feasible region with x(0) = x. SeeFigure 19.
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xplane at

x

xTangent plane to surface at

Translate of tangent

0

Figure 19 The tangent plane to surface fx : h1(x) = 0g at a point x on itis the collection of all directions of tangent lines to di�erentiable curves lying insurface and passing through x.We need the following results to study these tangent planes.



4. Optimality Conditions for Smooth Optimization Problems 551The Implicit Function TheoremConsider the system of m equations in n variables x1; : : : ; xnfi(x1; : : : ; xn) = 0; i = 1 to m (57)where each fi(x) is continuously di�erentiable in some open subset D � Rn. Letx 2 D be feasible to (57) and let the subset of m variables, x1; : : : ; xm, say, be suchthat the m � m Jacobian (@fi(x)@xj : i = 1 to m; j = 1 to m) is nonsingular. Thenin a neighborhood of x, we can use the equations in (57) to express x1; : : : ; xm asfunctions of xm+1; : : : ; xn on the set of feasible solutions of (57). That is, there existsa neighborhood D of (xm+1; : : : ; xn) in Rn�m and real valued di�erentiable functions i(xm+1; : : : ; xn), i = 1 to m; such that for (xm+1; : : : ; xn) 2 D, (57) is equivalent toxi =  i(xm+1; : : : ; xn); i = 1 to mi. e.,fi( 1(xm+1; : : : ; xn); : : : ;  m(xm+1; : : : ; xn); xm+1; : : : ; xn) = 0; i = 1 to m (58)holds for all (xm+1; : : : ; xn) 2 D. Further, the partial derivatives @ i(xm+1;:::;xn)@xj , i = 1to m, j = m+ 1 to n, are obtained by solving the system of equationsmXr=1 @fi(x)@xr @ r(xm+1; : : : ; xn)@xj + @fi(x)@xj = 0; j = m+ 1 to n; i = 1 to m: (59)It can be veri�ed that (59) is just obtained by setting the derivative of the identity(58) at x with respect to xj to zero for each j = m + 1 to n and i = 1 to m. Seereferences [10.33] for a proof of the implicit function theorem.Example 7: An Illustration of the Implicit Function Theorem.Here we provide a simple example to illustrate the implicit function theorem usinga linear system of constraints. Consider the following system in the variables x =(x1; x2; x3; x4; x5)T . f1(x) = x1 + x2 + x3 + x4 � x5 � 12 = 0f2(x) = �x1 + x2 � 2x3 � x4 + 4x5 � 2 = 0:Let x = (5; 7; 0; 0; 0)T . x is a feasible solution, and" @f1(x)@x1 @f1(x)@x2@f2(x)@x1 @f2(x)@x2 # = � 1 1�1 1 �is nonsingular. Therefore, by the implicit function theorem, it is possible to expressx1, x2 as functions of the remaining variables x3, x4, x5 in a neighborhood of x in the



552 Appendix 4feasible region. Since the constraints are linear, we can do this explicitly by solving forx1, x2 in terms of x3, x4, x5 using these two equations, and this leads tox1(x3; x4; x5) = �32x3 � x4 � 52x5 + 10x2(x3; x4; x5) = 12x3 � 32x5 + 7where x1(x3; x4; x5) and x2(x3; x4; x5) are the expressions for x1, x2 as functions ofx3, x4, x5, on the feasible region for this system. When the equations are nonlinear,it may not be possible to obtain these expressions explicitly, but the implicit functiontheorem guarantees the existence of them in a neighborhood of x in the feasible region.We verify that the partial derivatives are" @x1@x3 ; @x1@x4 ; @x1@x5@x2@x3 ; @x2@x4 ; @x2@x5 # = "�32 ; �1; �5212 ; 0; �32 # :The equations corresponding to (59) for this system for j = 3 are@f1@x1 @x1@x3 + @f1@x2 @x2@x3 + @f1@x3 = @x1@x3 + @x2@x3 + 1 = 0@f2@x1 @x1@x3 + @f2@x2 @x2@x3 + @f2@x3 = �@x1@x3 + @x2@x3 � 2 = 0which together yield @x1@x3 = �32 , @x2@x3 = 12 , same as the values obtained above. In asimilar manner, writing the equations corresponding to (59) for this system for j = 4; 5,we can compute the values @xi@xj for i = 1; 2, j = 4; 5, and verify that they are the sameas those obtained above.Constraint Quali�cationsIn general, determining the tangent plane for (56) at the feasible point x is hard.However, if the constraint functions hi(x) satisfy ceratin conditions at x, it becomespossible to obtain a simple characterization of the tangent plane for (56) at x. Sothese conditions are called constraint quali�cations because these conditions arespeci�cally on the constraints in (56), not so much on the set of feasible solutions of(56). Several constraint quali�cations have been developed, but for most of them, it isvery hard to verify whether they hold in any given problem. We will only discuss oneconstraint quali�cation, which can be checked e�ciently. It is called the regularitycondition.The regularity condition is said to hold for (56) at the feasible point x if theJacobian matrix (@hi(x)@xj : i = 1 to m; j = 1 to n) has rank m, in this case the feasiblepoint x is called a regular point for (56).De�nition. We denote by rh(x) = (@hi(x)@xj : i = 1 to m; j = 1 to n), the Jacobianmatrix of order m � n; the ith row vector of rh(x) is the gradient vector of hi(x)written as a row vector.



4. Optimality Conditions for Smooth Optimization Problems 553Tangent Planes at Regular PointsTheorem 20. If x is a regular point for (56), the tangent plane for (56) at x isfy : (rh(x))y = 0g.Proof. Let x(�) be a di�erentiable curve lying in the feasible region for � lying in aninterval around zero, with x(0) = x and dx(0)d� = y. So h(x(�)) = 0 for all values of �lying in an interval around zero, and hence (dh(x(�))d� )�=0 = 0, that is (rh(x))y = 0.This implies that the tangent plane is a subset of fy : (rh(x))yg = 0.Suppose y 2 fy : (rh(x))y = 0g and y 6= 0. De�ne new variables u = (u1; : : : ;um)T . Consider the following system of m equations in m+ 1 variables u1; : : : ; um, �.gi(u; �) = hi(x+ �y + (rh(x))Tu) = 0; i = 1 to m: (60)It can be veri�ed that g(0; 0) = 0 and the Jacobian matrix of g(u; �) with respect tou is nonsigular at u = 0, � = 0 (since x is a regular point of (56)). So by applyingthe implicit function theorem on (60), we can express u as a di�erentiable function of�, say u(�), in an interval around � = 0, and that (60) holds as an identity in thisinterval when u in (60) is replaced by u(�), and that u(0) = 0, and du(0)d� is obtainedby solving � dd�h(x+ �y + (rh(x))Tu(�))��=0 = 0which leads to dd�u(0) = 0 since rh(x) has rank m. So if we de�nex(�) = x+ �y + (rh(x))Tu(�)this de�nes a di�erentiable curve lying in the feasible region for (56) for values of � inan interval around � = 0, and that dxd� (0) = y, which implies that y is in the tangentplane for (56) at x.Example 8Consider the system h(x1; x2) = x1 = 0x = (x1; x2)T 2 R2:The set of feasible solutions is the x2-axis in R2, since rh(x) = (1; 0) every feasiblepoint is a regular point, and the tangent plane at any feasible point x is again thex2-axis = fy : (rh(x))y = 0g = fy : y = (y1; y2); y1 = 0g. On the other hand thesystem g(x1; x2) = x31 = 0x = (x1; x2)T 2 R2has the same set of feasible solutions, namely the x2-axis inR2. Since rg(x) = (3x21 ; 0)is zero whenever x is feasible, no feasible point is regular. The tangent plane at everyfeasible solution is again the x2-axis in R2, but fy : rg(x)y = 0g = R2 for everyfeasible solution x.



554 Appendix 4Optimality ConditionsUsing Theorem 20 we can now derive optimality conditions for (56). If x is a feasibleregular point for (56), and it is a local minimum, clearly along every di�erentiablecurve x(�) lying in the feasible region for (56) for values of � in an interval around� = 0, satisfying x(0) = x; � = 0 must be a local minimum for �(x) on this curve.That is, for the problem of minimizing �(x(�)) over this interval for �, � = 0 mustbe a local minimum. Since � = 0 is an interior point of this interval this implies thatd�d� (x(0)) must be zero. Applying this to all such curves and using Theorem 20 weconclude that (r�(x))y = 0 for all y satisfying (rh(x))y = 0. By Theorem 1 (seeExercise 5) this implies that there must exist � = (�1; : : : ; �m) such thatr�(x)� mXi=1 �irhi(x) = 0and by feasibility h(x) = 0 (61)the conditions (61) are the �rst order necessary optimality conditions for (56),the vector � is the vector of Lagrange multipliers. (61) is a system of (n + m)equations in (n +m) unknowns (including x and �) and it may be possible to solve(61) using algorithms for solving nonlinear equations. If we de�ne the Lagrangian for(56) to be L(x; �) = �(x)��h(x) where � = (�1; : : : ; �m), h(x) = (h1(x); : : : ; hm(x))T ,(61) becomes: (x; �) satis�es h(x) = 0rxL(x; �) = 0: (62)We will now derive the second order necessary optimality conditions for (56).Suppose the functions �(x), hi(x) are all twice continuously di�erentiable. Let x bea feasible solution for (56) which is a regular point. If x is a local minimum for (56),by the �rst order necessary optimality conditions (61), there must exist a row vectorof Lagrange multipliers, � = (�1; : : : ; �m) such that rx(L(x; �)) = 0, where L(x; �) =�(x)��h(x) is the Lagrangian. Since x is a regular point, the tangent plane to (56) at xis T = fy : (rh(x))y = 0g. Suppose there exists a y 2 T satisfying yTHx(L(x; �))y <0. Since y 2 T, and all the functions are twice continuously di�erentiable, there existsa twice di�erentiable curve x(�) through x lying in the feasible region (i. e., x(0) = x,and the curve is de�ned in an interval of � with 0 as an interior point, with h(x(�)) = 0for all � in this interval), such that (dx(�)d� )�=0 = y. Now,dd�L(x(�); �) = (rxL(x(�); �))�dx(�)d� �d2d�2L(x(�); �) = �dx(�)d� �THx(L(x(�); �))dx(�)d� + (rxL(x(�); �))�d2x(�)d�2 �where rx(L(x; �)), Hx(L(x; �)) are the row vector of partial derivatives with respectto x, and the Hessian matrix with respect to x of L(x; �) at x = x respectively. At



4. Optimality Conditions for Smooth Optimization Problems 555� = 0, we have rxL(x(0); �) = rxL(x; �) = 0 by the �rst order necessary optimalityconditions.So, from the above � dd�L(x(�); �)��=0 = 0� d2d�2L(x(�); �)��=0 = yTHx(L(x; �))y:Using these in a Taylor series expansion for f(�) = L(x(�); �) up to second orderaround � = 0 leads tof(�) = L(x(�); �) = L(x; �) + �22 yTHx(L(x; �))y + 0(�)where 0(�) is a function of � satisfying the property that limit of (0(�))=�2 as � tendsto zero, is zero. Since h(x(�)) = 0 for every point on the curve, we have f(�) =L(x(�); �) = �(x(�)) for all � in the interval of � on which the curve is de�ned. So inthe neighborhood of � = 0 on the curve we have from the above2(�(x(�))� �(x))�2 = 2(f(�)� f(0))�2 = yTHx(L(x; �))y + 2(0(�))�2and since yTHx(L(x; �))y < 0 and limit of (0(�)=�2) as � tends to zero is zero, for all� su�ciently small �(x(�)) � �(x) < 0. For all these �, x(�) is a point on the curvein the feasible region in the neighborhood of x, and this is a contradiction to the factthat x is a local minimum for (56).In fact it can be veri�ed that yTHx(L(x; �))y = (d2f(�)d�2 )�=0, and if this quantityis < 0, � = 0 cannot be a local minimum for the one variable minimization problemof minimizing f(�) = �(x(�)) over �; or equivalently, that x = x(0) is not a localminimum for �(x) along the curve x(�).These facts imply that if �(x), hi(x) are all twice continuously di�erentiable, andx is a regular point which is a feasible solution and a local minimum for (56), theremust exist a Lagrange multiplier vector � such that the following conditions hold.h(x) = 0rxL(x; �) = r�(x)� �rh(x) = 0yTHx(L(x; �))y >= 0 for all y 2 T = fy : (rh(x))y = 0g;that is Hx(L(x; �)) is PSD on the subspace T. (63)These are the second order necessary optimality conditions for a regular feasiblepoint x to be a local minimum for (56).We now state a su�cient optimality condition for (56) in the form of a theorem.



556 Appendix 4Theorem 21. Suppose �(x), hi(x), i = 1 to m are all twice continuously di�eren-tiable functions, and x is a feasible point such that there exists a Lagrange multipliervector � = (�1; : : : ; �m) which together satisfyh(x) = 0r�(x)� �rh(x) = 0yTHx(L(x; �))y > 0 for all y 2 fy : (rh(x))y = 0g; y 6= 0 (64)where L(x; �) = �(x)� �h(x) is the Lagrangian for (56). Then x is a local minimumfor (56).Proof. Suppose x is not a local minimum for (56). There must exist a sequence ofdistinct feasible points fxr : r = 1; 2; : : :g converging to x such that �(xr) < �(x) forall r. Let �r = kx� xrk, yr = (xr � x)=�r. Then kyrk = 1 for all r and xr = x+ �ryr.Thus �r ! 0+ as r!1. Since the sequence of points fyr : r = 1; 2; : : :) all lie on thesurface of the unit sphere in Rn, a compact set, the sequence has at least one limitpoint. Let y be a limit point of fyr : r = 1; 2; : : :g. There must exist a subsequenceof fyr : r = 1; 2; : : :g which converges to y, eliminate all points other than those inthis subsequence, and for simplicity call the remaining sequence by the same notationfyr : r = 1; 2; : : :g. So now we have a sequence of points xr = x + �ryr all of themfeasible, such that kyrk = 1 for all r; yr ! y and �r ! 0 as r ! 1. By feasibilityh(x+ �ryr) = 0 for all r, and by the di�erentiability of h(x) we have0 = h(x+ �ryr) = h(x) + �rrh(x)yr + 0(�r)= �rrh(x)yr + 0(�r)Dividing by �r > 0, and taking the limit as r!1 we see that rh(x)y = 0.Since L(x; �) is a twice continuously di�erentiable function in x, applying Taylor'stheorem to it, we conclude that for each r, there exists a 0 <= �r <= �r such thatL(x+ �ryr; �) = L(x; �) + �rrxL(x; �)yr + (1=2)�2r(yr)THx(L(x+ �ryr; �))yr:From the fact that x + �ryr = xr and x are feasible, we have L(xr; �) = �(xr) andL(x; �) = �(x). Also, from (64), rxL(x; �) = 0. So, from the above equation, we have�(xr)� �(x) = (1=2)�2r(yr)THx(L(x+ �ryr; �))yr: (65)Since 0 <= �r <= �r, and �r ! 0 as r !1, and by continuity, we know that Hx(L(x+�ryr; �)) converges to Hx(L(x; �)) as r!1. Since yr ! y as r!1, and rh(x)y =0, from the last condition in (64) and continuity we conclude that when r is su�cientlylarge, the right-hand side of (65) is � 0, while the left-hand side is < 0, a contradiction.So, x must be a local minimum for (56).Thus, (64) provides a su�cient condition for a feasible point x to be a localminimum for (56).



4. Optimality Conditions for Smooth Optimization Problems 557Example 9Consider the problem minimize �(x) = x1x2subject to x1 + x2 = 2:The Lagrangian is L(x; �) = x1x2 � �(x1 + x2 � 2). So, the �rst order necessaryoptimality conditions are @L(x; �)@x = (x2 � �; x1 � �) = 0which together with the feasibility conditions lead to x = (1; 1)T . x is the uniquesolution for the �rst order necessary optimality conditions. x, � = 1 together satisfythe �rst order necessary conditions for a local minimum. The Hessian of the Lagrangianis Hx(L(x; �)) = 8>: 0 11 09>; :The tangent plane at x is fy : y1+ y2 = 0g. So on the tangent plane, yTHx((x; �))y =2y1y2 = �2y22 < 0, whenever y 6= 0. So the second order necessary optimality condi-tions for a local minimum are violated at x. In fact it can be veri�ed that x satis�es thesu�cient conditions for being a local maximum for �(x) in the feasible region. �(x) hasno local minimum in the feasible region, it is unbounded below in the feasible region.Example 10Consider the problem minimize �x1 � x2subject to x21 + x22 � 8 = 0:The Lagrangian is L(x; �) = �x1 � x2 � �(x21 + x22 � 8). The �rst order necessaryoptimality conditions are @L(x; �)@x = 8>:�1 �2x1��1 �2x2�9>;T = 0together with the constraint on the variables, this leads to the unique solution x =(2; 2)T , � = �1=4. The Hessian of the Lagrangian isHx(L(x; �)) = 8>: 1=2 00 1=29>;which is PD. Hence the point x satis�es the su�cient condition for being a localminimum in this problem.



558 Appendix 4Example 11Consider the problemminimize �(x) = 2x31 + (1=2)x22 + x1x2 + (1=24)x1subject to x1 + x2 = 2:The Lagrangian is L(x; �) = 2x31 + (1=2)x22 + x1x2 + (1=24)x1 � �(x1 + x2 � 2). The�rst order necessary optimality conditions are@L(x; �)@x = 8>>>: 6x21 + x2 + (1=24)� �x2 + x1 � � 9>>>;T = 0:Combining this with the constraints on the variables, we have � = 2, 6x21+x2+(1=24)�2 = 6x21 + (2 � x1) � 2 + (1=24) = 6x21 � x1 + (1=24) = 0. This leads to the uniquesolution satisfying the �rst order necessary optimality conditions (x = (1=12; 23=12)T ,� = 2). The tangent hyperplane at any feasible solution is fy : y1 + y2 = 0g. TheHessian of the Lagrangian isHx(L(x; �)) = 8>: 12x1 11 19>; = 8>: 1 11 19>; :So, on the tangent hyperplane to the feasible region at x we have yTHx(L(x; �))y =(y1 + y2)2 = 0. Thus the second order necessary conditions for a local minimum arealso satis�ed. However, the point x does not satisfy the su�cient conditions for beinga local minimum in this problem, (64), discussed above.Optimality Conditions for the InequalityConstrained Minimization ProblemsConsider the general NLPminimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to t (66)where �(x), hi(x), gp(x) are all real valued continuously di�erentiable functions de�nedon Rn. Let h(x) = (h1(x); : : : ; hm(x))T and g(x) = (g1(x); : : : ; gt(x))T .Let x be a feasible solution for (66). The active constraints at x are all the equalityconstraints in (66) and all the inequality constraints which hold as equations at x (i. e.,gp(x) for p such that gp(x) = 0). Let P(x) = fp : p = 1 to t; gp(x) = 0g. The feasiblesolution x is said to be a regular point for (66) if frhi(x) : i = 1 to mg [ frgp(x) :p 2 P(x)g is linearly independent. This is a constraint quali�cation known as theregularity condition for (66). As mentioned earlier, this is a condition on the active



4. Optimality Conditions for Smooth Optimization Problems 559constraints at x, and not on the set of feasible solutions. As an example, consider thesystem of constraints (x1 � 1)2 + (x2 � 1)2 = 0x41 + x42 = 2x1 <= 1x2 <= 1x1 + x2 >= 2 :This system has the unique solution (x1; x2)T = (1; 1)T , all the constraints are activeand it can be veri�ed that the regularity condition does not hold at this point. On theother hand, if this singleton set is represented by the system of constraintsx1 = 1x2 = 1then the regularity condition holds at the point. Thus, whether regularity conditionshold or not could depend on the system of constraints chosen to represent the set of fea-sible solutions. This points out the importance of exercising great care in constructingthe model for the problem.Since the inequality constraints \gi(x) >= 0" for i 62 P(x) are inactive at x, the localfeasible region around x remains unchanged if these inactive inequality constraints areignored. See Figure 20.
x

Figure 20 The region which lies on the side of the arrow of each nonlinearsurface is the feasible region. The inequality constraint corresponding to thedashed surface is inactive at x, and it can be ignored for the purpose of derivingoptimality conditions for x to be a local minimum in the feasible region.Thus for the purpose of deriving optimality conditions for x to be a local minimumfor (66), we can ignore the inactive inequality constraints at x. Also, when all the active



560 Appendix 4constraints at x are treated as equality constraints, the local feasible region around xbecomes smaller, and hence, if x is a local minimum for (66), it must be a localminimum for the problem obtained by treating all active constraints at x as equalityconstraints.Let x, a feasible regular point for (66), be a local minimum for (66). By the abovearguments, it must be a local minimum for the problem,minimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) = 0; p 2 P(x): (67)So by previous results, there exists (�1; : : : ; �m) and �p for p 2 P(x) satisfyingr�(x)� mXi=1 �irhi(x)� Xp2P(x)�prgp(x) = 0: (68)We will now prove that if x is a local minimum for (66), then �p >= 0 for all p 2 P(x).Suppose in (68), �p < 0 for some p 2 P(x), say for p = r. By the regularitycondition, the set frhi(x) : i = 1 to mg[frgp(x) : p 2 P(x)g is linearly independent,and by our assumption r 2 P(x). So there exists a y 2 Rn satisfying(rhi(x))y = 0; i = 1 to m(rgp(x))y = 0; p 2 P(x); p 6= r(rgr(x))y = 1: (69)By Theorem 20 there exists a di�erentiable curve x(�) with x(0) = x, de�ned forvalues of � in an interval around � = 0, lying on the set of feasible solutions ofhi(x) = 0; i = 1 to mgp(x) = 0; p 2 P(x); p 6= r (70)with dx(0)d� = y. Since (dgr(x(�))d� )�=0 = (rgr(x))y = 1 > 0, by Taylor's theorem weknow that there exists a � > 0 such that for all 0 <= � <= �, points on the curve x(�)satisfy gr(x) >= 0. Using this, it can be veri�ed that when � is positive but su�cientlysmall, x(�) remains feasible to (66) and since (d�(x(�))d� )�=0 = �r(rgr(x))y (by (68))< 0, it is a better feasible solution for (66) than x, contradicting the local minimumproperty of x. Thus if x is a local minimum for (66) and is a regular point, theremust exist � = (�1; : : : ; �m), and �p for p 2 P(x) satisfying (68), and �p >= 0 for allp 2 P(x). De�ne �p = 0 for all p = 1 to t, p 62 P(x) and let � = (�1; : : : ; �t). LetL(x; �; �) = �(x)� �h(x)� �g(x). L(x; �; �) is the Lagrangian for (66) and (�; �) arethe Lagrange multipliers. These facts imply that if x is a regular point local minimumfor (66), there exist �, � satisfyingrxL(x; �; �) = 0� >= 0�pgp(x) = 0 for all p = 1 to t (71)



4. Optimality Conditions for Smooth Optimization Problems 561and the feasible conditions h(x) = 0; g(x) >= 0:(71) are known as the �rst order necessary optimality conditions for the regularfeasible point x to be a local minimum for (66). They are also known as the Karush-Kuhn-Tucker (or KKT) necessary conditions for optimality.Let T = fy : (rhi(x))y = 0, i = 1 to m, and (rgp(x))y = 0; p 2 P(x)g. Ifall the functions �(x), hi(x), gp(x) are twice continuously di�erentiable, and x is aregular feasible point for (66), using similar arguments as before, it can be shown thata necessary condition for x to be a local minimum for (66) is that there exist Lagrangemultiplier vectors �, � such that(71) holds, and yTHx(L(x; �; �))y >= 0 for all y 2 T: (72)(72) are known as second order necessary conditions for x to be a local minimumfor (66).We now state a su�cient optimality condition for (66) in the form of a theorem.Theorem 22. Suppose �(x), hi(x), gp(x) are all twice continuously di�erentiablefunctions, and x is a feasible point such that there exists Lagrange multiplier vectors� = (�1; : : : ; �m), � = (�1; : : : ; �t) which together satisfyh(x) = 0; g(x) >= 0rxL(x; �; �) = 0� >= 0; �g(x) = 0 (73)yTHx(L(x; �; �))y > 0; for all y 2 T1; y 6= 0where T1 = fy : (rhi(x))y = 0, i = 1 to m and (rgp(x))y = 0 for p 2 P(x) \ fp :�p > 0g, (rgp(x))y >= 0 for p 2 P(x) \ fp : �p = 0gg, then x is a local minimum for(66).Proof. Suppose x is not a local minimum for (66). As in the proof of Theorem 21,there must exist a sequence of distinct feasible solutions xr = x + �ryr, r = 1; 2; : : :converging to x as r ! 0+, where kyrk = 1 for all r; yr ! y and �r ! 0+; such that�(xr) < �(x) for all r. By feasibility, as in the proof of Theorem 21, we have(rhi(x))y = 0; i = 1 to m: (74)For each p 2 P(x), we have gp(x) = 0, and gp(xr) >= 0 by feasibility. So0 <= gp(x+ �ryr)� gp(x) = �r(rgp(x))yr + 0(�r)Dividing by �r > 0, and taking the limit as r!1, we conclude that(rgp(x))y >= 0 for all p 2 P(x): (75)



562 Appendix 4Also, 0 > �(x+ �ryr)� �(x) = �r(r�(x))yr +0(�r), and again dividing by �r > 0, andtaking the limit as r!1 we conclude that (r�(x))y <= 0.Suppose (rgp(x))y > 0 for some p 2 J = fp : �p > 0g. Then0 >= (r�(x))y = �(rh(x))y + �(rg(x))y; by (73)=Xp2J �p(rgp(x))y; by (73), (74).> 0; by (73), (75) and the assumption that(rgp(x))y > 0 for some p 2 Ja contradiction. So y satis�es(rgp(x))y = 0 for all p 2 P(x) \ fp : �p > 0g: (76)By (74), (75), (76), we see that y 2 T1. From (73) and feasibility we have�(xr)� �(x) = L(x+ �ryr; �; �)� L(x; �; �) =(1=2)�2r (yr)THx(L(x+ �ryr; �; �))yr (77)where 0 <= �r <= �r, by using (73) on the expression given by Taylor's theorem. Whenr is su�ciently large, from the continuity, and the conditions satis�ed by y provedabove, and (73), we conclude that the right-hand side of (77) is >= 0, while �(xr)��(x)is < 0, a contradiction. So, x must be local minimum for (66).Thus (73) provides a su�cient local minimality condition for (66). See refer-ences [A8, A10, 10.2, 10.12, 10.13, 10.17, 10.27] for a complete discussion of optimalityconditions for nonlinear programs.In inequality constrained problems, we notice that the gap between known secondorder necessary optimality conditions and su�cient optimality conditions, is quite wide.The NLP (66) is said to be a convex programming problem if �(x) is convex,hi(x) is a�ne for all i, and gp(x) is concave for all p. In this case the set of feasiblesolutions is a convex set. For convex programming problems, we will now show that(71) are both necessary and su�cient conditions for global optimality.Theorem 23. Suppose (66) is a convex program. The feasible regular point x is aglobal minimum for (66) i� there exists a Lagrange multiplier vector (�; �) such thatx, �, � together satisfy (71).Proof. The necessity of (71) for optimality has already been established above. Wewill now prove the su�ciency. Suppose x is a feasible solution of (66) satisfying (71).



4. Optimality Conditions for Smooth Optimization Problems 563Let x be any other feasible solution for (66). By Theorem 15�(x)� �(x) >= (r�(x))(x� x)= � mXi=1 �irhi(x) + Xp2P(x)�prgp(x)�(x� x) by (71)= Xp2P(x)�prgp(x)(x� x); since h(x) is a�ne>= Xp2P(x)�p(gp(x)� gp(x)) by Theorem 16, since gp(x) is concave.= Xp2P(x)�pgp(x); since gp(x) = 0 for p 2 P(x).>= 0; since � >= 0 and g(x) >= 0 for feasibility.So x is a global minimum for (66).Example 12Consider the problem of determining the electrical current 
ows in the following elec-trical network.
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9 units 4 units

5 units

x1

x2

x3

x4 Figure 21Assume that the current 
ows on each arc in the direction indicated. A total of 5,4 units of current enters the system at nodes 1, 2 respectively per unit time. Thenumbers given on the arcs are the resistences of the arcs. Let x1, x2, x3, x4 denotethe current 
ows on the arcs as indicated. If rj denotes the resistence associated withxj it is known that the power loss is P4j=1 rjx2j . It is required to �nd out the current
ows, under the assumption that the 
ows would occur so as to minimize the power



564 Appendix 4loss. Hence the x-vector is the optimum solution of the problemminimize x21 +(1=2)x22 +x23+(1=2)x24subject to x1 +x2 = 5�x2 +x3+ x4 = 4xj >= 0; j = 1 to 4: (78)So, the Lagrangian is L(x; �; �) = x21 + (1=2)x22 + x23 + (1=2)x24 � �1(x1 + x2 � 5) ��2(�x2 + x3 + x4 � 4)�P4j=1 �jxj .So, the �rst order necessary optimality conditions are@L@x1 = 2x1 ��1 ��1 = 0@L@x2 = x2 ��1 +�2 ��2 = 0@L@x3 = 2x3 ��2 ��3 = 0@L@x4 = x4 ��2 ��4 = 0 (79)
�1; �2; �3; �4 >= 0 (80)�1x1 = �2x2 = �3x3 = �4x4 = 0 (81)and the constraints (78) on the x-variables for feasibility.The complementary slackness conditions (81) imply that for each j, either theLagrange multiplier �j is zero, or the inequality constraint xj >= 0 holds as an equalityconstraint (i. e., it is active) at the optimum. One technique to �nd a solution tothe �rst order necessary optimality conditions here is to guess the subset of inequalityconstraints in (78) which will be active at the optimum, called the active set. Treateach of the inequality constraints in (78) in this active set as an equation, ignore theinequality constraints in (78) outside the active set (we are assuming that they willbe inactive at the optimum). Set the Lagrange multiplier �j corresponding to eachinequality constraint in (78), not in the active set to zero. What remains among (78),(79) is a system of equations, which is solved. If the solution of this system satis�es(80) and the ignored inequality constraints in (78) not in the active set, we are done,this solution solves the �rst order necessary optimality conditions. If some of theseconditions are violated, repeat this process with a di�erent active set. This process,therefore, involves a combinatorial search, which may eventually involve solving 2tsystems where t is the number of inequality constraints in the original NLP (t = 4 here),not e�cient if t is large. E�cient algorithms for solving NLP's involving inequalityconstraints either carry out this combinatorial search very e�ciently; or do not useit at all, but operate with other e�cient methods to �nd a solution to the �rst ordernecessary optimality conditions (see Chapters 2, 10).



4. Optimality Conditions for Smooth Optimization Problems 565We �rst try treating the inequality constraint x3 >= 0 as active, and all the otherinequality constraints xj >= 0, j = 1; 2; 4 as inactive. Ignoring these inactive inequalityconstraints, and setting �j = 0, j = 1; 2; 4 leads to the system of equations:x1 +x2 = 5�x2 +x4 = 42x1 ��1 = 0x2 ��1 ��2 = 0��2 ��3 = 0x4 ��2 = 0:This system has the unique solution (x1; x2; x4) = (�2; 7; 11), (�1; �2) = (�4; 11),�3 = �11. This solution violates the constraints \x1 >= 0, �3 >= 0", so this choice ofactive set did not lead to a solution of the �rst order necessary optimality conditionsin this problem.Let us now try treating all the constraints \xj >= 0, j = 1 to 4" as inactive.Ignoring all these inactive constraints, and setting �j = 0, j = 1 to 4 leads to thesystem of equations 2x1 ��1 = 0x2 ��1 +�2 = 02x3 ��2 = 0x4 ��2 = 0x1 +x2 = 5�x2 +x3 +x4 = 4:This system has the unique solution x = (3; 2; 2; 4)T , � = (6; 4). This solution alsosatis�es the inequality constraints, on the xj which were ignored. So (x; �; � = 0)satis�es the �rst order necessary optimality conditions for this problem. It can beveri�ed that x also satis�es the second order necessary optimality conditions, as wellas the su�cient conditions for being a local minimum for this problem. Since �(x) isconvex here, x is in fact a global minimum for this problem.Optimality Conditions for Linearly Constrained Optimization ProblemsConsider the nonlinear program,minimize �(x)subject to Ax = bDx >= d (82)where A, b,D, d are given matrices of ordersm�n,m�1, t�n and t�1 respectively, and�(x) is continuously di�erentiable. Since the constraints are linear, for this problem,we can establish �rst order necessary optimality conditions of the form in (71) withoutrequiring a regularity type of constraint quali�cation.



566 Appendix 5Theorem 24. If x is a local minimum for (82), there exist Lagrange multipliervectors � = (�1; : : : ; �m), � = (�1; : : : ; �t) such thatrxL(x; �; �) = r�(x)� �A� �D = 0Ax = b; Dx >= d� >= 0; �(Dx� d) = 0 (83)where L(x; �; �) = �(x)� �(Ax� b)� �(Dx� d) is the Lagrangian for (82).Proof. Let P(x) = fp : 1 <= p <= t and Dp.x = dpg, it is the index set of activeinequality constraints in (82) at the feasible point x. Since the constraints are linear,the tangent plane to the system determined by the active constraints in (82) at x isT = fy : Ai.y = 0; i = 1 to m; and Dp.y = 0; p 2 P(x)g (84)whether x satis�es the regularity condition for (82) or not. Let���1 = fy : y 2 Rn; Ai.y = 0; i = 1 to m and Dp.y >= 0 for all p 2 P(x)g���2 = fy : y 2 Rn; (r�(x))y < 0g:We will now show that the fact that x is a local minimum for (82) implies that ���1\���2 =;. Suppose not. Let y 2 ���1 \ ���2. Since Dp.x > dp for p 62 P(x), and y 2 ���1, it canbe veri�ed that x+�y is feasible to (82) when � is positive and su�ciently small, andsince y 2 ���2, we have �(x+�y) < �(x), contradicting the local minimality of x to (82).So ���1 \���2 = ;.���1 \ ���2 = ; implies by Farkas' theorem (Theorem 3 of Appendix 1) that thereexist � = (�1; : : : ; �m) and �p for p 2 P(x) satisfyingr�(x) = mXi=1 �iAi. + Xp2P(x)�pDp.�p >= 0 for all p 2 P(x):Now de�ne �p = 0 for p 62 P(x), and let � = (�1; : : : ; �t). From the above, we verifythat x, �, � together satisfy (83).The conditions (83) are the �rst order necessary optimality conditions forthe linearly constrained optimization problem (82).If �(x) is twice continuously di�erentiable in (82), since the constraints are linearin (82), it can be veri�ed that the Hessian matrix of the Lagrangian is the same asthe Hessian matrix of �(x). Using the Taylor series approximation up to the secondorder, it can be shown that if x is a local minimum for (82), there must exist Lagrangemultiplier vectors �, � such that(83) holds and yTH(�(x))y >= 0 for all y 2 T of (84). (85)The conditions (85) correspond to (72), they are the second order necessary opti-mality conditions for (82).



5. Summary of Some Optimality Conditions 5675. Summary of Some Optimality ConditionsAll the functions (objective and constraint function) are assumed to be continuouslydi�erentiable. They are assumed to be twice continuously di�erentiable, if the Hessianmatrix, appears in the expressions.necessary optimality su�cient optimalityProblem conditions for point �x conditions for point �xto be a local minimum to be a local miminumunconstrained First order conditionsminimization. r�(�x) = 0minimize �(x) Second order conditionsover x 2 Rn r�(�x) = 0 and r�(�x) = 0 andH(�(�x)) is PSD. H(�(�x)) is PD.
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570 Appendix 66. Exercises13. Consider the quadratic programminimize cx +(1=2)xTDxsubject to Ax >= bx >= 0where D is a general symmetric matrix of order n. Prove that the necessary andsu�cient conditions for x� to be a local minimum to this general quadratic program isthat there exist vectors y�, u�, v�, such that8>:u�v�9>; = 8>:D �ATA 0 9>;8>:x�y�9>;+8>: cT�b 9>;8>:u�v�9>; >= 0; 8>:x�y�9>; >= 0; 8>:u�v�9>;T 8>:x�y�9>; = 0hold, and for every vector � 2 Rn satisfyingAi.� = 0 if y�i > 0Ai.� >= 0 if v�i = y�i = 0�j = 0 if u�j > 0�j >= 0 if x�j = u�j = 0we have �TD� >= 0. (A. Majthay [A9])14. Consider the quadratic programming problemminimize cx+ (1=2)xTDxsubject to 0 <= x <= uwhere D = 8>>>>>:�2 �3 �3�3 �5 �1�3 �1 �49>>>>>; ; c = 8>>>>>: 4359>>>>>;T ; u = 8>>>>>: 1010109>>>>>;and identify the global optimum solution of this problem. (W. P. Hallman andI. Kaneko [2.15])15. Let f(x) be a real valued di�erentiable function de�ned on R1. Let x0 2 R1.Is the following statement true? \For x0 to be a local minimum for f(x) in R1, it isnecessary that the derivative f 0(x0) = 0; and there must exist an open interval (a; b)around x0 such that f 0(x) < 0 for all x in the open interval (a; x0), and f 0(x) > 0



6. Exercises 571for all x in the open interval (x0; b)". Is this condition su�cient for x0 to be a localminimum of f(x)? Use the function de�ned byf(x) = x2(2 + sin(1=x)); when x 6= 0f(0) = 0and x0 = 0, as an example. (K. Sydsaeter [A14])16. Let f(x) be a real valued function de�ned on R1. Let x0 2 R1, and supposef(x) has continuous nth derivative. A su�cient condition for x0 to be a strict localminimum for f(x) in R1, is that f (1)(x0) = f (2)(x0) = : : : = f (n�1)(x0) = 0, andf (n)(x0) > 0 for n even, where, f (r)(x0) is the rth derivative of f(x) at x0. Is thiscondition necessary for x0 to be a local minimum for f(x)? Use the function de�nedby f(x) = e�(1=x2); x 6= 0f(0) = 0and x0 = 0, as an example. (K. Sydsaeter [A14])17. It is sometimes stated that minimizing a function subject to constraints is equiv-alent to �nding the unconstrained minimum of the Lagrangian function. Examinewhether this statement is true, using the exampleminimize �x1x2subject to x1 + x2 = 2and the point x = (1; 1)T which is optimal for it. (K. Sydsaeter [A14])18. Consider the equality constrained optimization problem (56) and the LagrangianL(x; �) = �(x)� �h(x) for it. If (x; �) is an unconstrained local minimum for L(x; �)over x 2 Rn, � 2 Rm, prove that the point x must be feasible to (56) and in factit must be a local minimum for (56). However, show that the converse may not betrue, that is, even if x̂ is a local minimum for (56), there may not exist a Lagrangemultiplier vector �̂ such that (x̂; �̂) is an unconstrained local minimum for L(x; �). SeeExercise 17 above. Develop general conditions on the NLP (56) and the point x whichcan guarantee that if x is a local minimum for (56), there exists a Lagrange multipliervector � such that (x; �) is a local minimum for L(x; �) over x 2 Rn, � 2 Rm.19. Consider the NLP (66) and the Lagrangian L(x; �; �) = �(x)� �h(x)� �g(x). If(x; �; �) is a local minimum for the problemminimize L(x; �; �)subject to x 2 Rn; � 2 Rmand � >= 0 (86)



572 Appendix 6prove that x must be feasible to (66) and in fact must be a local minimum for (66).However, show that the converse may not be true, that is even if x̂ is a local minimumfor (66), there may not exist a �̂ 2 Rm and �̂ 2 Rt, �̂ >= 0, such that (x̂; �̂; �̂) is a localminimum for (86).Develop general conditions on the NLP (66) and the point x, which can guaranteethat if x is a local minimum for (66), there exist Lagrange multiplier vectors �, � suchthat (x; �; �) is a local minimum for (86).20. Let �(x) be a real valued function de�ned on Rn and let x 2 Rn. Examine thefollowing statement \If x is a local minimum along each straight line through x inRn, then x is a local minimum for �(x) in Rn", and mark whether it is true or false.Use �(x1; x2) = (x2 � x21)(x2 � 2x21) de�ned on R2 and x = (0; 0)T as an example.(K. Sydsaeter [A14])21. Let A, D be given PD matrices of order n. Solve the following two optimizationproblems. (i) minimize cxsubject to (x� x)TA(x� x) <= 1(ii) minimize cx+ (1=2)xTDxsubject to (x� x)TA(x� x) <= 1:Discuss what happens if A is PD but D is either PSD or not even PSD.22. Consider the following quadratic programming problemf(b) = minimum value of Q(x) = cx+ (1=2)xTDxsubject to Ax >= bx >= 0where D is a symmetric PSD matrix of order n, f(b) denotes the optimum objectivevalue in this problem as a function of the vector b, and A, b are given matrices of ordersm� n and m� 1 respectively. In this problem, assume that A, c, d remain �xed, butb may vary.(i) If f(b) is �nite for some b, prove that f(b) is �nite for all b for which the problemis feasible.(ii) If f(b) is �nite for some b, prove that f(b) is convex over b 2 Pos(A;�Im).(iii) What is @f(b)?Note: The result in (i) above could be false if D is not PSD. Consider the following



6. Exercises 573example from B. C. Eaves [2.9]minimize Q(x) =�4x1 + x21 � x22subject to � x1 + x2 >= b1� x1 + x2 >= b2x1; x2 >= 0:Let b = (b1; b2)T . If b = b1 = (�2;�4), or if b = b2 = (�4;�2), verify that theproblem is feasible and that Q(x) is bounded below on the set of feasible solution. Ifb = (b1+ b2)=2 = (�3;�3)T , verify that Q(x) becomes unbounded below on the set offeasible solutions.23. Let K � Rn be a closed convex set. For x 2 Rn, de�nef(x) = Minimum fky � xk : y 2 Kg:Prove that f(x) is convex.24. Let �(x) = (2x2 � x21)2. Check whether �(x) is convex, or concave, or neither, on�1 <= x1 <= 1, �1 <= x2 <= 1.25. Consider the linear program in standard formminimize cxsubject to Ax= bx>= 0:This problem can be written as the following NLP in which the constraints are allequalities, but there are new variables uj .minimize cxsubject to Ax = bu2j � xj = 0; for all j:Write down the necessary optimality conditions for this equality constrained NLP, andshow that they are equivalent to the duality-complementary slackness conditions foroptimality in the above LP.26. Consider the NLP minimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to t



574 Appendix 6where all the functions �(x), hi(x), gp(x) are continuously di�erentiable. If x is a localminimum for this problem, and(a) frhi(x) : i = 1 to mg is linearly independent,(b) there exists a y 2 Rn satisfyingrhi(x)y = 0; i = 1 to mrgp(x)y > 0; p 2 P(x)where P(x) = fp : gp(x) = 0g.Prove that there must exist � = (�1; : : : ; �m), � = (�1; : : : ; �t) such thatr�(x)� �rh(x)� �rg(x) = 0� >= 0 and �pgp(x) = 0 for all p = 1 to t:27. Consider the NLP minimize �(x) = x21 + x22subject to (x1 � 1)3 � x22 = 0:i) If x = (x1; x2)T is a feasible solution to this problem, prove that x1 must be >= 1.Using this information, prove that x̂ = (1; 0)T is the global minimum for thisproblem.ii) Write down the �rst order necessary optimality conditions for this problem. Doesx̂ satisfy these conditions? Why? Explain clearly. (R. Fletcher [10.13])28. Consider the NLP minimize �(x) = x2subject to (1� x1)3�x2 >= 0x1 >= 0x2 >= 0:Verify that x = (1; 0)T is a global optimum solution to this problem. Is x a regularpoint? Do the �rst order necessary optimality conditions hold at x?If the problem is to minimize: �x1, subject to the constraints given above, verifythat x is again the global optimum. Do the �rst order necessary optimality conditionshold at x for this problem? Why?29. In each of the following NLPs, �nd out the global optimum and check whetherthe �rst order necessary optimality conditions hold at it. Explain the reasons for it.(87)minimize �x1subject to �x21 >= 0x1 >= 0
(88)minimize �x1subject to �x21 + x2 >= 0�x2 >= 0:



6. Exercises 57530. Find an optimum solution to the following NLP, using a combinatorial search forthe set of active constraints at the optimumminimize �(x) = 2x21 + 2x1x2 + x22 � 10x1 � 10x2subject to x21 + x22 <= 53x1 + x2 <= 6:31. Consider the following NLPminimize �x41 � x42subject to x21 + (x2 � 1)2 � 1 = 0:Verify that x = (0; 2)T is a global minimum for this problem. Do the �rst ordernecessary optimality conditions hold at x? Is there a � such that (x; �) is a localminimum for the Lagrangian in this problem?32. Consider the general NLPminimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to twhere �(x), hi(x), gp(x) are all continuously di�erentiable functions de�ned on Rn.One of the hard unsolved problems in NLP is to develop a computationally viablemethod or characterization to determine whether �(x) is bounded below on the feasiblesolution set for this problem, or diverges �1 on this set; and when �(x) is bounded onthe solution set, to determine whether �(x) attains its minimum at some �nite feasiblesolution (�(x) may only have an in�mum in this problem, it may not be an attainedminimum).Another hard problem is to develop optimality conditions for a feasible solutionx of this problem to be a global minimum for it. In the absence of convexity of �(x),concavity of g(x) and a�neness of h(x), at present we do not have any conditionsfor distinguishing the global minimum for this problem, from other local minima thatmay exist (the only known condition for the global minimum is its de�nition, that is,x is a global minimum i� �(x) >= �(x) for all feasible solutions x, this condition is notcomputationally useful, since checking it directly may require computing the functionvalue at uncountably many points).33. Let A be a given matrix of order m�n. Prove that the following three conditionsare equivalent(i) there exists no x 2 Rn satisfying Ax <= 0, x � 0,(ii) for every b 2 Rm, the set fx : Ax <= b; x >= 0g is bounded,(iii) there exists a � >= 0 satisfying �A > 0.



576 Appendix 634. If �(x) is a continuous real valued function de�ned over Rn with the monotonicityproperty (that is for every 0 <= x <= y we have �(x) <= �(y)), then prove that theproblem minimize �(x)subject to Ax >= bx >= 0has an optimum solution, if it is feasible. (B. C. Eaves [2.8])35. Let Q(x) = cx + (12 )xTDx where D is a symmetric matrix. Let � > 0 be given.Prove that the point x� solves the problemminimize Q(x)subject to kxk <= �i� it is feasible and there exists a � >= 0 satisfying(x�)T (D + �I) = �c�(�� kx�k) = 0(D + �I) is a PSD matrix.36. Consider the following NLPs in each of which the variables are x 2 Rn.(89)minimize cxsubject to xTx <= 1Ax >= 0
(90)minimize xTxsubject to �cx >= 1Ax >= 0:The data in both the problems, the matrices A, c of order m�n and 1�n respectively,are the same. Prove that these two problems are equivalent.37. Let f(�) : R1 ! R1 be a real valued convex function de�ned on R1. For any �,the limit of f(�+")�f(�)" as "! 0 through positive values is called the right derivative off(�) at �, and denoted by f 0+(�), the limit of the same as "! 0 through negative valuesis called the left derivative of f(�) at � and denoted by f 0�(�). Prove the followingi) If � < 
, then f 0�(�) <= f 0+(�) <= f 0�(
) <= f 0+(
).ii) A necessary and su�cient condition for �� to minimize f(�) over � 2 R1 is:f 0�(��) <= 0 <= f 0+(��).iii) The subdi�erential @f(�) is the line segment [f 0�(�); f 0+(�)].iv) For each �, let g(�) 2 @f(�). Prove that



6. Exercises 577(a) P (�; 
) = f(�)� [f(
) + g(
)(�� 
)] >= 0 for all �, 
.(b) If f(�) <= f(
), then P (�; 
) <= jg(
)j � j
 � �j.(c) If g(�)g(
) < 0, thenP (�; 
) >= jg(
)j � j�� ��j where �� is the minimizer of f(�).(C. Lemarechal and R. Mi�in [10.23])38. Consider the problem minimize cxsubject to Ax <= 0kxk= 1where A is of order m� n.Let K = fy : y =Pmi=1 �iAi.; �i >= 0 for all ig. Prove the followingi) If c 2 K, the maximum objective value in this problem, is <= 0.ii) If c 62 K, let b 2 K be the point in K that is closest to c. Then (c � b)=kb � ckis the optimum solution of this problem, and the optimum objective value in theproblem is kc� bk.39. Let K � Rn be a closed convex polyhedral set partitioned into closed convexpolyhedral regions as St=1to rKt. So if u 6= v, the interiors of Ku and Kv have anempty intersection, and Ku \ Kv is itself either empty or is either a face of lowerdimension or a subset of a face of lower dimension of each of Ku and Kv. Assume thateach Kt has a nonempty interior. Suppose the real-valued function f(x) is de�ned onK by the following f(x) = ft(x) = ct0 + nXj=1 ctjxj ; if x 2 Ktwhere ct0 and ctj are all given constants. The de�nition assumes that if Ku \Kv 6= ;,then fu(x) = fv(x) for all x 2 Ku \ Kv. So f(x) is a continuous piecewise linearfunction de�ned on K.Derive necessary and su�cient conditions for the continuous piecewise linear func-tion f(x) to be convex on K, and develop an e�cient algorithm to check whether theseconditions hold.As a numerical example, let K = fx = (x1; x2)T : �1 <= x1 <= 1;�1 <= x2 <= 1g.Consider the partition of K given in Figure 22. Two piecewise linear functions f(x),g(x) de�ned on K are provided in Figure 22. Check whether they are convex on K.(See Section 8.14 in K. G. Murty [2.26].)
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Figure 2240. (Research Problem) For i = 1 to m, gi(x) is a real valued continuously dif-ferentiable function de�ned on Rn, but g(x) = (g1(x); : : : ; gm(x))T is not convex.Let � = (�1; : : : ; �m)T 2 Rm. Let K(�) = fx : gi(x) <= �i; i = 1 to mg. Letb = (b1; : : : ; bn) 2 Rn be a given point.(i) Assuming that K(0) 6= ; is a convex set, develop an e�cient algorithm to checkwhether K(�) is convex for given �. Is this problem easier to solve if either � >= 0or � <= 0?



6. Exercises 579(ii) Assuming that K(0) 6= ; is a convex set, and that b is a boundary point of K(0),(that is, there exists an i such that gi(b) = 0), develop an e�cient algorithmto �nd a c = (c1; : : : ; cn) 6= 0 satisfying c(x � b) >= 0 for all x 2 K(0) (thenH = fx : c(x� b) = 0g is a supporting hyperplane for the convex set K(0) at itsboundary point b).(iii) Assuming that K(0) 6= ; is a convex set and that b 62 K(0), develop an e�cientalgorithm to determine a hyperplane separating b from K(0).(iv) Consider the special cases of the above problems when all gi(x) are a�ne functions,excepting one which is quadratic and nonconvex.41. Let �(x) be a continuously di�erentiable real valued function de�ned onRn. LetKbe a subspace of Rn. If x 2 K minimizes �(x) over K, prove that r�(x) is orthogonalto every vector in K.42. Let �(x); gi(x), i = 1 to m, be continuously di�erentiable convex functions de�nedon Rn. Let � be the optimum objective value; and �, an optimum Lagrange multipliervector associated with the NLPminimize �(x)subject to �gi(x) >= 0; i = 1 to m:Then prove that � = In�mum f�(x) + �g(x) : x 2 Rng.43. Arithmetic Mean | Geometric Mean Inequality:Let x1; : : : ; xn be positive real numbers. Let �1; : : : ; �n be positive real numbers satis-fying �1 + : : :+ �n = 1. Prove thatnYi=1(xi)�i <= nXi=1 �ixiwith equality holding i� x1 = x2 = : : : = xn, where \Q" indicates the product sign.44. Young's Inequality:Let x, y, p, q be all positive real numbers, and p > 1, q > 1 satisfying 1p + 1q = 1. Provethat xy <= xpp + yqqwith equality holding only when xp = yq.



580 Appendix 645. Holder's Inequality:Let p, q, be positive real numbers > 1 satisfying 1p + 1q = 1. Let x = (x1; : : : ; xn),y = (y1; : : : ; yn) be real vectors. Prove thatnXi=1 xiyi <=  nXi=1 jxijp!1=p nXi=1 jyijq!1=q :46. Minkowski's Inequality:Let x = (x1; : : : ; xn), y = (y1; : : : ; yn) be real vectors and p >= 1. Prove that nXi=1 jxi + yijp!1=p <=  nXi=1 jxijp!1=p + nXi=1 jyijp!1=p :47. Let f(�) denote a smooth real valued function de�ned over R1. A classicalsu�cient condition for � 2 R1 to be a local minimum for f(�) over R1 states \� is alocal minimum for f(�) over R1 if the �rst nonzero derivative of f(�) at � is of evenorder, and this derivative is > 0". Develop a generalization of this result to Rn, n > 1.48. Given a vector y = (yj) 2 Rn, de�nekyk1 = nXj=1 jyjjkyk1 = maximum fjyj j : j = 1 to ngkyk2 =vuut nXj=1 y2jy+ = (y+j ) where y+j = maximum f0; yjgkyk1, kyk1, kyk2 are called the 1-norm, 1-norm, 2-norm, respectively, of the vectory. Consider the system Ax <= bBx = d (91)where A, B are �xed matrices of orders m�n, p�n respectively; and b, d are columnvectors of appropriate dimensions. Assume that each row vector of A contains at leastone nonzero entry, and if equality constraints do exist, then B is of full row rank (B



6. Exercises 581could be vacuous, that is, there may be no equality constraints in (91)). Let K(b; d)denote the set of feasible solutions of (91). De�ne�(A;B) = supremum ku; vk2subject to, u, v are row vectors in Rm, Rp,kuA+ vBk1 = 1u >= 0and the set of rows of 8>:AB9>; corresponding tononzero elements of (u; v) is linearly independent. (92)
(i) Prove that �(A;B) is �nite.(ii) If 8>: b1d19>;, 8>: b2d29>; are such, that K(b1; d1) and K(b2; d2) are both nonempty;for each x1 2 K(b1; d1), prove that there exists an x2 2 K(b2; d2) satisfyingkx1 � x2k1 <= �(A;B) 



8>: b1d19>;�8>: b2d29>;



2 :This result can be interpreted as implying that feasible solutions of (91) areLipschitz continuous with respect to right hand side constants vector pertur-bations, with Lipschitz constant �(A;B) depending only on the coe�cientmatrix 8>:AB9>;.(iii) In (91), if B is of full row rank and the system \Ay < 0, By = 0" has asolution y, prove that K(b; d) 6= ; for all 8>: bd9>; 2 Rm+p, and that for any8>: b1d19>; ;8>: b2d29>; 2 Rm+p, and x1 2 K(b1; d1), there exists an x2 2 K(b2; d2)satisfying kx1 � x2k1 <= �(A;B) 



8>: b1d19>;�8>: b2d29>;



2where �(A;B) = maximum ku; vk2subject to, u, v are row vectors in Rm, Rp,kuA+ vBk1 = 1u >= 0: (93)(iv) Suppose 8>: b1d19>; is such that K(b1; d1) 6= ;. For any x 2 Rn, prove that thereexists an x1 2 K(b1; d1) satisfyingkx� x1k1 <= �(A;B) 




 (Ax� b1)+(Bx� d1) 




2 :



582 Appendix 6If the Lipschitz constant �(A;B) is available, this inequality provides an errorbound on how far x is from a feasible solution of (91).(v) Consider the LP minimize cxsubject to Ax <= bBx = d (94)with A, B �xed, let ���(b; d) denote the set of optimum solutions of (94). If it isknown that ���(b1; d1) and ���(b2; d2) are both nonempty; for any x1 2 ���(b1; d1)prove that there exists an x2 2 ���(b2; d2) satisfyingkx1 � x2k1 <= �(A;B) 



8>: b1d19>;�8>: b2d29>;



2where �(A;B) is the Lipschitz constant de�ned in (92). This result can be in-terpreted as implying that optimum solutions of LPs are Lipschitz continuouswith respect to right hand side constants vector perturbations.(vi) Consider the LP minimize �(1 + �)x1�x2subject to x1+x2 <= 1x1; x2 >= 0 (95)where � is a real parameter. Show that when � > �1 and � 6= 0, this problemhas a unique optimum solution x(�) given byx(�) = � (1; 0)T ; if � > 0(0; 1)T ; if �1 < � < 0.By showing that limit�!0+ kx(�)� x(��)k2� = +1prove that x(�) is not Lipschitzian with respect to �.This shows that in general, optimum solutions of linear programs are not Lips-chitzian with respect to perturbations in the objective function coe�cients.(vii) Consider the LCP (q;M) of order n. Let J � f1; : : : ; ng. Consider the systemMi.z + qi >= 0; zi = 0; for all i 2 JMi.z + qi = 0; zi >= 0; for all i 62 J: (96)If z is any solution of (96) then z leads to a solution of the LCP (q;M) (thatis, (w =Mz+q; z) is a solution of the LCP (q;M)). Using this fact, Lipschitzcontinuity of solutions with respect to the right hand side constants vectorperturbations, can be established for certain classes of LCPs.For any J � f1; : : : ; ng, de�ne A(J) to be the square matrix of order n such that(A(J))i. = ��Mi. for i 2 JIi. for i 62 J.



6. Exercises 583Similarly, de�ne the square matrix B(J) of order n by(B(J))i. = � Ii. for i 2 J.�Mi. for i 62 J.Now de�ne �(M) = maximum f�(A(J); B(J)) : J � f1; : : : ; nggwhere �(A(J); B(J)) is �(A;B) of (92) with A = A(J), B = B(J).Suppose M is a P -matrix and (wr; zr) is the unique solution of the LCP (q;M)when q = qr, r = 1; 2. Prove thatkz1 � z2k1 <= �(M)kq1 � q2k2:This establishes that when M is a P -matrix and �xed, the solution of the LCP (q;M)is Lipschitz continuous in q with Lipschitz constant �(M) de�ned above.(viii) Let M = 8>: 0 1�1 09>;, q1 = 8>:�"19>;, q2 = 8>: "19>; where " > 0. Show that ifz1 = (1; ")T , z2 = (0; 0)T , the solution of the LCP (qr;M) is (wr = Mzr +q; zr), r = 1; 2. Verify thatlimit"!0+ kz1 � z2k12" = +1:This shows that the solution of the LCP (q;M) may not be Lipschitzian in q for �xedM , when M is positive semide�nite but not a P -matrix. (O. L. Mangasarian andT. H. Shiau [A11])49. Let A, b be given real matrices of orders m� n and m� 1 respectively. Considerthe system of equations Ax = b: (97)This system may or may not have a solution. It is required to �nd a vector x thatsatis�es (97) as closely as possible using the least squares measure of deviation. For-mulate this as a nonlinear program and write down the optimality conditions for it.Prove that this system of optimality conditions always has a solution.Now consider the problem of �nding a vector x satisfying (97) as closely as possible,subject to the additional constraints kxk = 1, which is required to be satis�ed. Thisleads to the nonlinear program minimize kAx� bk2subject to kxk2 = 1: (98)Discuss how (98) can be solved to optimality e�ciently.



584 Appendix 650. Let f(x) be a real valued function de�ned on Rn which is thrice continuouslydi�erentiable. Consider the NLP minimize f(x)subject to x >= 0:i) Prove that the �rst order necessary optimality conditions for this NLP can beposed as a nonlinear complementarity problem.ii) Let fi(x) = @f(x)@xi , i = 1 to n. De�ne g(x) = (gi(x) : i = 1 to n)T wheregi(x) = �jxi � fi(x)j3 + x3i + (fi(x))3:Prove that solving he NLCP described in (i) above, is equivalent to solving thesystem of n equations in n unknownsg(x) = 0:Show that g(x) is twice continuously di�erentiable. (L. Watson [A15])51. We have received a large shipment of an engineering item. A random sample of10 items selected from this lot had the following lifetimes in time units.1:600 1:506 0:501 1:1180:295 0:070 1:8210:055 0:499 3:102Assume that the lifetime, x, of items from the lot follows a Weibull distribution withthe following probability density functionf(x) = ��x��1e(��x�); x >= 0:Formulate the problem of obtaining the maximum liklihood estimators for the param-eters �, � as an NLP. Write down the optimality conditions for this NLP, and solvethis NLP using them.52. Consider the convex polyhedra K1, K2, which are the sets of feasible solutions ofthe systems given below K1Ax = bx >= 0 K2Dy = dy >= 0:It is required to �nd a pair of points (x; y), x 2 K1, y 2 K2, which are closest in termsof the Euclidean distance, among all such pairs. Does this problem have a uniqueoptimum solution? Why?



6. Exercises 585Formulate this problem as an NLP and write down the necessary optimality con-ditions for it. Are these conditions also su�cient for optimality for this problem?53. Write down the necessary optimality conditions for Sylvester's problem, Exercise1.25, and determine whether these conditions are also su�cient for optimality.54. We are given smooth real valued functions �1(x); : : : ; �r(x); g1(x); : : : ; gm(x), allde�ned over Rn. Consider the following optimization problem:minimize v(x)subject to gi(x) >= 0; i = 1 to mwhere for each x 2 Rn, v(x) = maximum f�1(x); : : : ; �r(x)g. Transform this probleminto a smooth NLP with a linear objective function, but with additional constraintsthan those in this problem. Write down the necessary optimality conditions for thetransformed problem and simplify them. State some general conditions on the data inthe problem under which these conditions are also su�cient for optimality. Show thatthis technique can be used to transform any NLP into an NLP in which the objectivefunction is linear.55. The army has n types of weapons available. Using them, they want to destroy mtargets. The following data is given:pij = probability that a weapon of type j shot at target type i will destroy it,vi = value in $ of target i,bj = number of weapons of type j available.Assume that a weapon shot at a target either destroys it, or leaves it absolutely unaf-fected.Formulate the problem of determining the number of weapons of each type tobe shot at each of the targets, so as to maximize the expected value destroyed, asan NLP. Neglecting the integer requirements on the decision variables in this problem,write down the necessary optimality conditions for it. Specialize these for the numericalexample with the following data.n = 2; m = 3p = (pij) = 8>>>>>: :25 :05:35 :08:15 :179>>>>>; ; v = (vi) = 8>>>>>: 150953759>>>>>; ; b = (bi) = 8>: 6109>; :
56. Let B, A be matrices of order n�n and m�n respectively. Suppose rank(A) = mand B is symmetric and PD on the subspace fx : Ax = 0g. Then prove that the matrix8>:B ATA O 9>; is nonsigular.



586 Appendix 657. Let f(x) be a real valued convex function de�ned on Rn. Assume that f(x) istwice continuously di�erentiable at a given point x 2 Rn. De�nel(x) = f(x) +rf(x)(x� x)Q(x) = f(x) +rf(x)(x� x) + 12(x� x)TH(f(x))(x� x):The functions l(x), Q(x) are respectively the �rst and second order Taylor approxi-mations for f(x) around x. In Theorem 15 we established that f(x)� l(x) always hasthe same sign (>= 0) for all x 2 Rn. Discuss whether f(x)�Q(x) always has the samesign for all x 2 Rn. If so, what is that sign? Why? (Richard Hughes)58. Let K denote the set of feasible solutions ofAx >= b (99)where A is an m� n matrix. We know that K 6= ; and dimension of K is n. �(x) is astrictly convex function de�ned on Rn, with a unique unconstrained minimum in Rn,x. We know that x satis�es all but one constraint in (99). Suppose Ai.x >= bi for i = 2to m, but A1.x < b1. Prove that if the problemminimize �(x)x 2 Khas an optimum solution, the �rst constraint in (99) must be active at it. What is theappropriate generalization of this result when x violates more than one constraint in(99)? (M. Q. Zaman, S. U. Khan, and A. Bari, private communication).59. Let f(�) : R1 ! R1 be a continuously di�erentiable strictly increasing functionof the real parameter �.Let �(x) : Rn ! R1, g(x) : Rn ! Rm, h(x) : Rn ! Rt be continuouslydi�erentiable functions.Consider the constraint system g(x) >= 0h(x) = 0 (100)and the two optimization problemsProblem 1: Minimize �(x), subject to (100)Problem 2: Minimize f(�(x)), subject to (100).Rigorously prove that both the problems have the same set of stationary points.(H. L. Li, private communication.)



6. Exercises 58760. Consider the following separable NLPminimize nXj=1 fj(xj)subject to nXj=1 xj >= 1xj >= 0; j = 1 to nwhere fj(xj) is a di�erentiable function for all j. If x = (xj) solves this problem, provethat there must exist a nonnegative scalar k such thatdfj(xj)dxj >= k for all j;and for all j such that xj > 0 , dfj(xj)dxj = k:61. Let A be a given matrix of order m � n. Prove that at least one of the followingsystems (I)Ax >= 0x >= 0 (II)�A <= 0� >= 0has a nonzero feasible solution.62. Consider the following LP minimize cxsubject to Ax >= bx >= 0:Let K, ��� denote the set of feasible solutions of the LP, and its dual respectivley. Provethat either both K and ��� are empty, or at least one of K, ��� is an unbounded set.63. Let D be the diagonal matrix diag(�1; : : : ; �n), where �1 >= �2 >= : : : >= �n > 0.Consider the following NLPminimize (yTDy)(yTD�1y)subject to yT y = 1:(i) Transform this NLP into another problem in new variables x1; : : : ; xn in which theobjective function to be optimized is a product of two linear functions, g(x) and h(x),say, and the constraints are all linear. Call this transformed problem (P).



588 Appendix 6(ii) Show that (P) must have a global optimum solution.Assume that x� is an optimum solution of (P). Let h(x�) = �. Show that x� mustalso be an optimum solution of the LP in the variables x = (x1; : : : ; xn) in which theobjective function to be optimized is g(x), and the constraints are the same as thosein (P) plus the additional constraint h(x) = �. Conversely, show that every optimumsolution of this LP must also be optimal to (P). Using this, show that (P) has anoptimum solution in which two variables among x1; : : : ; xn are positive, and the othersare all zero.(iii) Consider the problem (P) again. In this problem, substitute xi = 0 for all i 6= p; q,for some selected p, q between 1 to n. Show that in the optimum solution of thisreduced problem, both xp and xq are equal.(iv) Use the above results to prove Kantorovich's inequality which states the following:Let A be a symmetric PD matrix of order n with eigen values �1 >= �2 >= : : : >= �n > 0.Then (yTAy)(yTA�1y) <= (�1 + �n)24�1�n for all y such that kyk = 1:(M. Raghavachari, \A linear programming proof of Kantorovich's inequality", TheAmerican Statistician, 40 (1986) 136{137.)64. f(x) is a real valued di�erentiable function de�ned on Rn. Prove that f(x) is aconvex function i� (rf(x2)�rf(x1))(x2 � x1) >= 0;for all x1; x2 2 Rn. Similarly, prove that a real valued di�erentiable function g(x)de�ned on Rn is concave i�(rg(x2)�rg(x1))(x2 � x1) <= 0;for all x1; x2 2 Rn.65. Let f(x) be a real valued convex function de�ned on Rn. For each x 2 Rnlet f+(x) and f�(x) denote the positive and negative parts of f(x), that is, f+(x)and f�(x) satisfy for all x 2 Rn, f+(x) >= 0, f�(x) >= 0, f(x) = f+(x) � f�(x),(f+(x))(f�(x)) = 0. Are f+(x) and f�(x) both convex functions over Rn? Why?66. Consider the linearly constrained NLPminimize �(x)subject to Ax = bwhere �(x) is a real valued continuously di�erentiable convex function de�ned on Rn,and A is an m � n matrix of rank m. If x� is a feasible solution for this problemsatisfying



6. Exercises 589r�(x�)(I �AT (AAT )�1A) = 0prove that x� is an optimum solution of the NLP.67. Consider the NLP minimize cxsubject to gi(x) >= 0; i = 1 to mwhere c = (c1; : : : ; cn) 6= 0, and gi(x) is a continuously di�erentiable real valuedfunction de�ned over Rn for each i = 1 to m. Suppose x� is a local minimum forthis problem, and is a regular point. Prove that there exists at least one i such thatgi(x�) = 0.68. i) On the x1; x2-Cartesian plane, �nd the nearest point on the parabola fx =(x1; x2)T : x22 = 4x1g to (1; 0)T in terms of the Euclidean distance.ii) For the following NLP, check whether either of x1 = (1; 12 )T or x2 = (13 ;�16 )T areoptimum solutions minimize x21 + 2x22subject to x21 + x22 <= 52x1 � 2x2 = 1:69. Let f(x) be a real valued continuously di�erentiable convex function de�ned overRn and let K be a closed convex subset of Rn. Suppose x 2 K is such that it is thenearest point (in terms of the Euclidean distance) in K to x��rf(x) for some � > 0.Prove that x minimizes f(x) over x 2 K. Construct the converse of this statementand prove it too.70. Consider the following NLPminimize �(x)subject to l <= x <= kwhere �(x) is a real valued twice continuously di�erentiable function de�ned on Rn,and l, k are two bound vectors in Rn satisfying l < k. Develop an algorithm forsolving this problem, which takes advantage of the special structure of the problem.Write down the termination criteria that you would use, and provide a justi�cation forthem. Also, mention what type of a solution the algorithm is guaranteed to obtain attermination.71. Consider the following NLPminimize �(x)subject to ai <= gi(x) <= bi(x); i = 1 to mand l <= x <= k



590 Appendix 6where �(x), gi(x); : : : ; gn(x) are all real valued twice continuously di�erentiable func-tions de�ned over Rn, and a = (ai), b = (bi), l, k satisfy a <= b, l < k. Discuss howyou can solve this problem using the algorithm developed in Exercise 70.72. �(x) is a real valued continuously di�erentiable convex function de�ned over Rn.K is a closed convex subset of Rn. If x 2 K is the global maximum for �(x) overx 2 K, prove that r�(x)x <= r�(x)x; for all x 2 K:Is the converse of this statement also true? Why?Would the above inequality hold for all x 2 K if x is only a local maximum for�(x) over K and not a global maximum? Why?73. If M is a P -matrix of order n (not necessarily PD) prove that the system�M > 0� >= 0has a solution �.74. Write down the �rst order necessary optimality conditions for the following NLP,and �nd an optimum solution for it.minimize (x1 � 4)2 + (x2 + 1)2subject to 7 <= x1 <= 1410 <= x2 <= 22:75. Consider the following linear programminimize z(x) = = cxsubject to Ax = bDx >= d:Let K denote the set of feasible solutions for this problem. Show that the primalsimplex algorithm for this problem, is exactly the gradient projection method (Section10.10.5) applied on this problem, beginning with a feasible point x0 which is an extremepoint of K.76. �(x); hi(x), i = 1 to m; gp(x), p = 1 to t are all real valued twice continuouslydi�erentiable functions de�ned over Rn.i) Consider the NLP minimize �(x)subject to hi(x) = 0; i = 1 to m;gp(x) >= 0; p = 1 to t:



6. Exercises 591Let L(x; �; �) = �(x) �Pmi=1 �ihi(x) �Ptp=1 �pgp(x) be the Lagrangian. Supposewe have a feasible solution x to this NLP and Lagrange multiplier vectors �, � suchthat (x; �; �) satisfy the �rst order necessary optimality conditions for this NLP, andthe additional condition that L(x; �; �) is a convex function in x over Rn (notice thatL(x; �; �) could be a convex function, even though �(x), �gp(x), hi(x) and �hi(x) arenot all convex functions). Then prove that x must be a global minimum for this NLP.ii) Consider the numerical exampleminimize (x1 � �)2 + (x2 � �)2subject to x21 � 1 = 01� x22 <= 0where � is any real number satisfying k�k <= 1. Let x = (x1; x2)T = (1; 1)T , � = (��1),� = (1��). Verify that x is a global minimum for this problem using the result in (i).(P. Mereau and J. A. Paquet, \A su�cient condition for global constrained extrema",Int. J. Control, 17 (1973) 1065{1071).77. �(x); gi(x), i = 1 to m are all real valued convex functions de�ned over Rn.Consider the NLP minimize �(x)subject to gi(x) <= 0; i = 1 to m:i) Prove that the set of all optimum solutions of this problem is a convex set.ii) A real valued function de�ned on Rn is said to be a symmetric function if f(x) =f(Px), for all x 2 Rn, and P any permutation matrix of order n. If all the functions�(x), gi(x), i = 1 to m, are symmetric functions, and the above problem has anoptimum solution, prove that it has one in which all the variables are equal.Exercises 78 to 98 have been suggested to me by Vasant A. Ubhaya.78. Let J be an interval of the real line. f(x) is a real valued function de�ned on J.Prove that f(x) is convex i� for any three point x; y; z in J with x < y < z,determinant ������x f(x) 1y f(y) 1z f(z) 1 ������ >= 0:
79. Let a1 >= a2 >= : : : >= an >= 0 and let f(x) be a real valued convex function de�nedon the interval [0; a1] with f(0) = 0. Show thatnXk=1(�1)k�1f(ak) >= f� nXk=1(�1)k�1ak�: (contd:)



592 Appendix 6(E. F. Beckenbach and R. Bellman, \Inequalities", Springer-Verlag, New York, 1983,and E. M. Wright, \An inequality for convex functions", American MathematicalMonthly, 61 (1984) 620-622.)80. Let J be a closed interval of the real line. A real valued function f(x) de�ned onJ is said to be midconvex or Jensen-convex iff�x+ y2 � <= 12(f(x) + f(y))for all x; y 2 J. Prove that if f(x) is midconvex, thenf(�x+ (1� �)y) <= �f(x) + (1� �)f(y)for all x; y 2 J and all rational numbers � between 0 and 1. Hence conclude that acontinuous function is midconvex i� it is convex. (A. W. Roberts and D. E. Varberg,\Convex Functions", Academic Press, New York, 1973.)81. Let ��� � Rn be a convex set, and let f(x) be a real valued convex function de�nedon ���. Let g(�) be a nondecreasing convex function de�ned on a real interval J wherethe range of f(x) is contained in J. Prove that h(x) = g(f(x)) is convex. Use this toshow the following:a) If f(x) is a positive concave function de�ned on ���, then 1=f(x) is convex.b) If f(x) is a nonnegative convex function de�ned on ���, then (f(x))r is convex forr >= 1.c) If f(x) is a convex function de�ned on ���, then exp(f(x)) is convex.82. Let y = (y1; : : : ; yn�1)T , and ��� = fy : 0 = y0 < y1 < : : : < yn�1 < yn = 1g.De�ne, for j = 0; 1; : : : ; nDj(y) =Y(jyi � yj j : over 0 <= i <= n; i 6= j)= (�1)jY((yi � yj) : over 0 <= i <= n; i 6= j)where Q denotes the product sign. De�neF (y) =X((Dn�1�2j(y))�1 : over 0 <= j <= b(n� 1)=2c):Show that F (y) is a strictly convex function of y over ���. Prove that y� = ((sin(�=2n)2;(sin(2�=2n))2; : : : ; (sin((n� 1)�=2n))2)T is the unique optimum solution for the prob-lem of minimizing F (y) over ���, and that F (y�) = 22n�2. Prove the following inequal-ities for all y 2 ���.(i) P((Dj(y))�1 : over j odd, 1 <= j <= n� 1) >= 22n�2; if n is even.(ii) P((Dj(y))�1 : over j even, 0 <= j <= n� 1) >= 22n�2; if n is odd.(iii) P((Dj(y))�1 : over j odd, 1 <= j <= n ) >= 22n�2; if n is odd.(iv) P((Dj(y))�1 : over 0 <= j <= n ) >= 22n�1; if n is odd.



6. Exercises 593Furthermore prove that each of the above inequalities holds as an equation i� y = y�de�ned above. (V. A. Ubhaya \Nonlinear programming, approximation and opti-mization on in�nitely di�erentiable functions", Journal of Optimization Theory andApplications, 29 (1979), 199-213.)83. Let S � Rn+1 be a convex set. De�ne a set ��� � Rn and a real valued functionf(x) on ��� as follows. ��� = fx 2 Rn : u 2 R1; (x; u) 2 Sg:f(x) = inffu : x 2 ���; (x; u) 2 Sg:Show that ��� is convex and f(x) is a convex function on ���.84. Let ��� � Rn and f(x) be any real valued function de�ned on ���. The epigraphE(f) of f(x) is a subset of Rn+1 de�ned as in Appendix 3. Assume that ��� is closed,and show that E(f) is closed i� f(x) is lower semi-continuous. In particular, E(f) isclosed if ��� is closed and f(x) is continuous.85. Let ��� � Rn be a convex set and f(x) be a real valued bounded function de�nedon ���. The greatest convex minorant f(x) of f(x) is the largest convex function whichdoes not exceed f(x) at any point in ���, viz.,f(x) = supfh(x) : h(y) is convex and h(y) <= f(y) for all y in ���g; x 2 ���:Show that f(x) de�ned in this way is, indeed, convex. If E(f) is the epigraph of f(x)then show that f(x) = inffu : x 2 ���; (x; u) 2 co(E(f))g;where co(E(f)) is the convex hull of E(f), i. e., the smallest convex subset of Rn+1containing E(f).86. Let ��� � Rn be convex and f(x) be a real valued convex function de�ned on ���.Assume 0 <= f(x) < 1. Show that (1+f(x))1=2 and (1�f(x))�1=2 are convex functionson ���. Is ((1 + f(x))=(1� f(x)))1=2 convex?87. Let f(x) be a real homogeneous polynomial of degree 2 de�ned on Rn, i. e.,f(x) =Xi aix2i +Xi<j bijxixj;where x = (x1; x2; : : : ; xn); and ai, bij are given numbers. Show that f(x) is convex i�f(x) is nonnegative on Rn.



594 Appendix 688. Let f(x) be a real valued function de�ned on the interval J = [0; 1]. The nth(n >= 1) Bernstein polynomial for f(x) is de�ned byBn(f; x) = nXk=0 f�kn��nk�xk(1� x)n�k:Note that Bn(f; 0) = f(0) and Bn(f; 1) = f(1). Show the following:(a) If f(x) is nondecreasing on J, then Bn(f; x) is nondecreasing on J.(b) If f(x) is convex on J, then Bn(f; x) is convex on J. In this case, Bn�1(f; x) >=Bn(f; x) for 0 < x < 1 and n >= 2.(c) If f(x) is bounded on J, then Bn(f; x) ! f(x) as n ! 1 at any point x inJ at which f(x) is continuous. Furthermore, if f(x) is continuous on J, thenthis convergence is uniform on J. Hence conclude that the class of nondecreasing(convex) polynomials on J are dense in the class of continuous nondecreasing(convex) functions on J when the uniform norm kfk = maxfjf(x)j : x 2 Jg isused to generate a metric for the set of continuous functions f(x).(P. J. Davis, \Interpolation and Approximation", Dover, New York, 1975).89. Let ��� be a convex subset of Rn and f(x) a real valued function de�ned on ���. f(x)is said to be a quasiconvex function if fx 2 ��� : f(x) <= �g is a convex set for all real �.A real valued function g(x), de�ned on a convex set is said to be quasiconcave, if�g(x) is quasiconvex.Show that f(x) is quasi-convex on ��� i�f(�x+ (1� �)y) <= maxff(x); f(y)gholds for all x; y 2 ���, all 0 <= � <= 1.90. The following result is well known:Let ��� � Rn and ��� � Rm be compact convex subsets. Let h(x; y) be a continuousreal valued function de�ned on ��� � ��� be such that, for each y 2 ���, h(x; y) is aquasiconcave function of x; and for each x 2 ���, h(x; y) is a quasiconvex function of y.Then, miny2�maxx2� h(x; y) = maxx2� miny2� h(x; y):(See, e. g., H. Nikaidô, \On Von Neumann's minimax theorem", Paci�c Journal ofMathematics, 4 (1954), 65{72, for the above result and M. Sion, \On general mini-max theorems", Paci�c Journal of Mathematics, 8 (1958), 171{176, for more generalversions.) Using the above result, derive the following:Let K, P be bounded subsets of R2 with the property that there exists a � > 0such that u1 >= � for all u = (u1; u2)T 2 K and v1 >= � for all v = (v1; v2)T 2 P. Then,infv2Pnsupu2Knu2 + v2u1 + v1oo = supu2Kn infv2Pnu2 + v2u1 + v1oo (contd:)



6. Exercises 595(V. A. Ubhaya, \Almost monotone approximation in L1", Journal of MathematicalAnalysis and Applications, 49 (1975), 659{679).91. A metric on Rn is a real valued function d(x; y) de�ned over ordered pairs ofpoints in Rn satisfying the following properties.d(x; y) >= 0; for all x; y 2 Rnd(x; y) = 0; i� x = yd(x; y) > 0; i� x 6= yd(x; y) = d(y; x); for all x; y 2 Rnd(x; y) + d(y; z) >= d(x; z); for all x; y; z 2 Rn:Let d(x; y) be a metric on Rn and F be a nonempty subset of Rn. For each x in Rn,let f(x) denote the minimum distance between x and F, viz.,f(x) = inffd(x; u) : u 2 Fg:Show that jf(x)� f(y)j <= d(x; y)for all x; y in Rn. Thus f is nonexpansive.92. Let d0(f; g) = maxfwijfi � gij : 1 <= i <= ng;denote the distance between two vectors f = (f1; f2; : : : ; fn) and g = (g1; g2; : : : ; gn),where w = (w1; w2; : : : ; wn) > 0 is a given weight vector. A vector g is called isotonicif gi <= gi+1, 1 <= i < n. Given a vector f , the problem is to �nd an isotonic vector gwhich minimizes d0(f; g). Such a g, called an optimal vector, is not unique in general.Denote the minimum of d0(f; g) over isotonic vectors g, for given f , by �.De�ne the following quantities:� = max� wiwjwi + wj (fi � fj) : 1 <= i <= j <= n	;gi = maxffj � �=wj : 1 <= j <= ig; 1 <= i <= n;gi = minffj + �=wj : 1 <= j <= ng; 1 <= i <= n:Show the following: (a) Duality: � = �, (b) Optimality: g and g are optimal vec-tors with g <= g. Furthermore, an isotonic g is an optimal vector i� g <= g <= g.(V. A. Ubhaya, \Isotone optimization, I, II", Journal of Approximation Theory, 12(1974), 146{159 and 315{331).93. Consider Exercise 92 with wi = 1 for all i and de�ned(f; g) = maxfjfi � gij : 1 <= i <= ng:



596 Appendix 6hi = maxffj : 1 <= j <= ig; 1 <= i <= n;hi = minffj : i <= j <= ng; 1 <= i <= n:Show the following:� = maxf(hi � fi) : 1 <= i <= ng = maxf(fi � hi) : 1 <= i <= ngand gi = hi � �; gi = hi + �:Construct an O(n) algorithm for computing optimal vectors g and g.94. Let d(f; g), as de�ned in Exercise 93, denote the distance between two vectors fand g. A vector g is called convex if it satis�esgi�1 � 2gi + gi+1 >= 0; 1 < i < n;or more generally, ai�1gi�1 � (ai�1 + ai)gi + aigi+1 >= 0; 1 < i < n;where ai, 1 <= i < n, are given positive numbers. Given a vector f , the problem isto �nd a convex vector g, called an optimal vector, which minimizes d(f; g). Let �denote the minimum of d(f; g) over convex vectors g, for given f .The greatest convex minorant h = (h1; h2; : : : ; hn) of f is the largest convex vector(i. e. satisfying the above condition) which does not exceed f . (See Exercise 85). Showthe following: � = (1=2)d(f; h) and g = h + e� is the maximal optimal vector, i. e.,for all optimal vectors g it is true that g >= g. Construct an O(n) algorithm forcomputing h and then g. (V. A. Ubhaya, \An O(n) algorithm for discrete n-pointconvex approximation with applications to continuous case", Journal of MathematicalAnalysis and Applications, 72 (1979), 338{354.)95. In connection with Exercise 94 consider the following LP.minimize Pni=1 xisubject to �xi�1 + 2xi � xi+1 >= �fi�1 + 2fi � fi+1; 1 < i < nxi >= 0; 1 <= i <= n:Show that the LP has a unique optimal solution x� and the quantities de�ned inExercise 94 for the �rst convexity constraint are given by� = (1=2)maxfx�i : 1 <= i <= ng;gi = �� x�i + fi; 1 <= i <= n:Devise a special pivoting strategy in conjunction with the Dual Simplex Algorithm oflinear programming to solve the above LP in O(n) computing time. (V. A. Ubhaya,



6. Exercises 597\Linear time algorithms for convex and monotone approximation", Computers andMathematics with Applications, An International Journal, 9 (1983), 633{643.)96. A vector g = (g1; g2; : : : ; gn) is called quasiconvex ifgj <= maxfgp; gqg;for all j with p <= j <= q and for all 1 <= p <= q <= n. Show that g is quasiconvex i� thereexists 1 <= r <= n such that gi >= gi+1 for 1 <= i < r and gi <= gi+1 for r <= i < n. Showthat the set of all quasiconvex vectors is a closed nonconvex cone, but the set of allisotonic or convex vectors is a closed convex cone.Let d(f; g) be as de�ned in Exercise 93. Given a vector f , consider the problemof �nding a quasiconvex vector g, called an optimal vector, which minimizes d(f; g).Show that there exist two optimal vectors g and g with g <= g so that any quasiconvexvector g with g <= g <= g is also an optimal vector. Furthermore, g is the maximaloptimal vector, i. e., for all optimal vectors g it is true that g >= g. Construct an O(n)algorithm to compute g and g. (V. A. Ubhaya, \Quasi-convex optimization", Journalof Mathematical Analysis and Applications, 116 (1986), 439{449.)97. Exercise 93 to 96 involved �nding an isotonic, convex or quasiconvex vector gminimizing d(f; g) given the vector f . Such an optimal vector g is not unique ingeneral. For each f it is of interest to select an optimal vector f 0 (in each of threecases) so that f 0 is least sensitive to perturbations in f . Speci�cally, the following twoconditions may be imposed on the selection f 0 for f .(i) d(f 0; h0) <= C d(f; h) holds for all vectors f , h for some least number C. Thismakes the mapping T de�ned by T (f) = f 0 Lipschitzian with constant C.(ii) The selection f 0 is such that the number C is smallest among all selections ofoptimal vectors for f . This makes T optimal.Thus a mapping T satisfying (i) and (ii) may be called an optimal Lipschitzianselection operator.Show that optimal Lipschitzian selections are possible for the three problems asshown below. Here g and g are as de�ned in Exercises 93, 94 and 96.(a) Isotonic problem: T (f) = f 0 = (1=2)(g + g) and C = 1.(b) Convex problem: T (f) = f 0 = g and C = 2.(c) Quasiconvex problem: T (f) = f 0 = g and C = 2.(V. A. Ubhaya, \Lipschitz condition on minimum norm problems on boundedfunctions", Journal of Approximation Theory, 45 (1985), 201{218, also \Optimal Lip-schitzian selection operator in quasi-convex optimization", Journal of MathematicalAnalysis and Applications, to appear).98. Prove that the functions logx and xlogx are respectively concave and convex onthe interval 0 < x <1. Using this, eastablish the following inequality: if x > 0, y > 0,



598 Appendix 6both x; y 2 R1, then logx+ y2 <= xlogx+ ylogyx+ y <= logx2 + y2x+ y :
99. (i) Let �(x), hi(x), i = 1 to m be continuously di�erentiable real valued functionsde�ned over Rn. Consider the nonlinear program.minimize �(x)subject to hi(x) = 0; i = 1 to m:Prove that if x̂ is a feasible solution to this nonlinear program which is a local minimumfor this NLP, then the set of vectors fr�(x̂);rhi(x̂); i = 1 to mg must be a linearlydependent set.(ii) Consider the following NLPminimize �(x)subject to hi(x) = 0; i = 1 to mgp(x) >= 0; p = 1 to twhere �(x), hi(x), gp(x) are all continuously di�erentiable real valued functions de�nedover Rn. Let x be a feasible solution to this NLP. De�ne P(x) = fp : p = 1 to t; gp(x)= 0g. If x is a local minimum for this NLP, prove that the set of vectorsfr�(x)g [ frhi(x) : i = 1 to mg [ frgp(x) : p 2 P(x)gmust be a linearly dependent set. In addition, prove that there must exist a lineardependence relation for this set of vectors of the form�0r�(x)� mXi=1 �irhi(x)� Xp2P(x)�pgp(x) = 0where (�0, �i for i = 1 to m; �p to p 2 P(x)) 6= 0 and (�0; �p : p 2 P(x)) >= 0.100. Consider the following general QPminimize Q(x) = cx+ (1=2)xTDxsubject to Ax >= bx >= 0:De�ne the following:K = Set of feasible solutions of this problem.L = Set of all local minima for this problem.G = Set of all global minima for this problem.



6. Exercises 599If K is bounded, prove that each of the sets L and G, is a union of a �nite number ofconvex polyhedra. Is this result also true when K is not bounded?101. Maximum Area Hexagon of Diameter One: A problem which has longintrigued mathematicians if �nding the maximum area convex polygon in R2 with aneven number of sides, and an upper bound on its diameter. The diameter of a convexpolygon is de�ned to be the maximum distance between any pair of points in it. Whenthe number of sides is odd, the regular polygon has the maximum area; but this maynot be true when the number of sides is even.Consider the special case of this problem, of �nding the maximum area hexagonof diameter one. Clearly, without any loss of generality, one can assume that two ofthe vertices of the hexagon are (0; 0) and (0; x1); and that the other vertices havecoordinates and positions as entered in the following �gure,
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9Figure 23where x2, x4, x6, x8 are all >= 0. Formulate the problem of �nding the maximumarea hexagon of diameter one, as a nonlinear program in terms of the variables x1to x9. Check whether your model is a convex or nonconvex NLP. Write down thenecessary optimality conditions for your problem. Solve it on a computer using one ofthe algorithms discussed in this text.



600 Appendix 6102. Let gi(x) be a di�erentiable convex function de�ned on Rn for i = 1 to m. Letx be a feasible solution of the systemgi(x) <= 0; i = 1 to mand let J(x) = fi : gi(x) = 0g. Prove that the system: gi(x) < 0, i = 1 to m, has afeasible solution i� the objective value in the following LP, in which the variables are�, d = (d1; : : : ; dn)T , is unbounded above.minimize �subject to rgi(x)d+ � <= 0; i 2 J(x):103. Let gi(x) be a di�erentiable convex function de�ned on Rn for i = 1 to m. Letx be a feasible solution of the systemgi(x) <= 0; i = 1 to m:Prove that the system: gi(x) < 0, i = 1 to m, has a feasible solution, i� the followingsystem has no feasible solution � = (�1; : : : ; �m).mXi=1 �irgi(x) = 0� � 0:104. Let A(m � n), B(m � p), a(1 � n), b(1 � p) be given matrices. Prove thatexactly one of the following two systems (I), (II) has a feasible solution, and the otheris infeasible. (I)Ax+ By = 0ax+ by < 0x >= 0
(II)�A <= a�B = b

105. Let A(m� n), B(m� p), a(1� n), b(1� p) be given matrices where b is in thelinear hull of the row vectors of B. Prove that exactly one of the following systems (I),(II) has a feasible solution, and the other is infeasible.(I)Ax+ By = 0ax+ by <= 0x � 0
(II)�A < a�B = b



6. Exercises 601106. Consider the following NLP involving the vectors of decision variables x 2 Rn1 ,and y 2 Rn2 minimize h(x; y) = �(x) + cysubject to g(x) + ay = b1 (m1 constraints)Bx+Dy = b2 (m2 constraints)l1 <= x <= u1l2 <= y <= u2where �(x), g(x) are continuously di�erentiable functions. Given x 2 Rn1 , y 2 Rn2satisfying the bound constraints in the NLP, de�ne the following LP, which comes froma linearization of the NLP around (x; y).minimize r�(x)d+ cysubject to rg(x)d+ Ay = b1 � g(x)Bd+Dy = b2 �Bxmaxfl1j � xj ; sjg <= dj <= minfu1j � xj ; sjg; j = 1 to n1l2 <= y <= u2where d = x� x, s = (sj) 2 Rn1 , s > 0 is a vector of small positive numbers used tobound d in the LP to keep the linearization reasonably accurate. Prove the followingi) If (x; y) is feasible to the NLP, (d; y) = (0; y) is feasible to the above LP for anys > 0.ii) If the constraint matrix of the LP has full row rank, and (x; y) is a feasible solutionof the NLP, then (0; y) is an optimum solution of the above LP i� (x; y) is a KKTpoint for the NLP.iii) Let (x; y) be a feasible solution for the NLP, and suppose (0; y) is not an opti-mum solution for the above LP. If (d0; y0) is an optimum solution for the LP, thenr�(x)d0 + c(y0 � y) < 0, that is, (d0; y0 � y) is a descent direction for the NLPat the point (x; y). (See F. Palacios-Gomez, L. Lasdon and M. Engquist, \Non-linear optimization by successive linear programming", Management Science, 28,10 (October 1982) 1106{1120.)107. Consider the following NLPminimize Q(x) = cx+ 12xTDxsubject to kxk <= �where D is a PD symmetric matrix of order n and � > 0. Write down the KKT opti-mality conditions for this problem. Prove that the optimum solution of this problem isx(�) = �(D + �l)�1cT for the unique � >= 0 such that kx(�)k = �; unless kx(0)k <= �,in which case, x(0) is the optimum solution.



602 Appendix 6108. Let f(x) = f1(x); : : : ; fn(x))T where each fj(x) is a continuous function de�nedofer Rn. Let K be a closed convex cone in Rn. De�ne the polar cone of K to beK� = fy : y 2 Rn; yTx >= 0 for all x 2 Kg. (For example, if K is the nonnegativeorthant, K� is tha same. Let J � f1; : : : ; ng. If K is the orthant fx : x = (xj) 2Rn; xj >= 0 for j 62 J; xj <= 0 for j 2 Jg, then K� is again K itself.)The generalized complementary problem corresponding to f(x) and K is to �ndx satisfying x 2 K; f(x) 2 K�; xT f(x) = 0 (101)using the hypothesis that K is a closed convex cone, prove that the generalized com-plementarity problem (101) is equivalent to the variational inequality problem: �ndx� 2 K satisfying (x� x�)T f(x�) >= 0 for all x 2 K (102)(see Karamardian [1.14]).109. Let K, K�, f(x) be de�ned as in the previous Exercise 108. For any x 2 Rnde�ne PK(x) to be the projection of x into K (i. e., the nearest point in K to x, interms of the usual Euclidean distance). Prove that a solution x� 2 K to the variationalinequality problem (102), can be characterized by the relationx� = PK(x� � �f(x�))where � is a positive constant. Using this, show that the generalized complementarityproblem (101) can be formulated as the �xed point problem of �nding x 2 K satisfyingx = g(x) (103)where g(x) = �PK(x� �f(x)) + (1� �)x, with a constant � > 0 and 0 < � <= 1. Here� is known as the relaxation factor used after the projection.Study the application of the successive substitution method for solving (103).This method will begin with a given x0 2 K, and generate the sequence of pointsfxr : r = 0; 1; : : :g using the iteration, xr+1 = g(xr). The iterative methods discussedin Sections 9.3, 9.4, 9.5 are special cases of this general approach. Study the con-vergence properties of the sequence of points generated under this method (M. AslamNoor, and K. Inayat Noor, \Iterative methods for variational inequalities and nonlinearprogramming", Operations Research Verf., 31 (1979) 455{463).110. Let K � Rn be convex and let f(x) = (f1(x); : : : ; fn(x))T , where each fi(x) is acontinuous real valued function de�ned over K. De�ne a point x 2 K to be a criticalpoint for the pair (f;K) if y = x minimizes (f(x))T y over y 2 K. Let ���(f;K) denotethe set of all critical points for the pair (f;K).Let ���(f;K) denote the set of all points x 2 K such that y = x minimizes ky �x+ f(x)k over y 2 K. Prove that ���(f;K) � ���(f;K).



6. Exercises 603Let �(x) be a real valued continuously di�erentiable function de�ned over K.Consider the NLP minimize �(x)over x 2 K:Prove that every stationary point for this NLP is a critical point for the pair (r�(x);K).If K = Rn+ = fx : x 2 Rn; x >= 0g, prove that the problem of �nding a critical pointfor the pair (f;Rn+) is equivalent to the nonlinear complementarity problem (NLCP):�nd x 2 Rn satisfying x >= 0; f(x) >= 0; xT f(x) = 0:Let d 2 Rn, d > 0 be a given vector. Let D(�) = fx : x 2 Rn; x >= 0; and dTx <= �g,for each � >= 0. If K = D(�) for some � >= 0, prove that x 2 D(�) is a critical pointfor the pair (f;D(�)), i� there is a w 2 Rn+ and z0 >= 0 such that,f(x) = w � dz0; xTw = 0z0(�� dTx) = 0:Also, prove that if x is a critical point of (f;D(�)) and dTx < �, then x is a criticalpoint of (f;Rn+). Conversely if x 2 ���(f;Rn+) and dTx <= �, then x 2 ���(f;D(�)).Consider the case where K is nonempty, compact and convex. In this case, foreach x 2 K, de�ne h(x) to be the y that minimizes ky � x+ f(x)k over y 2 K. Usingh(x) and Brower's �xed point theorem show that (f;K) has a critical point.(B. C. Eaves [3.20])111. Let f(x) = (f1(x); : : : ; fn(x))T where each fi(x) is a continuous real valuedfunction de�ned over Rn. Consider the NLCP: �nd x satisfyingx >= 0; f(x) >= 0; xT f(x) = 0:For each x >= 0, de�ne h(x) to be the y that minimizes ky � x+ f(x)k over y >= 0. Ifh(x) = (hi(x)), show thathi(x) = � 0; if fi(x)� xi >= 0xi � fi(x); if fi(x)� xi <= 0Prove that the following conditions are equivalenti) x solves the NLCP given above,ii) x >= 0 and h(x) = x,iii) x >= 0 and x 2 ���(f;Rn+)where ���(f;Rn+) is de�ned in the previous Exercise 110.Suppose there is a compact convex set S � Rn such that for each x 2 Rn+ n S,there is a y 2 S satisfying (y � x)T f(x) < 0. Under this condition, prove that every�xed point of h(x) lies in the set S.(R. Saigal and C. Simon [3.67], B. C. Eaves [3.20])



604 Appendix 7112. (Research Problem): In Section 11.4.1, subsection 5, we described a specialdirect procedure for obtaining a true optimum solution for an LP, from a given nearoptimum solution for it. Consider the QP (1.11). Assuming that D is PSD, and thata near optimum feasible solution, x, is given for it, develop a special direct procedureto obtain a true optimum solution for the QP (1.11), from x.113. An economic model leads to the following optimization problem. The decisionvariables in this problem are x 2 Rn, y 2 Rn and z 2 Rp. The problem isminimize cx+ dy + azsubject to A1x+A2y + A3z = bx; y; z >= 0and xT y = 0where A1, A2, A3 are given matrices of order m� n, m� n, m� p respectively, and c,d, a, b are given vectors of appropriate dimensions. Formulate this as a mixed integerlinear programming problem.114. Let x 2 R1. De�ne F(x) = fx3 + 3x2 � 9x � 24g. Compute a Kakutani �xedpoint of F(x) using the algorithm discussed in Section 2.7.8.
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Large scale models, 392Lagrange multipliers, 32-34, 39, 55, 374, 376-377, 380,434, 436-438, 447, 554-556, 560-562, 568-569, 572Lagrangian, xxxv, 25, 32, 554-558, 560, 564, 568-569,571, 575Least squares, 30, 138, 380, 391-392, 583Left derivative, 410Left out C. pair, 71, 106, 112, 195, 215-216, 218, 224,304Lemke's algo., 66Lexico min. ratio rule, 65, 75, 81, 84, 110-112, 273-274,292Lexicographic Lemke algo., 99, 123, 161-162Line min., 400-421Linear approx. �xed pt., 152, 157-158Linear dependence relation, 474-476Linear func., xxiiiLinearly constrained NLP, 390-393, 434-448Lipschitz constant, continuity, func., xxx, 541, 581-583Local max., min., xxi, xxxviii, 394-395complexity of checking, 170-179do existing algos. compute it?, 397-398opt. conds. for, 543-569Locally convex func., 179, 539Logarithmic barrier func., 470Loss matrices, 41, 45Lower triangular matrix, 300, 310, 335, 355, 473M -matrices, 227, 234, 239-240, 247Major cycle, 273-275, 277-278Matrix splittings, 383Max. area hexagon problem, 450Merit func., xxxix, 32-33, 37, 179Merrill's algo., 143-160, 162, 184Method of bisection, 403Method of false position, 405Metric matrix, 338, 427, 429Min. linear func. on ellipsoid, 472-474Min., local, global, xx, xxi, 394-395Min. distance prob., 26-27Min ratio, 67-71, 81, 111, 157Minkowski's ineq., 580Modi�ed Newton's method, 404-405, 428Monk's story, 130-131Motzkin's alternative, 516N(�x), 318-320, 323-328n-dimensional simplex, 143-155N -matrix, 230, 234ND, xxii, 208, 545NLCP, xxi, 44, 142, 260, 584NLP, xxii, 3, 142, 356-357nonconvex, 171-173, 179-180, 357nonsmooth, 142
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Nonlinear eqs., 131-133, 138Nonlinear program, xxxii, 139-142algos. for, 400-448capabilities of algos., 395-398formulation ex., 391-393nice prob., 395smooth, xxxii, 171smooth nonconvex, 171-172, 179-180goals for algos., 179-180types, 390types of sols., 394-395Nonzero sum games, 41Norm of matrix, 363No. of c. sols., 197, 210-212, 219, 232-236, 241-243O(nr), xxivOne-to-one correspondence, 223, 263Open problems, 461-468Optimal line search, 423, 430Opt. step descent, 423Opt. conds., 542-571, 573-575, 580, 584Principles behind them, 542Opt. range, 283Optimumfeasible sol., xxiii, 24global, 168Order of LCP, 2, 322Original tableau, 67Orthants, 3, 5, 50, 218Overdetermined system, 138, 436Overestimate, 538P, xxivP -function, 259-260P -matrix, xxviii, 18-19, 85, 92properties of, 204-205, 208-223triangular, 333, 335-336P0-matrix, xxviii, 85, 93, 226, 231, 233, 235, 237, 240,462p-norm, 453PD, xxii, 11-28, 46, 206-207PPT, xxii, 199-208, 217-219, 226-227, 231, 246, 257,269, 272, 275-276, 296PSD, xxii, 11-28, 46-47, 103-105, 206-208, 263-277,289-296Parabola, 102, 406Parameter estimation, 53, 391-392Parametric convex QP, 289-296Parametric LCP, 48, 280-298, 301-304, 311-312Partial derivatives, xxx, xxxi, 124, 409, 435, 536Partial enumeration methods, 186, 466, 468Partial line search, 423Partition of Rn, 218-219Partition prob., 453Path



612 INDEXof C. pivot method, 73, 75-76of simplicial method, 148-149monk's, 130-131Penalty func., xxxix, 33, 141Penalty parameter, terms, 35, 141, 185, 396-397Permanent, 397Permutation, 146, 149-152, 208, 235, 258Permutation matrix, xli, 208, 384Perturbations, 65, 242Piecewise linearapprox., 410-411approx. �xed pt., 152approx. of map, 136, 152-158concave min., 359equations, 50func., 50methods, 124Pivotcol., 13, 67-69, 77, 80-81, 509element, 13-14, 77, 107matrix, 80row, 13, 68-71, 107, 509row choice rule, 258-259, 262step, 13, 67-71, 76, 304-305, 509Point-to-set maps, 134-136, 139, 143Pointwise inf., sup., 124-125, 128, 138-139, 410, 533Polak, Ribiere, Polyak method, 432Polyhedral approx., 410-412, 415, 420Polynomial approx. methods, 406-408Poly. bounded algos., xxiv, 160, 468, 481, 486for convex QP, 336-354for LCP, 333-354Polynomial interpolation method, 406-408Portfolio prob., 29, 55Pos(.), cone, xix, 3Positive (semi)de�nite, xxii, 11-28Principalpivot methods, 254-278pivot step (block, single, double), 201-208, 254-255, 264-272, 281-285pivot transform, xxii, 199-200rearrangement, xli, 208, 248, 384subdeterminant, submatrix, xxi, 11-13, 15-19, 85,203subproblem, xxx, 115-119, 256-258, 302-303, 308,310, 318, 322-323Principally degenerate, nondegenerate, xxix, 85, 204,208, 461Prisoner's dilemma, 42Processing of LCP, xxvii, 89Product form, 81Projected gradient, hessian, 434, 447Projection, 316-317, 324-326, 328Projection face, 317, 327Projection matrix, 445-447

Proper principal submatrix, 12Q;Q0; �Q; �Q0-matrices, xxviii, 85, 89, 122, 210, 227-228, 231-233, 235-239, 241-248, 334, 462(q;M), xvi, 2, 6-7QP, v, xxxivnonconvex, 171, 570checking local min. in, 171-178state tax model, 53-54Quadrants, 3, 218Quad. approx., 411, 419step, 412, 414-415, 418Quad. rate conv., 399, 404-405, 427Quad. interpolation, 406-407Quad. term. prop., 399Quasi-convex func., 594Quasi-Newton methods, 428-431Rn, xviR;R0-matrices, 229-230, 233, 235-236Rank 1, 2, methods, 338, 430Rates of convergence, 399, 404-405, 408, 413, 416-417,426-427, 430, 433Radix, xviiRay, initial, secondary, xxxvi, 3-4, 74, 90, 318, 320termination, 73-74, 80-81, 86, 88-89, 104, 107-108, 113-114, 226, 293, 295Rectilinear distance, xli, 328Reduced gradient, hessian, method, 434, 444-445Reduced KKT pt., 167, 169Regularmatrix, 229, 233pt., 552-555, 558-562, 568-569, 574Regularity cond., 552, 558-559, 565Relative boundary, interior, 317, 323Resolving degeneracy, 68Right derivative, 410Row adequate matrix, 85, 92-93S-matrix, 228, 235-236Sanctuary, 76Search direction, 422, 426-430, 433, 435, 444-445Secant method, 405Second order conv., 399, 404-405Second order opt. conds., 543, 545, 547, 555-558, 561,565-569Secondary ray, xxvii, 74, 90Sectioning, 403, 408Semimonotone matrix, 85, 227Semipositive, xvi, 3Separating hyperplane, 522-531Separation properties, strict, weak, 213-219, 224-226,231Sequential QP method, 31-40Sherman-Morrison formula, 486



INDEX 613Sign nonreversal, 210, 220Simplest nonconvex NLP, 174, 398Simplex, xix, 143-158, 331, 348, 478, 480, 494completely labeled, 153Simplicial cone, xxix, 521Simplicial methods, 124, 162Single PP step, 201-202Size, xxivSmooth func., surface, NLP, xxxii, 390, 548Sparsity, 162Sparsity preserving SOR, 378-381Special triangulation, 149-155Spectral radius, 381Standard simplex, 472Stationary pt., xxxviSteepest descent direction, xli, 426-427, 429, 432, 444,473, 493-494Step length, 3-4, 422-425, 432-433Strict separation property, 213-219, 224, 288Strictly copositive, xxviiStrictly semi-monotone, 122, 227, 231-232, 238Strongly degenerate, xxx, 229Subcomplementary vector, set, xxvii, 195-196Subdi�erential set, 125, 127, 137-138, 142, 410, 540-541Subgradients, 125-128, 415, 540-542Successive substituition method, 131Su�. opt. conds., xxv, 140, 543-544, 555-558, 561-562,565, 567-569, 570-571, 580Sum of convex sets, 521Super diagonalization algo., 21, 23Superlinear conv. rate, 399Supporting hyperplane, xxix, 524Symmetric PD approx., 33, 38T(b; �x), 318-320, 323-324, 326Tangent hyperplane, 320, 345Tangent line to curve, 549-550Tangent plane, 549-550, 553Tax problem, 53-54Terminal extreme 12 -line, xxvii, 87, 100Terminal tableau, 103Termination conds.in C. P. method, 74in line search, 410in �xed pt. computation, 155, 157in SQP method, 34, 40in unconstrained min., 433Theorems of alternatives, 507-519Tight constraints, xxvi, 437Top layer, 149-157Total enumeration, 8-9, 466Tra�c assignment, 441-443Transform LPto make opt. obj. value 0, 470-471

to have int. feas. sol., 471into Karmarkar's form, 471-472, 477, 492-493Triangular matrix, 335-337, 355Triangulations, 124, 144-159Tschebyche� approx., 392Tucker's lemma, 511-513Tucker's alternative, 517Twice di�erentiable func., xxxiTwo person games, 40U -matrices, 230, 234USC maps, 135-136, 139, 158-159Unbounded edge, 68Unboundedness of obj., 101-103, 186, 499-500Unconstrained min., 137, 390complexity of checking local min., 178-179descent methods for, 421-433opt. conds. for, 543-545Unimodal func., 402-403Unique compl. sol., 210-213, 219, 221-223, 230, 248Updated col., 66Upper triangular, 335, 355Upper semi-continuous, 135Van der Waerden conjecture, 397Variable dimension algo., 115-123Variable metric methods, 338, 427, 429Variational ineq. prob., 547-548Vector labeling method, 153Von Neumann's minimax theorem, 41W -matrices, 230weak separation matrix, 231, 236Weakly degenerate c. cone, xxx, 229-230Working active set, 447-448Worst case complexity, 160-161, 300, 310-311of C. P. method, 160, 306-307of Dantzig-Cottle PP Method, 312of Grave's PP method, 312of parametric LCP, 301-304of PP method I, 307-311of variable dimension algo., 312y+, xviii, 50Young's ineq., 579Z-matrix, xxviii, 85, 226-227, 234, 238, 240, 333-335,359, 383Zero sum game, 41, 45


