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L Introduction and Preliminaries

The Complex Cayley Transform

The Cayley Transform and the Extrapolated Cayley Tranform are
of significant theoretical interest and have many applications.
The (Extrapolated) Cayley Transform appears in:

m The Linear Complementarity Problem (LCP) with
Applications to Linear and Convex Quadratic Programming,
Game Theory, Fluid Mechanics, Economics, etc.

m The determination of the optimal acceleration parameter in

m Alternating Direction Implicit (ADI) lterative Method
[Peaceman/Rachford Jr. SINUM (1955)]
m Solution of complex linear systems by

B The HS Splitting [Z.-Z. Bai/Golub/M.K. Ng SIMAX (2003)]
m The NS Splitting [Z.-Z. Bai/Golub/M.K. Ng NLAA (2006)]
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Definitions

Their definitions (A.H./M.T. LAA 2008) are as follows:

Given

AeC" with —1¢o(A), (1)
the Cayley Transform F(A) is defined to be

F:=F(A) = (I + A)~(I — A). (2)

Definition 2

Under the assumptions of Definition ??, we call Extrapolated Cayley
Transform, with extrapolation parameter w, the matrix function where A
is replaced by wA

F, = F(wA) = (I + wA) (] — wA), —1 ¢o(wA). (3)
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The Definitions

In many cases, F,, is the iteration matrix of an iterative method.
Therefore, p(F,,) constitutes a measure of its convergence. Hence, it

< 1 and this holds iff Re (wa) > 0.

l-—wa
must be max e, (a)cH ‘m

Definition 3

Let A€ C™" and o(A) be its spectrum. The Closed Convex Hull of
o(A), denoted by H(A) or simply by H, is the smallest closed convex
polygon such that o(A) C H.

We also make the following main assumptions:

i) 0 ¢H ii) Re(wa) >0, Vae o(A) CH. (4)



On Extrapolation of Complex Cayley Transform

LThe Problem and its Solution.

The Problem

Our main objective is to solve the following problem.

Problem 1
Based on the hypotheses of Definitions ??, ??, ?? and Main
Assumptions, determine the Extrapolation Parameter w that minimizes
the spectral radius of the Extrapolated Cayley Transform, i.e.

1—wa

min max
weC\{0}, —1¢ o(wA) aco(A)cH | 1 + wa

min = . (5
wGC\{O},L1€ U(wA)p ‘ ( )
Or equivalently, we have to solve the minmax problem

1—wa

min max
weCaceH |1 +wa

| (< D). (6)
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LThe Problem and its Solution.

The Solution

The previous function

1_
w o= w(a) = 1+Z§, acM, weC, Re(wa) >0,  (7)

is a Mobius transformation. It has no poles and is not a constant as is
readily shown. Hence, it possesses an inverse Mobius transformation
1—w

wiw(a) =a = m, w=w(a), a€H, weC, Re(wa) >0,
(8)

which has no poles and is not the constant function.
In general, a Mobius transformation maps a disk onto a disk and its circle
onto the circle of its image.
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LThe Problem and its Solution.

The Solution

To see how their elements are mapped via the previous transform, let an
w € C and C,, be the circle with center O(0) and radius

p = p(Co) = max|w(a)] (< 1). (9)

In view of (??), C,, will capture! w(H) and will pass through a boundary
point of it. Therefore, C,, must be the image of a circle C. To find out
how C is derived from C,, and vice versa, we begin with

Co =|wl=p&---&la—c|=R=:C, (10)

which is the equation of a circle, with center ¢ and radius R given by

The word “captures” will mean “contains in the closure-of its-interior’.
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LThe Problem and its Solution.

The Solution

1+ p? 2p

= —— R = ————. (11)
w(l—p?) |w[(1 = p?)

So, we can see that the circle C possesses the properties:

m leaves O(0) strictly outside since R < |c]|.

m captures H (H C C) since C,, captures w(H)
(w(H) c C, = w(C)), and

m passes through at least one vertex of H, because by (77) C,
captures w(H) and passes through a boundary point of it

Hence, equivalently, C captures H and passes through a boundary point
of it, that is a vertex.
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L Definition and Theorems

Definition and Theorems

A circle C satisfying the above three properties will be called a capturing
circle (cc) of H.

Theorem: 1

Let A€ C™", o(A) be its spectrum and H be the closed convex hull.
Then, there are infinitely many capturing circles (cc) of H.

Really, the circle with center any K € Oz, where Oz is any ray within a
specific angle, such that (OK) > max;c;(OK;) and radius

R = max;¢;(KP;) is a cc of H.

In the following figure we can see one of these ones.
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L Definition and Theorems

Figure: One of the infinitely many capturing circles
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To solve our Problem it suffices to find which of the cc's of H is the one
that minimizes p. The following theorems constitute a decisive step in
this direction.

Theorem: 2

Let C be a cc of H, K(c) and R be its center and radius and C,, be its
image of C. Then, the extrapolation parameter w and the radius p of C,

are given by
|| R
w=— p= ——" (12)
cy/|c]? — R? lc] + /Ic|* = R?
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Theorem: 3

Under the assumptions of Theorem ??, the solution to our Problem is

equivalent to the determination of the optimal cc C* of H so that

minimum.

Theorem: 4

The optimal cc passes through at least
two vertices of H.

Indeed, if a circle passes through P;
and captures all vertices of H, then
there exists a circle inside the previous
one that passes through P; and from
at least one (here from P,) of the

other vertices of H and has a smaller
R

lel”

R

is a
[

P4

o

So, one cc can be determined from two or three points (vertices of H).
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The extrapolation problem in a simpler case, (min,cc Maxaep |1 — wal),
was solved, in

m the Real Case
by Hughes-Hallett Proceedings (1981), JCAM (1982) and
A. Hadjidimos 1JCM (1983)

m the Complex Case in

m A.Hadjidimos, LAA (1984) (H was line-segment or polygon)
and the solution was based on Apollonius Circles

m Opfer/Schober LAA (1984) (H was line-segment or ellipse),
and the solution was based on Lagrange Multipliers.

In our work only the Algorithm of the former case works, where one of its
steps has been significantly improved.
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We recall the classical Theorem of the Apollonius circle.

Theorem: 5

(Apollonius Theorem) The locus of the points M of a plane whose
distances from two fixed points A and B of the same plane are at a
constant ratio % = X\ # 1 is a circle whose diameter has endpoints C
and D that lie on the straight line AB and separate internally and

externally the straight-line segment AB into the same ratio A, namely
(CA) (DA)

5 ~ (o8 ~ ™ (13)

—~
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So,

Under the assumptions of Theorem ?? the optimal cc of H is unique.

Indeed, if we assume that
there are two optimal cc, then
we find a new circle, that
captures the region AM;BM,
(which includes the polygon),
and

KA KA K>A

KO S K0 _ K,0
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If / =2, we can prove that the point K{, on the perpendicular bisector
to P1 P, whose ratio of distances from P1 and O (and also from P, and
0) is minimal, is the center of cc of P; and P, and this is found as the
intersection of any two of the three lines:

i) the perpendicular bisector to Py P,

ii) the bisector of ZP; OP,, and

iii) the circle circumscribed to the triangle OPyP;.

The elements of C7 , are given by

. _ (altlz)az . _ |allzllz— 2|

. 14
e Py Py PAI Gl Py P oy R O

The optimal cc C{ 5 in this case will be called a two-point optimal cc.
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Theorem: 7

Let H have vertices P;, i = 1(1)/, | > 3. Then, if the optimal cc of H is
determined by an optimal two—pomt cc it will be the unique one that
corresponds to the maximum ratio e i=11) -1, j=i+1(1).

Remark 1

It is possible to have more than one pair of Apollonius circles that share
the point of contact K7*j‘ of Theorem 7.

We can see this in following figure.
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If | =3 and does not exist a two-point cc, then the ccis a three-point cc.
This is circumscribed to the triangles Py P> P3, the elements of C7 ; 5

(Ki2,3(c12,3) and Ry23), are given by using the formulas

|21[*(22 — 23) + |22/’ (23 — 21) + |5]*(21 — 22)
71(23 — Z/) +72(Z3 — Z1) + 73(Zi - 22)

; (15)

C123 =

(21 — 2)(22 — z3)(z3 — 21)

R; = |— e — .
23 Z(z2 — )+ Z2(z3 — 21) + BB(21 — 2)
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The Algorithm

Step 1. Let Pi(z), i = 1(1)/, be the I vertices of H and let
I=1{1,2,....1}.

Step 2. If | =1, the elements of C; are given by ¢ = z;, Ry =0.

Step 3. If | = 2, the elements of Cy , are given by (7?)

Step 4. If / > 3, find the elements of the (}) two-point optimal cc's C; j,

i=1(1) -1, j=i+1(1)/, and from these the maximum ratio R 1f

lcijl
the optimal cc that corresponds to the maximum ratio captures H, that is

lG;—z| < Rj Vk e N{i,j},
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then this two-point optimal cc ij, will be the optimal cc of ‘H. If such a

circle does not exist, then find the elements of the (é) circles that are
circumscribed to the triangles P;P; Py,

i=11)k -2, j=i+1(1)k -1, k = j+ 1(1)/, using the formulas

- 1zi?(z; — zi) + |2)|*(zx — 2i) + |z|(zi — Z)) )
> Zi(zk —2))+ Zj(zk — z1) + Z(zi — z7)

(zi = 2)(z — 2)(2 — 7))

Rijk = |= = = '
" Zi(zj — zk) + Zj(zk — z1) + Z(2i — Z)

(17)
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Discard all circles that may capture the origin, i.e.
ikl < Riji

and, from the remaining ones all those that do not capture all the other
vertices, i.e.

(R,'J’k < ‘C,'yj_’k| and Idm e I\{I,jk} such that R,'J’k < |Ci,j,kfzm‘)-

From the rest, the one that corresponds to the smallest ratio 7(0%"*”, is
1]
the three-point optimal cc C;- . of H.

J.k
Step 5. End of Algorithm.

3Js
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L|ntrc»duction

Application: Linear System with Indefinite Coefficient
Matrix

In 2003 Bai, Golub and Ng introduced an Alternating Direction Implicit
(ADI)-type method using Hermitian/Skew-Hermitian Splittings for the
solution of complex linear algebraic systems with matrix coefficient
positive definite.
Consider the splitting

A= B+C, (18)

where 1 1
_t H _ T (A_aH
B =S (A+A"), C = 5 (A-A")

B is Hermitian and C is Skew-Hermitian.
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LIntroduction

For the solution of
Ax=0>b

the following ADI-type method is adopted

(rl + B)x(m+2) = (] — C)x(m 4 p,

1 19
(rl + O)x(mtY) = (rl — B)x(m+2) + b, m=0,1,2,..., (19)
where r is a positive acceleration parameter.
From equations (??) we obtain the iterative scheme
xmt) = Tx(M 4 m=0,1,2,..., (20)

where

T, = (rl+C) " Yr1=B)(rl+B) Y (rl-C), ¢ = 2r(rl+C) "} (rI+B)~*h.
(21)
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LIntroduction

Note that the matrices T, and
T, = (rl = B)(rl + B)~Y(rl — C)(rl + C)~! are similar. So,

p(T) = p(T) < |ITell < [|(r1=B)(r1+B) |||l = C)(rl+C) 7 |o.
(22)
Since C is Skew-Symmetric (C" = —C) we have

1(r1 = Ol + O) Ml = p2 (1] + O) (el = O = O)(rl + O) ) =
(= O+ O )(r/ +0)7) =
p? ((r/—C)‘l(rI—C)(r/+C)(rI+C) ) = pi(l) = 1(.23)
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LIntroduction

Consequently, we have to minimize the bound ||(r/ — B)(rl + B)7!||» of

the spectral radius p(T,) (or p(T,)). So

(rt = B)(rl +B) Y2 = p((r = B)(rl +B)™)
r—b

r+b

1-1p

1+1p

maxX
beo(B)

max
beo(B)

Let b € by, bo], where b is a positive lower bound of o(B) and b, an
upper bound. The minimum value is attained at r = r* = /b1 b,

(See R.S. Varga, Matrix Iterative Analysis, 2nd Edition, Springer, Berlin,
2000.) This can be also obtained by a simplified version of our Algorithm.
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L Case of Indefinite Matrix Coefficient

Suppose that o(A) C R, Ay R a,
where R is a rectangle, and
with its coordinates satisfying

)

B <0< B, |Bi] + 162 >0,

A3
B3 = B2, Ba = P Ay Ay
and 0 <y <71, 71 =72, 73 = Va- R
a o
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L Case of Indefinite Matrix Coefficient

To apply the ADI-type method to the original system we multiply both
members of the system by e=*?, § > 0,

e Ax = e b,

so that the new coefficient matrix e *? A becomes positive definite. The
angle @ takes values so that the projection of e "R onto the real axis is
on the positive real semiaxis.

The polar radii r; and the polar angles ¢;, i = 1(1)4, of the
corresponding vertices of R will be

ri = \/B?+7% ¢ = arccos (ﬂ') i=1(1)4. (24)

fi
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L Case of Indefinite Matrix Coefficient

The projection of e "R onto the real axis is defined by those of the
“new positions” of the diagonal A1A;s, for 0 € (¢1 — Z,Z], and by
the corresponding ones of AyA, for 6 € [Z, ¢ + 5).

The endpoints of these projections are

b](@) = 1 COS ((Z)l — 9) b2(9) = n COS(¢3 — 9) for 0 ¢ (¢1 — %, %] s
or

bi(0) = rcos(¢o—0), by(0) = racos(¢ps—0) for O€[Z,. ¢+ %).



On Extrapolation of Complex Cayley Transform

LApplication: Linear System with Indefinite Coefficient Matrix

L Case of Indefinite Matrix Coefficient

We follow our Algorithm, with H being the positive real line segment

[b1(8), b2(0)]. Therefore, the center K(c) and the radius R of the
optimal cc are given by

= 2(51(6) + ba(6)) and R =2 (bo(6)  bu(6),

which are functions of 6 € (gbl — 5,2+ %)
Consequently, to find the best optimal cc we have to minimize g given by

m
2

rq cos(¢pa—0)—r, cos ¢>2—9% T

rs cos(¢pa—0)+r> cos(pr—0) for 6 ¢ [5

r3 cos( ¢z —0)—ry cos(p1—6
B o b2(9) — bl(o) — { rzcosgd)z—0§+ricos§d)i—9) for 0 € ( -
C

]
+3)
(26

~ N\ﬂ '\J\=l

)
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L Case of Indefinite Matrix Coefficient

It can be obtained that the minimum is attained at 6 = 7.

Note that e~*Z = —1, so the scalar preconditioner of A is — and the
matrices —2Band —:C in (??) are now Skew-Hermitian and Hermitian,
respectively.

So, the acceleration parameter r = r* is given by

ﬁl() () Vnrssingysings = /7173 = /27 (27)
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LSpecial Cases of Indefinite Coefficient

As a special case let us consider the one, where the rectangle R reduces
to a straight-line segment parallel to the real axis and intersecting the
“positive” imaginary axis. Applying the theory of the previous paragraph

we find that - -
b(3) = n(3) =
implying, from (??), (??) and (??), that

p(T)=0



