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The Linear Complementarity Problem (LCP) hasmany applications as,

e.g., in the solution of Linear and Convex Quadratic Programming,

in Free Boundary Value problems of Fluid Mechanics, etc. In the

present work we assume that the matrix coefficient M ∈ Rn,n of

the LCP is symmetric positive definite and we introduce the (opti-

mal) nonstationary extrapolation to improve the convergence rates

of the well-knownModulus Algorithm and Block Modulus Algorithm

for its solution. Two illustrative numerical examples show that the

(Optimal) Nonstationary Extrapolated Block Modulus Algorithm is far

better than all the previous similar Algorithms.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The Linear Complementarity Problem (LCP) is met in many practical applications. For example, in

linear and convex quadratic programming, in a problem of the theory of games [14,6], in problems in

fluid mechanics [8], in problems in economics [19,13], etc. For more applications see, e.g., [16,7,5,17].

To state the LCP we need some notation. So, for a matrix A ∈ Rm,n we write A� 0 (A> 0) if each

element of A is nonnegative (positive). The inequality A� 0 (A< 0) is defined in an obvious way. Also,

A� B (A> B) means A − B � 0 (A − B> 0). Finally, |A| denotes the matrix whose elements are the

moduli of the corresponding ones of A.

∗ Corresponding author.

E-mail addresses: hadjidim@inf.uth.gr (A. Hadjidimos), mtzoumas@cc.uoi.gr (M. Tzoumas).

0024-3795/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2009.02.024



Author's personal copy

198 A. Hadjidimos, M. Tzoumas / Linear Algebra and its Applications 431 (2009) 197–210

The LCP is defined as follows (see, e.g., [16,7,5] or [17]):

Problem: Determine x ∈ Rn,n, if it exists, satisfying the following conditions

r :=Mx + q� 0, x � 0, rT x = 0 withM ∈ Rn,n, q ∈ Rn (q�/ 0). (1.1)

Note: In (1.1) we set q �/ 0 since otherwise we have the trivial solution x = 0, r = q� 0.

A sufficient and necessary condition for LCP (1.1) to possess a unique solution, for all q ∈ Rn, is that

M is a P-matrix, that is all its principal minors are positive. The corresponding proof seems to go back

to Samelson et al. [20]. Subclasses of P-matrices are the real positive definite matrices, the M-matrices,

the real H-matriceswith positive diagonals, etc. In this workwe focus on real symmetric positive definite

matrices.

To solve (1.1) we consider iterative methods, the first of which is attributed to Cryer [8]. Since then

many researchers have proposed other iterative methods, e.g., Mangasarian [15], Ahn [1] and Pang

[18]. Recently, a growing interest has been shown in them (see, e.g., [4,2,3,13,26,9], etc).

In the present work we are mainly concerned with the well-known Modulus Algorithm introduced

by van Bokhoven [23] and extended byKappel andWatson [12] to the BlockModulus Algorithm. In these

Algorithms the LCP is transformed into a fixed-point problem,where a new “unknown" z is introduced

so that

x = |z| + z and r = |z| − z, (1.2)

see, e.g., [17]. Then, using (1.2) and replacing x and r in (1.1) it is readily obtained that

z = f (z):=D|z| + b, (1.3)

z ∈ Rn, D = (I + M)−1(I − M), b = −(I + M)−1q. (1.4)

Note that the iteration matrix D is nothing but the Cayley Transform ofM [10] or [11].

2. Extrapolating LCP

For the iterative solution of (1.3) the simplest iterative scheme is the following

z(m+1) = D|z(m)| + b, m = 0, 1, 2, . . . , with any z(0) � 0. (2.1)

For the convergence of (2.1) to the (unique) solution of (1.3) there must hold ||D|| < 1, where || · ||
denotes the absolute matrix norm induced by the absolute vector norm || · || as follows: For a given

A ∈ Rn,n, ||A||:= sup∀ y∈Rn\{0} ||Ay||
||y|| . The absolute vector norm, in addition to the three well-known

conditions for a vector norm, satisfies the following two:

(i) || |x| || = ||x|| , ∀ x ∈ Rn and (ii) |x| � |y| �⇒ ||x|| � ||y|| , ∀ x, y ∈ Rn.

(2.2)

For the proof see [23] or [12] or Theorem 9.4 of [17]. Note that all vector norms defined by

||y||p =
(

n∑
1

|yi|p
) 1

p

, ∀ p� 1, (2.3)

also satisfy (2.2), with the most common ones being those for p = 1, 2,∞. Restricting to symmetric

positive definite matrices M, D in (1.4) is (real) symmetric. Let λi ( > 0), i = 1(1)n, be the eigenvalues

of M, then those of D are
1−λi

1+λi
, i = 1(1)n. Consequently, the absolute spectral norm for D is ||D||2 =

ρ(D) = maxλi∈σ(M) | 1−λi

1+λi
| < 1, and so scheme (2.1) always converges. Therefore z(m) tends to the

solution z of (1.3) as k → ∞ from which x and r are recovered using (1.2).

To accelerate the convergence of (2.1) we apply extrapolation to (1.1). So, we multiply through by

ω ( > 0), the extrapolation parameter, in which case (1.1) becomes

(ωr):=(ωM)x + (ωq) � 0, x � 0, (ωr)T x = 0. (2.4)
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Due to the positivity of ω, relations (1.1) imply (2.4) and vice versa; also, the matrix properties of M

are inherited by ωM and ωq ∈ Rn\{0} (ωq �/ 0).
The extrapolated iterative scheme based on (2.1) is constructed from (2.4) in the same way as (2.1)

is constructed from (1.3). Hence

z(m+1) = Dω|z(m)| + bω , with any z(0) � 0, (2.5)

where

Dω = (I + ωM)−1(I − ωM), bω = −(I + ωM)−1ωq, (2.6)

with Dω being the Extrapolated Caley Transform of M (see [11]).

Obviously, iterative scheme (2.5) converges for any ω ∈ (0,+∞) because

||Dω||2 = ρ(Dω) = max
ω > 0, λi∈σ(M)

∣∣∣∣∣1 − ωλi

1 + ωλi

∣∣∣∣∣ < 1. (2.7)

The problem of minimization of ρ(Dω) in (2.7) was solved in a more general form in [11] from

which we borrow the following:

Theorem 2.1 (Formulas (4.3) of [11]). Let λmin and λmax be the smallest and the largest eigenvalues of

the real symmetric positive definite matrix M. Then, the optimal extrapolation parameter ω in (2.5) and

the corresponding spectral radius of Dω in (2.6) are given by

ω∗ = 1√
λminλmax

, ρ(Dω∗) =
√

λmax − √
λmin√

λmax + √
λmin

. (2.8)

Corollary 2.1. Under the assumptions of Theorem2.1,ρ(Dω∗) is a strictly increasing function of the spectral
condition number κ2 :=κ2(M) = λmax

λmin
.

Proof. By dividing both terms of the fraction giving ρ(Dω∗) in (2.8) by
√

λmin and differentiating with

respect to (wrt) the ratio
λmax

λmin
the conclusion immediately follows. �

3. Nonstationary Extrapolated Block Modulus Algorithm (NSEBMA)

We begin this section with the discussion of the two Modulus Algorithms:

van Bokhoven’s Modulus Algorithm (MA): The following lemma is taken from [12].

Lemma 3.1. Under the notation and the assumptionsmade so far, if we apply van Bokhoven’sMA to scheme

(2.1), with z(0) = 0 ∈ Rn, then after N iterations,

N =
⎡⎢⎢⎢
ln
(
1−ρ(D)
1+ρ(D)

)
− ln(1 + √

n)

ln(ρ(D))

⎤⎥⎥⎥ , (3.1)

one component of z(N) will become positive (negative), say that corresponding to the index l

|z(N)
l | = max

i=1(1)n
|z(N)

i |, (3.2)

and will remain positive (negative), thereafter.

Proof. For the proof see Theorem 3 of [12] and the note(s) immediately after it. �

By Lemma 3.1 and (1.2), if z
(N)
l < 0, then x

(N)
l = 0. If z

(N)
l > 0, then x

(N)
l > 0, forcing r

(N)
l = 0. In the

former case we delete the lth equation of r = Mx + q and the lth column ofM. In the latter we do the



Author's personal copy

200 A. Hadjidimos, M. Tzoumas / Linear Algebra and its Applications 431 (2009) 197–210

same after pivoting aboutmll . So, the new LCP is reduced in size by one. If we assign the subscript 1 to

the original M, r,D, b, and 2 to the corresponding ones of the new LCP, we will find N2 �N1, since for

M2, ρ(D2) < ρ(D1) in general (see Theorems 3.1, 4.2 and 4.4). Hence, the total number of iterations to

solve our LCP will be

N1 + N2 + · · · + Nn−1, where N1 �N2 �N3 � · · · �Nn−2 �Nn−1. (3.3)

Theorem 3.1. Under the assumptions of Lemma 3.1, N is an increasing function of ρ(D).

Proof. Let N̂ be the quantity in the ceiling function in (3.1), namely

N̂ := ln
(
1−ρ
1+ρ

)
− ln(1 + √

n)

ln ρ
, (3.4)

with ρ = ρ(D) ( < 1). Differentiating N̂ wrt ρ we obtain

dN̂

dρ
= − 1

ln ρ

[
2

1 − ρ2
+ N̂

ρ

]
> 0. (3.5)

Therefore N̂ strictly increases and hence N is an increasing function of ρ . �

As is obvious, we can apply to van Bokhoven’s MA a nonstationary extrapolation with ω∗ being

recalculated in the beginning of each cycle. If λminλmax = 1, whence ω∗ = 1 by (2.8), ρ(Dω∗) =
ρ(D), otherwise ρ(Dω∗) < ρ(D). Therefore, it will be expected that the total number of iterations

and CPU time to solve the LCP at hand will be drastically reduced despite the recalculation of ω∗
i ’s,

i = 1(1)n − 1. To realize how the Nonstationary Extrapolated Modulus Algorithm (NSEMA) is related

to (1.1) we will express the process in matrix form.

To simplifymatters, assume that l of z
(
∑p

i=1Ni)

l , p = 1(1)n − 1, in (3.2), is found in the natural order

(1, 2, 3, . . . , n − 1) and that none of the z
(
∑p

i=1Ni)

l ’s is zero. (Note: If z
(
∑p

i=1Ni)

l = 0, p< n − 1, then all

the remaining components of x and r are zero.) Hence NSEMA terminates after n − 1 cycles. Beginning

the first cycle, (1.1) is multiplied through by ω∗
1 to obtain (2.4). In (2.4), r, M, q are multiplied by ω∗

1
while x remains unchanged. Note that the properties of ω∗

1 r, ω∗
1M, ω∗

1q do not differ from those of

r, M, q. After the first cycle, if x
(N1)
1 = 0 thenω∗

1 r
(N1)
1 > 0. So, the first equation and the first column of

ω∗
1M are deleted. If x

(N1)
1 > 0, then ω∗

1 r
(N1)
1 = 0. Then, the pivoting follows, with pivot ω∗

1m
(1)
11 , where

the upper index denotes cycle. (Notes: (i) All the multipliers in the pivoting process are those that they

should have been if no extrapolation had been applied. and (ii) By Theorem 2.1 and Corollary 2.1, the

ratios of the extreme eigenvalues of M and of ω∗
1M as well as those of the corresponding principal

submatrices remain unchanged.) Then, a deletion, such as before, follows. To return to the original LCP

in (1.1) we can follow one of three alternatives: (i) Divide all n equations, including the first one, by

ω∗
1 to recover (1.1). Then, the first cycle of the NSEMA is completed and the second cycle follows. At

the end of the n − 1 cycles the actual values for x and r are obtained. (ii) Begin the second cycle by

multiplying the n − 1 equations from the second to the last by
ω∗
2

ω∗
1
and so on. In this alternative, setting

�∗
1 = diag

(
ω∗

1 ,ω
∗
2 ,ω

∗
3 , . . . ,ω

∗
n−1, 1

)
, (3.6)

the Algorithm we use solves the following Nonstationary Extrapolated LCP

(�∗
1r) = (�∗

1M)x + (�∗
1q) � 0, (�∗

1r)
T x = 0. (3.7)

Since x has remained unchanged, only �∗
1r has to be premultiplied by �∗

1
−1

to recover r.

(iii) Multiply the last n − 1 equations by ω∗
2 , noting by (2.8) that the present ω∗

2 differs from the

previous one by the factor ω∗
1 , and go on with the second cycle. Setting

�∗
2 = diag

⎛⎝ω∗
1 ,ω

∗
1ω

∗
2 ,ω

∗
1ω

∗
2ω

∗
3 , . . . ,

n−1∏
i=1

ω∗
i ,

n−1∏
i=1

ω∗
i

⎞⎠ , (3.8)
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the Algorithm used solves the following Nonstationary Extrapolated LCP

(�∗
2r) = (�∗

2M)x + (�∗
2q) � 0, (�∗

2r)
T x = 0. (3.9)

Obviously, x remains unchanged and a premultiplication of �∗
2r by �∗

2
−1

recovers r.

Twopoints have tobe clarified. (i) Fromthe second cycle onwards�∗
1M and�∗

2M arenot symmetric.

This is true, but we should recall that the submatrix used in each cycle is a positive multiple of the

original one. Therefore all theproperties of the latter are inheritedby theoneused. (ii) In a real situation

the ordering of l’s in all three alternatives would not be the natural one and so the components of x

appear in a permuted order. Let P be the corresponding permutation matrix. Then, the problem we

solve, say in alternative (iii), is

(�∗
2Pr) = (�∗

2PMPT )(Px) + (�∗
2Pq) � 0, (�∗

2Pr)
T (Px) = 0. (3.10)

Obviously, we have to keep track of the ordering of l’s, as in the Gauss elimination. Then, x and r are

recovered in an obvious way.

Kappel and Watson’s Block Modulus Algorithm (BMA): Lemma 3.2 below is from [12].

Lemma 3.2. Under the notation and the assumptions made so far, if we apply Kappel and Watson’s Block

Modulus Algorithm (BMA) to iterative scheme (2.1), with z(0) = 0 ∈ Rn, then after N iterations, where N

is given by (3.1), not only the absolutely largest component of z(N) will preserve its sign thereafter, but also

all other components of it satisfying

|z(N)
l | � T := 1√

n

(
1

1 + ρ(D)
− ρN(D)

1 − ρ(D)

)
‖b‖2. (3.11)

Proof. For the proof see Theorem 4 of [12] and the notes following it. �

In general, there may be more than one component of z(N) that will allow to determine the corre-

sponding x
(N)
l and r

(N)
l . In such a case, more that one equation (and corresponding columns ofM) will

be deleted and the next LCP will be drastically reduced in size. It is then expected that the Kappel and

Watson’s Algorithm will produce the solution sought in fewer iterations in each cycle, and maybe in

fewer cycles, than that of van Bokhoven’s.

In what follows we state and prove a theorem which seems to be a negative result.

Theorem 3.2. Under the assumptions of Lemma 3.2, T strictly decreases with ρ(D) increasing.

Proof. Since n and ‖b‖2 are positive constants it is obvious that dT
dρ

and dT̂
dρ

, with

T̂ := 1

1 + ρ
− ρN̂

1 − ρ
(3.12)

and ρ = ρ(D), are of the same sign. Differentiating we have

dT̂

dρ
= − 1

(1 + ρ)2
− (1 − ρ)

dρN̂

dρ
+ ρN̂

(1 − ρ)2
. (3.13)

To find
dρN̂

dρ
, we put y = ρN̂ , take logarithms, and differentiate wrt ρ to obtain

1

y

dy

dρ
= dN̂

dρ
ln ρ + N̂

1

ρ
. (3.14)

Substituting dN̂
dρ

and N̂, from (3.5) and (3.4), respectively, as well as y = ρN̂ into (3.14), we can obtain

after some simple manipulations that
dρN̂

dρ
= − 2ρN̂

1−ρ2 . Substituting the last expression into (3.13) and

using (3.12) we finally obtain that
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dT̂

dρ
= − 1

1 + ρ

⎛⎝ 1

1 + ρ
− ρN̂

1 − ρ

⎞⎠ = − T̂

1 + ρ
< 0. (3.15)

Consequently, T̂ and T are strictly decreasing functions of ρ . �

Remark 3.1. The above surprising result states that ρ should increase rather than decrease to get a

smaller T and so increase the possibility to have more than one components of z(N) satisfying (3.11).

However, we should bear in mind that the new feature of the BMA is the exploitation of the fact that

|z(N)
l | � T may be satisfied by more than one l.

In corroboration to the above remark it should be mentioned that in a plethora of examples we

have run, in none of them the simpleMA has beaten the BMA. Also, a partial answer as towhat actually

happens is given theoretically by the following statement.

Theorem 3.3. As ρ = ρ(D) decreases in the interval (0, 1), the number N̂ in (3.4) decreases faster than
what T̂ in (3.12) increases. More specifically

d(N̂T̂)

dρ
> 0. (3.16)

Proof. Considering the derivative in (3.16) and using (3.5) and (3.15) we successively obtain

d(N̂T̂)

dρ
= dN̂

dρ
T̂ + N̂

dT̂

dρ
= − 1

ln ρ

[
2

1 − ρ2
+ N̂

ρ

]
T̂ + N̂

(
− T̂

1 + ρ

)

= T̂

(1 + ρ) ln ρ

[
2

1 − ρ
+ (1 + ρ + ρ ln ρ)

ρ
N̂

]
. (3.17)

For thecoefficientof N̂ in the second term in thebrackets above, it is found that
d
(
1+ρ+ρ ln ρ

ρ

)
dρ

= ρ−1

ρ2 < 0,

and so

inf
ρ∈(0,1)

(1 + ρ + ρ ln ρ)

ρ
= (1 + ρ + ρ ln ρ)

ρ
|ρ=1 = 2,

meaning that the coefficient in question is always positive. Hence the right side of the equalities in

(3.17) is positive proving our claim in (3.16). �

It is realized that the nonstationary extrapolation, with the three alternatives for the MA, can also

be applied to the BMA. Then, one should expect to obtain the solution in fewer iterations than those

required for the simple BMA. So, the Nonstationary Extrapolated Block Modulus Algorithm (NSEBMA) is

expected to give optimal results in terms of iterations and CPU time for a specific LCP. It is understood

that one has to deal with blocks instead of with points. For example, let p (� n) be the total number of

cycles required to solve theNSEBMA, let ni, with
∑p

1ni = n, be the number of components in each block

andω∗
i , i = 1(1)p, be the optimal extrapolationparameters. Then, the analogous to (3.8) extrapolation

matrix and that to (3.10) Nonstationary Extrapolated LCP, which is solved, are

�
∗(b)
2 = diag

(
ω∗

1 In1 ,ω
∗
1ω

∗
2 In2 ,ω

∗
1ω

∗
2ω

∗
3 In3 , . . . ,

∏p−1
i=1 ω∗

i Inp−1
,
∏p−1

i=1 ω∗
i Inp

)
,

(�
∗(b)
2 Pr) = (�

∗(b)
2 PMPT )(Px) + (�

∗(b)
2 Pq) � 0, (�

∗(b)
2 Pr)T (Px) = 0.

(3.18)

4. Further theoretical background

In this sectionweproveanumberof statements thatapply toeitherof theNonstationaryExtrapolated

Modulus Algorithms. Bearing in mind the two Notes in the discussion preceding the three alternatives

for the NSEBAwere presented, our analysis can put aside the extrapolation parameters ω∗
i ’s.
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First we investigate the case of NSEMA and then the results obtained are generalized to cover the

NSEBMA.

Note that going from one cycle of iterations, say the very first one, to the next of MA we do fewer

operations per iteration due to the reduced size of the new LCP. Besides, the extrapolation applied to

the new LCP will be faster than that applied to the old problem. To prove this, in view of Theorem

2.1 and Corollary 2.1 we have to compare the ratios of the largest to the smallest eigenvalue of the

coefficient matrices in the two LCPs. To make such a comparison we distinguish two cases depending

on the sign of z
(N)
l in (3.2). If x

(N)
l is to be zero, then the lth equation of the LCP and the lth column

of M are deleted. If r
(N)
l is to be zero, a Gauss elimination takes place with pivot mll before the LCP is

reduced in size by one as before. The following statements describe what happens in each case.

Theorem 4.1. Let M ∈ Rn,n be symmetric and positive definite. The submatrix M22 obtained by deleting

the lth row and column of M is also symmetric and positive definite.

Proof. It is well known that any principal submatrix of a real symmetric positive definite matrix is

also symmetric and positive definite (see, e.g., [24,25] or [5]). �

Theorem 4.2. Let M ∈ Rn,n be symmetric and positive definite with λmin, λmax being its smallest and

largest (positive) eigenvalues. Let λ̂min and λ̂max be the corresponding eigenvalues of the submatrix M22

of Theorem 4.1. Then,

λmin � λ̂min � λ̂max � λmax. (4.1)

Proof. As is known (see, e.g., Theorem 2.2.2 in [25]), for any w ∈ Rn\{0} there hold

λmin �
wTMw

wTw
� λmax, (4.2)

where equality holds at the left (resp. right) end with w being the eigenvector associated with λmin

(resp. λmax). For simplicity, let l = 1 and M be partitioned as follows

M =
[
m11 yT

y M22

]
with y = [m21 m31 . . . mn1]T . (4.3)

Defining the vector w

w = [0wT
n−1]T ∈ Rn, wn−1 ∈ Rn−1\{0} �⇒ wTw = wT

n−1wn−1, (4.4)

we will have

wTMw = [0|wT
n−1]

[
m11 yT

y M22

]
[0|wT

n−1]T = wT
n−1M22wn−1. (4.5)

Taking wn−1 to be the eigenvector of M22 associated with λ̂min we have

λ̂min = wT
n−1M22wn−1

wT
n−1wn−1

= wTMw

wTw
� λmin.

Hence,byvirtueof (4.2), the left inequality in (4.1) isproved. Similarly, takingwn−1 tobe theeigenvector

ofM22 associated with λ̂max the right inequality in (4.1) is also proved. �

Theorem 4.3. Under the assumptions and notation of Theorems 4.1 and 4.2 and in view of Corollary 2.1 the

extrapolation applied to the reduced LCP will make it converge at least as fast as the extrapolation applied

to the original one.

Proof. In view of (4.1) and Corollary 2.1 the proof is immediate. �
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Remark 4.1. Note that we have identical rates of convergence in the old and the new LCPs, namely

λ̂min = λmin and λ̂max = λmax simultaneously hold, if and only if (iff) the eigenvectors wn−1m and

wn−1M associated with λ̂min and λ̂max of M22 are orthogonal to the vector y in (4.3) and, also, wm =
[0wn−1

T
m]T and wM = [0wn−1

T
M]T are the eigenvectors of M associated with λmin and λmax, respec-

tively.

Now, we come to the case where a pivoting process takes place.

Theorem 4.4. LetM ∈ Rn,n be symmetric and positive definite.Applying Gauss elimination to it with pivot

any diagonal element mll , l = 1(1)n, the submatrix M̂ obtained by deleting the lth row and column of the

resulting matrix is also symmetric and positive definite.

Proof. For simplicity we assume thatm11 is taken as pivot in the Gauss elimination. If we also assume

thatM is partitioned as in (4.3), then Gauss elimination results to[
1 0Tn−1

− 1
m11

y In−1

] [
m11 yT

y M22

]
=
[
m11 yT

0n−1 M22 − 1
m11

yyT

]
. (4.6)

SinceM22 is symmetric so is the matrix

M̂ = M22 − 1

m11

yyT . (4.7)

To prove that M̂ is also positive definite we consider any vector

w = [w1 w
T
n−1]T ∈ Rn with w1 = − 1

m11

(wT
n−1y) ∈ R, wn−1 ∈ Rn−1\{0}. (4.8)

Then, we successively have

0<wTMw =
[
− 1

m11
(wT

n−1y)|wT
n−1

] [
m11 yT

y M22

] [
− 1

m11
(wT

n−1y)|wT
n−1

]T
= wT

n−1(M22 − 1
m11

yyT )wn−1 = wT
n−1M̂wn−1,

(4.9)

proving our assertion. �

Theorem 4.5. Let M be the matrix of Theorem 4.4 and λmin, λmax be its smallest and largest eigenvalues.

Let the smallest and largest eigenvalues of M̂ in (4.7) of Theorem 4.4 be λ̂min, λ̂max, respectively. Then,
there will hold

λmin � λ̂min � λ̂max � λmax. (4.10)

Proof. Let w be the vector

w = [w1 w
T
n−1]T ∈ Rn with w1 ∈ R, wn−1 ∈ Rn−1\{0}, (4.11)

then we have that

wTMw

wTw
= m11

(
w1 + 1

m11
(wT

n−1y)
)2 + wT

n−1M̂wn−1

w2
1 + wT

n−1wn−1

. (4.12)

Taking as wn−1 the eigenvector of M̂ associated with its smallest eigenvalue λ̂min and w1 =
− 1

m11
(wT

n−1y), then the vector w has the form in (4.8) and we successively obtain

λmin �
wTMw

wTw
= wT

n−1M̂wn−1

1

m2
11

(wT
n−1y)

2 + wT
n−1wn−1

�
wT

n−1M̂wn−1

wT
n−1wn−1

= λ̂min (4.13)
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proving the left inequality in (4.10). Taking wn−1 to be the eigenvector of M̂ associated with λ̂max and

w1 = 0, so that the vector w has the form of (4.4), we have

λmax �
wTMw

wTw
=

1
m11

(wT
n−1y)

2 + wT
n−1M̂wn−1

wT
n−1wn−1

�
wT

n−1M̂wn−1

wT
n−1wn−1

= λ̂max, (4.14)

proving the right inequality in (4.10). �

Remark 4.2. It is similar to Remark 4.1. Namely, the equalities λ̂min = λmin and λ̂max = λmax simul-

taneously hold iff the eigenvectors wn−1 = wn−1m and wn−1 = wn−1M of M̂ are orthogonal to y, and

[0wn−1
T
m]T and [0wn−1

T
M]T are the eigenvectors of M associated with λmin and λmax, respectively.

Theorem 4.6. Under the assumptions of Theorems 4.4 and 4.5, if any of the four inequalities in (4.13) and
(4.14) does not hold, then, one of the two extreme inequalities in (4.10) of Theorem 4.5will be a strict one.

Furthermore, the optimal spectral radius in (2.8) corresponding to the matrix D(M̂) will be strictly less

than that corresponding to D(M), with the matrix of the form D(·) being defined in (1.4) in terms of M̂ and

M, respectively.

Proof. The first part comes directly from the implied strict inclusion [̂λmin, λ̂max] ⊂ [λmin, λmax] as a
consequence of whichwe have

λ̂max

λ̂min
< λmax

λmin
. The second part comes from the previous strict inequality

and Corollary 2.1. �

Coming now to the case of the NSEBMA it is clear that, in general, we have to deal with a repeated

application of Theorems 4.2 and 4.5 since more than one components of z(N) may satisfy (3.11). Of

course, one can use blocks to prove the analogous propositions to Theorems 4.1–4.6. To see what the

difference is, we outline below a block analogue of a combination of Theorems 4.4–4.5 and Remark

4.2.

Theorem 4.7. Let M ∈ Rn,n be symmetric and positive definite and that the first p r
(N)
i ’s are to become

zeros (2� p< n). Let M be of the block form

M =
[
M11 YT

Y M22

]
withM11 ∈ Rp,p, M22 ∈ Rn−p,n−p, Y ∈ Rn−p,p. (4.15)

Then: (i) Applying a “block" Gauss elimination, where all p columns below the diagonal of M11 are

eliminated, and deleting the first block row and column of the resulting matrix, the submatrix M̂ obtained

is symmetric and positive definite.
(ii) Let λmin and λmax be the smallest and the largest eigenvalues of M and λ̂min and λ̂max be the

corresponding ones of M̂. Then, there will hold

λmin � λ̂min � λ̂max � λmax. (4.16)

(iii) Equalities in (4.16) hold at both ends iff the pair of eigenvectors wn−p = wn−pm
and wn−p = wn−1M

associated with λ̂min and λ̂max of M̂ are orthogonal to the columns of Y , and [−wT
n−pYM

−1
11 |wn−p

T
m
]T and

[0|wn−p
T
M
]T are the eigenvectors of M associated with λmin and λmax, respectively.

Proof. (i) Recall that the matrices M11 and M22 are symmetric positive definite. Hence M11 admits a

Choleskydecompositionwhich canbewritten as L11U11,where L11 is lower triangularwithdiag(L11) =
Ip and U11 upper triangular that can be written as diag(U11)L

T with diag(U11) positive diagonal. So,

the “block" pivoting process will be as follows:[
L
−1
11 0p,n−p

−YM
−1
11 In−p

] [
M11 YT

Y M22

]
=
[

U11 L
−1
11 YT

0n−p,p M̂

]
,

M̂ = M22 − YM
−1
11 YT . (4.17)
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Hence M̂ is symmetric and positive definite becauseM11 and thereforeM
−1
11 ∈ Rp,p possess both these

properties. Letting

w = [wT
p wT

n−p]T ∈ Rn\{0} with wp = −M
−1
11 YTwn−p ∈ Rp, wn−p ∈ Rn−p\{0} (4.18)

it is obtained that

0<wTMw =
[
−wT

n−pYM
−1
11 |wT

n−p

] [
M11 YT

Y M22

] [
−wT

n−pYM
−1
11 |wT

n−p

]T
= wT

n−p(M22 − YM
−1
11 YT )wn−p = wT

n−pM̂wn−p,

(4.19)

which proves that M̂ is also positive definite.

(ii) Let w be the vector

w = [wT
p wT

n−p]T ∈ Rn\{0}, wp ∈ Rp, wn−p ∈ Rn−p\{0}. (4.20)

Forming wTMw

wTw
, replacingw from (4.20), using forM the above block partitioned form and forM22 the

expression from (4.15) in terms of M̂, after some manipulation, we obtain that

wTMw

wTw
= ||M

1
2

11

(
wp + M

−1
11 YTwn−p

)
||22 + wT

n−pM̂wn−p

||M−1
11 YTwn−p||22 + wT

n−pwn−p

, (4.21)

whereM
1
2

11 is the unique real symmetric positive definite square root ofM11 (see, e.g., Theorem 2.2.7 in

[25]). Nowwework in a similar way as before in Theorem 4.5. Namely, taking aswn−p the eigenvector

of M̂ associated with its smallest eigenvalue λ̂min and wp = −M
−1
11 YTwn−p, we can obtain

λmin �
wTMw

wTw
= wT

n−pM̂wn−p

||M−1
11 YTwn−p||22 + wT

n−pwn−p

�
wT

n−pM̂wn−p

wT
n−pwn−p

= λ̂min (4.22)

proving the left inequality in (4.16). Takingwn−p to be the eigenvector of M̂ associated with the largest

eigenvalue λ̂max and wp = 0, we have

λmax �
wTMw

wTw
= ||M− 1

2
11 YTwn−p||22 + wT

n−pM̂wn−p

wT
n−pwn−p

�
wT
n−pM̂wn−p

wT
n−pwn−p

= λ̂max, (4.23)

whereM
− 1

2

11 is the inverse ofM
1
2

11, proving the right inequality in (4.16).

(iii) For the first part of our assertion to hold, the norms in (4.22) and (4.23) must be zero. Due to the

invertibility of M
−1
11 and M

− 1
2

11 this holds iff the associated eigenvectors with λ̂min and λ̂max must be

orthogonal to the columns of the submatrix Y . The second part of our assertion readily follows. �

5. Numerical examples

Before we present our specific examples we make a number of points.

(i) We have run numerous examples of various sizes from n = 3 to n = 50 using all six methods.

Namely, iterative methods (2.1) and (2.5) of Section 2, the van Bokhoven’sMA, its nonstationary

extrapolated counterpart (NSEMA), and similarly, the Kappel andWatson’s BMA and the nonsta-

tionary extrapolated one (NSEBMA). For NSEMA and NSEBMA of the three alternatives of Section

3 the one in (iii) was adopted.

(ii) For each n and for all six methods the vector q ∈ Rn was the same and was selected by using

the Matlab command 10*(rand(n, 1)-0.5), so that each component qi, i = 1(1)n, was chosen

randomly in the interval (−5, 5). It was observed that for the same matrix M but for different

random vectors q the results were pretty much the same.
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Table 1

Spectral condition numbers of the matrix coefficientM = tridiag(−1, 2,−1) ∈ Rn,n .

n 10 20 30 40 50

κ2(tridiag(−1, 2,−1)) 48.3742 178.064 388.812 680.617 1053.48

Table 2

Number of iterations (iter) and CPU times in seconds.

n Iterative Methods for Example 1

MA BMA (n − 1)Na NSEMA NSEBMA (n − 1)Nb
ω

10 iter 111 28 225 66 14 108

CPU 0.060 0.040 0.040 0.030

20 iter 553 128 2356 183 34 551

CPU 0.120 0.060 0.080 0.040

30 iter 3733 319 9135 723 54 1392

CPU 0.731 0.171 0.240 0.100

40 iter 6224 629 23,712 1064 97 2691

CPU 2.003 0.440 0.511 0.180

50 iter 17,253 1015 49,539 2236 102 4459

CPU 6.780 1.061 1.201 0.431

a(n − 1)N is the possible maximum number of iterations forMA and BMA.
b(n − 1)Nω is the possible maximum number of iterations for NSEMA and NSEBMA.

(iii) If z(0) = 0 in (2.1) and (2.5), then all three unextrapolated methods have identical the first N

z(k)’s, k = 1(1)N, with N of (3.1). The same holds for the three extrapolated methods.

(iv) Recall that all four (Block) Modulus Algorithms are exact that is if exact arithmetic were used

the exact result would be obtained after at most (n − 1)N iterations followed by the solution of

a linear system. In contrastwith the (Block)Modulus Algorithms, themethods (2.1) and (2.5) are

iterative. Hence it is not easy to have a fair stopping criterion. What we did was the following.

After the solution was found by any of the four (Block) Modulus Algorithms exhausting all

K = ∑p
i=1Ni iterations, providedK � 106,wedetermined the “worst" relative absolute error e for

the last two iterations forNSEMA andNSEBMA, that is e = ||x(K)−x(K−1)||2
||x(K)||2 . This was subsequently

used as a stopping criterion for the two iterative methods, specifically

‖x(k+1) − x(k)‖2

‖x(k+1)‖2

= ‖ |z(k+1)| + z(k+1) − |z(k)| − z(k)‖2

‖ |z(k+1)| + z(k+1)‖2

� e, k = 1, 2, 3, . . . ,

and a check was made after each iteration.

(v) It was observed that in almost all the cases of the four (Block) Modulus Algorithms the number

of iterations required for the solution of an LCP was much less than the theoretical computed

one ((n − 1)N).

(vi) In more than 98% of the examples we ran e = 0 to the Matlab accuracy something which could

not happen with the iterative methods (2.1) and (2.5). So, what we would suggest is that if

the obtained relative absolute error e is not very satisfactory then use the last z of NSEMA or

NSEBMA and run a small number of iterations, say 5 to 10, using (2.1) as a “smoother” until an e

of satisfactory accuracy is obtained.
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Table 3

Spectral condition numbers for the HilbertmatrixM = H ∈ Rn,n .

n 3 4 5 6 7 8 9

κ2(H) 5.241 ∗ 102 1.551 ∗ 104 4.766 ∗ 105 1.495 ∗ 107 4.754 ∗ 108 1.526 ∗ 1010 4.931 ∗ 1011

Table 4

Number of iterations (iter) and CPU times in seconds.

n Iterative methods for Example 2

MA BMA (n − 1)N NSEMA NSEBMA (n − 1)Nω

3 iter 1650 1289 2578 61 48 96

CPU 0.090 0.100 0.030 0.030

4 iter 53,476 53,476 160,428 369 369 1107

CPU 2.133 2.664 0.051 0.050

5 iter >106 >106 8, 394, 108> 106 3184 2662 10,648

CPU –a – 0.181 0.190

6 iter >106 >106 18,364 18,369 91,820

CPU – – 0.841 1.052

7 iter >106 >106 123,006 123,856 738,036

CPU – – 6.189 7.271

8 iter >106 >106 807,005 807,005 5, 649, 035> 106

CPU – – 44.684 54.949

9 iter >106 >106 >106 >106

CPU – – – –

aA dash (–) means that no convergence has been achieved.

(vii) In all experiments the theory of Sections 2–4 was confirmed. Namely: (a) Regarding execution

(CPU) times, all three Extrapolated schemes are better than the unextrapolated ones. (b) Both

Block Modulus Algorithms are better than the corresponding simple Modulus Algorithms. (c)

Going from one experiment to another of the same size the CPU time required for each method

becomes larger as the condition number κ2(D) or κ2(Dω) increases.
(viii) In case the condition number is moderately large (see Example 1) all four (Block) Modulus

Algorithms work exceptionally well. For extremely large condition numbers (see Example 2) all

methods work only for very small numbers of n and this is due to the tremendous number

of iterations required. For those n for which NSEMA and NSEBMA work the results are very

satisfactory.

Example 1. M is the classical tridiagonal matrix M = tridiag(−1, 2,−1) ∈ Rn,n, with n = 10(10)50.
The corresponding spectral condition numbers for M are given in Table 1.

In all five cases of thepresent example the results are very gooddespite the relatively large condition

numbers. This, in our opinion, is mainly due to the sparsity of the matrix and also to its irreducible

diagonal dominance property. As is seen NSEBMA is the best method. There are two extra columns
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under (n − 1)N and (n − 1)Nω which indicate the possible maximum number of iterations for MA,

BMA and NSEMA, NSEBMA, respectively.

Example 2. M is theHilbertmatrixH ∈ Rn,n :={hi,j = 1
i+j−1

, i, j = 1(1)n}, with n = 3(1)9. The spec-

tral condition numbers forM are illustrated in Table 3.

In the cases of this example, a “nightmare" case when solving (or pivoting) a linear system, the

large condition numbers are disastrous even for rather small values of n. In our opinion, despite the

irreducible diagonal dominance property of the coefficient matrix, the “poor" results may be due to

the dense character of it. It is noted that this is the only example out of those run that NSEMA beats

NSEBMA. Table 4 is similar to Table 2.

6. Concluding remarks

Before we conclude our work we would like to make a number of points:

(i) The theory developed in the present work is fully confirmed by the numerical experiments.

(ii) The principle of extrapolation as was introduced in Sections 2–4 increases the convergence rates

for all three known methods, namely the iterative method (2.1), the MA and the BMA.

(iii) Kappel and Watson [12] introduced a kind of nonstationary extrapolation but it is very difficult,

if not impossible, in practice to find the appropriate positive diagonal matrix � defined there.

Our work gives a partial answer for symmetric positive definitematrices.

(iv) An extension of the theory of the present paper seems to work also in cases where the matrix

M is an M-matrix or a (real) H-matrix with positive diagonal elements. It is well-known that

these two classes of matrices are P-matrices and the LCP has a unique solution that can also

be found by other iterative methods (see, e.g., [15,1,18,7,16,17,21,22]). In this direction we have

been working with encouraging preliminary results.
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