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For the localization of the spectrum of the eigenvalues of a
complex square matrix, the classical Geršgorin Theorem was
extended by Ostrowski who used the generalized geometric
mean of the row and column sums of the matrix. Ostrowski,
and Brauer, extended the previous idea by using generalized
geometric means of products of two row and column sums.
Finally, by using the Graph Theory, Brualdi extended all
of the previous ideas further by considering generalized
geometric means of products of two or more than two row
and column sums. These localization results can also provide
classes of nonsingular matrices. Our main aim in this work is
to exploit all the above known results and determine intervals
for the parameter(s) α (αk’s) involved so that the localization
of the spectrum in question as well as the determination of
the associated class of nonsingular matrices are possible.

© 2014 Published by Elsevier Inc.

1. Introduction and preliminaries

The relatively recent book by Varga “Geršgorin and His Circles” [22] inspired many
researchers in the area to exploit its background material and extend classical results
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(see, e.g., [9,7,23,8,12]). In [22], localization regions for the spectrum of the eigenvalues
of a complex square matrix were obtained by using the results of Geršgorin’s Theorem
(see [10] or Theorem 1.11 of [20]), as well as those by Ostrowski [16], Brauer [2–4] and
Brualdi [6]. In this work we determine intervals of the parameter(s) α (αk’s) involved
in the aforementioned localization regions of spectra as well as the associated classes
of nonsingular matrices for, mainly, irreducible matrices. The present theory extends
previous results obtained in [8] and [12] by using the theory developed in the work by
Brualdi [6], and the background material in Varga [22].

To begin with, consider the set of the first n positive integers denoted by N :=
{1, 2, . . . , n} and let A ∈ C

n×n, n � 2. For A ∈ C
n×n let ri :=

∑
j∈N\{i} |aij |, ∀i ∈ N (ith

row sum) and cj :=
∑

i∈N\{j} |aij |, ∀j ∈ N (jth column sum). A ∈ C
n×n is diagonally

dominant (by rows) (DD matrix) if and only if (iff ) |aii| � ri, ∀i ∈ N . A ∈ C
n×n is

strictly diagonally dominant (by rows) (SDD matrix) iff |aii| > ri, ∀i ∈ N . A ∈ C
n×n

is irreducibly diagonally dominant (by rows) (IDD matrix) iff it is irreducible and DD
with at least one inequality strict. (For more, see, e.g., Varga [20] and Berman and
Plemmons [1].)

2. Review of known results

We begin with the well-known Lévy–Desplanques Theorem (see [14] and [11] or
[15, p. 146], or Brualdi [6]).

Lemma 2.1. Let A = [aij ] ∈ C
n×n, n � 2, and let

|aii| > ri (∀i ∈ N). (2.1)

Then A is nonsingular.

Geršgorin [10] presented the statement below from which (2.1) can also be recovered.

Lemma 2.2 (Geršgorin Theorem). (See [10] or [20].) Let A = [aij ] ∈ C
n×n, n � 2, then,

if σ(A) denotes the spectrum of the eigenvalues of A, there will hold

σ(A) ⊆
n⋃

i=1
Di :=

n⋃
i=1

{
z ∈ C: |z − aii| � ri

}
. (2.2)

Lemma 2.1 covers the class of SDD matrices. Taussky [19] extended it to include the
class of IDD matrices.

Lemma 2.3. Let A = [aij ] ∈ C
n×n, n � 2, be irreducible and let

|aii| � ri (∀i ∈ N), (2.3)

with at least one inequality strict. Then A is nonsingular.
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Ostrowski extended Lévy–Desplanques’s Theorem 2.1 (see [16] or Theorem 1.16 of
[22]) by using generalized geometric means of row and column sums.

Lemma 2.4. Let A = [aij ] ∈ C
n×n, n � 2, and let

|aii| > rαi c
1−α
i (∀i ∈ N) (2.4)

hold for some α ∈ [0, 1]. Then A is nonsingular. (Note: The convention 00 = 1 will be
used throughout this paper.)

Ostrowski’s Theorem has been extended in Taussky’s spirit (see, e.g., [12]). Specifi-
cally:

Lemma 2.5. Let A = [aij ] ∈ C
n×n, n � 2, be irreducible and let

|aii| � rαi c
1−α
i (∀i ∈ N), (2.5)

with at least one inequality strict, hold for some α ∈ [0, 1]. Then A is nonsingular.

A proposition due to Ostrowski [16] and rediscovered by Brauer [2] (see Theorem 2.1
of [22]) reads as follows:

Lemma 2.6. Let A = [aij ] ∈ C
n×n, n � 2, and let

|aii||ajj | > rirj (∀i �= j ∈ N). (2.6)

Then A is nonsingular.

Brualdi notes [6] that Brauer [4] had improved his oval inclusion region and had shown
that the analogue of (2.3) for Lemma 2.6 also holds [3,4].

Ostrowski [17] generalized Theorem 2.6 as is given below.

Lemma 2.7. Let A = [aij ] ∈ C
n×n, n � 2, and let

|aii||ajj | > rαi c
1−α
i rαj c

1−α
j (∀i �= j ∈ N), (2.7)

hold for some α ∈ [0, 1]. Then A is nonsingular.

Finally, Brualdi [6] extended all of the previous results using the Graph Theory (see,
e.g., Harary [13]), where products of two or more than two row and column sums were
considered. Two of his propositions are given below in a little different form from what
they appear in [6].
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Lemma 2.8. (See Theorem 2.9 of Brualdi [6].) Let A = [aij ] ∈ C
n×n, n � 2, be irreducible.

Suppose

∏
i∈γj

|aii| �
∏
i∈γj

ri
(
∀γj ∈ C(A)

)
(2.8)

hold for each cycle γj of the directed graph Γ (A) of A, where no loops are considered
and where C(A) is the set of all the cycles of Γ (A). Let strict inequality hold in (2.8) for
at least one cycle γj. Then A is nonsingular.

Note: It should be explained that the nodes i1, i2, . . . , ip of a cycle γj are those
for which ai1i2ai2i3 . . . aip−1ipaipi1 �= 0, and constitute the vertices of the cycle γj =
(i1 i2 i3 . . . ip−1 ip) where all ik, k = 1(1)p, are distinct.

Lemma 2.9. (See Corollary 2.13 of Brualdi [6].) Let A = [aij ] ∈ C
n×n, n � 2, be weakly

irreducible. Then for each α, with α ∈ [0, 1], the eigenvalues of A lie in the union of the
lemniscates

σ(A) ⊆ B(A) :=
⋃

γj∈C(A)

{
z ∈ C:

∏
i∈γj

|z − aii| �
( ∏

i∈γj

ri

)α( ∏
i∈γj

ci

)1−α}
. (2.9)

Notes: The term “weakly irreducible”, introduced by Brualdi [6], means that in the
“Frobenius normal form” of A all diagonal blocks are of order � 2. From now on it will
be assumed that a weakly irreducible matrix is given in its Frobenius normal form; it is
reminded that the first who proposed an algorithm to determine the Frobenius normal
form was Tarjan [18] while the most recent relevant algorithm can be found in [5]. Finally,
whenever an equality (strict inequality) is met in (2.8), the corresponding lemniscate in
(2.9) is open (closed) and vice versa.

Remark 2.1. It is pointed out that in the case of Lemmas 2.8 and 2.9, the quantities ri
(and ci) are restricted to the row (and column) sums within the corresponding diagonal
blocks; Varga [22] uses the notation r̃i (and c̃i) for these quantities.

Note: For Lemmas 2.6–2.7 and also the one in [4], mentioned previously, statements
analogous to Lemma 2.2 can be given as Brualdi did in [6]. Note that we do not deal
with disks anymore, as in Lemmas 2.1–2.5, but with Brauer–Ostrowski Cassini ovals and
Brualdi lemniscates; we use the term Brauer–Ostrowski Cassini ovals instead of Brauer
Cassini ovals, as Varga does [22], because the latter term refers only to the case α = 1
or α = 0.

Our main objective in the present paper is to determine the intervals of the parame-
ter(s) α (αk’s) of an irreducible (or of a weakly irreducible) matrix A to cover the case
of Brualdi lemniscates of Lemmas 2.8–2.9 and, if possible, to extend the known theory.
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Fig. 1. Directed graph of matrices A1 and A2 of Example 1.

3. Brualdi lemniscates and sets

3.1. Introduction

We begin this section by pointing out that a direct implication of Lemmas 2.8 and
2.9 can be obtained as follows. Assuming that the Brualdi lemniscates in (2.9), and their
union (“Brualdi set”) contain the eigenvalue zero, an eigenvalue of the singular matrix
A ∈ C

n×n, n � 2, then by setting z = 0 in (2.9) and combining it with Lemma 2.8 for
an irreducible matrix A we have that:

Theorem 3.1. Let A = [aij ] ∈ C
n×n, n � 2, be irreducible. Suppose

∏
i∈γj

|aii| �
( ∏

i∈γj

ri

)α( ∏
i∈γj

ci

)1−α (
∀γj ∈ C(A)

)
(3.1)

hold for some α ∈ [0, 1] and for each cycle γj of the directed graph Γ (A) of A, with strict
inequality for at least one cycle γj. Then A is nonsingular.

It should be pointed out that all the main statements so far that imply nonsingularity
of a matrix give sufficient conditions only and not sufficient and necessary ones. The
reason for this is clearly seen in the following example.

Example 1. Let the irreducible matrices A1 and A2 be as follows

A1 =

⎡
⎣ 3 0 −3
−3 3 −1
0 −1

4
1
3

⎤
⎦ , A2 =

⎡
⎣ 3 0 −3
−3 3 1
0 1

4
1
3

⎤
⎦ . (3.2)

As is seen A1 and A2 share the same graph of Fig. 1 which has the two cycles γ1 = (2 3)
and γ2 = (1 3 2). In addition, for the elements of the two matrices we have

|a11| = 3, r1 = 3, c1 = 3,

|a22| = 3, r2 = 4, c2 = 1
,
4
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|a33| = 1
3 , r3 = 1

4 , c3 = 4,

which are the same for both matrices and satisfy relations of type (3.1). Specifically,

∏
i∈γ1

|aii| =
( ∏

i∈γ1

ri

)α( ∏
i∈γ1

ci

)1−α

= 1,

∏
i∈γ2

|aii| =
( ∏

i∈γ2

ri

)α( ∏
i∈γ2

ci

)1−α

= 3,

for any α ∈ [0, 1]. However, det(A1) = 0 while det(A2) = 4.5, which means that in case
of equality in all relations of (3.1) the corresponding matrix may be singular or not.

We introduce the class of “Brualdi matrices” or simply “B-matrices” as follows.

Definition 3.1. An irreducible matrix A = [aij ] ∈ C
n×n, n � 2, satisfying the assumptions

of Theorem 3.1 for some α ∈ [0, 1] will be called a B-matrix. (Note: By Theorem 3.1 a
B-matrix is nonsingular.)

3.2. Determination of α

To find possible ranges for α, if they exist, and check if the assumptions of Defini-
tion 3.1 hold for a certain irreducible matrix A, we write the desired inequalities in (3.1)
as

∏
i∈γj

|aii|∏
i∈γj

ci
�

(∏
i∈γj

ri∏
i∈γj

ci

)α (
∀γj ∈ C(A)

)
. (3.3)

To simplify the notation, we set

|Ai∈γj
| :=

∏
i∈γj

|aii|, Ri∈γj
:=

∏
i∈γj

ri, Ci∈γj
:=

∏
i∈γj

ci, (3.4)

and write (3.3), equivalently, as

|Ai∈γj
|

Ci∈γj

�
(
Ri∈γj

Ci∈γj

)α (
∀γj ∈ C(A)

)
. (3.5)

Considering all possible orderings of the quantities |Ai∈γj
|, Ri∈γj

, Ci∈γj
, we can construct

a table. For example if Ri∈γj
> |Ai∈γj

| > Ci∈γj
, then both the left and the right sides

of (3.5) are greater than 1 and, obviously, for all α’s in the interval shown on the left
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Table 1
Values of α for which

|Ai∈γj
|

Ci∈γj

� (
Ri∈γj

Ci∈γj

)α holds as a strict inequality or as an equality.

Cases Values of α for which relation
|Ai∈γj

|
Ci∈γj

� (
Ri∈γj

Ci∈γj

)α holds as:

A strict inequality An equality
(i) |Ai∈γj

| = Ri∈γj
= Ci∈γj

– α ∈ [0, 1]
(ii) |Ai∈γj

| > max{Ri∈γj
, Ci∈γj

} [0, 1] –
(iii) Ri∈γj

> |Ai∈γj
| = Ci∈γj

– α = 0

(iv) Ri∈γj
> |Ai∈γj

| > Ci∈γj
α ∈

[
0,

log(
|Ai∈γj

|

Ci∈γj

)

log(
Ri∈γj

Ci∈γj

)
(< 1)

)
α =

log(
|Ai∈γj

|

Ci∈γj

)

log(
Ri∈γj

Ci∈γj

)

(v) |Ai∈γj
| = Ri∈γj

> Ci∈γj
α ∈ [0, 1) α = 1

(vi) Ci∈γj
> |Ai∈γj

| = Ri∈γj
– α = 1

(vii) Ci∈γj
> |Ai∈γj

| > Ri∈γj
α ∈

(
(0 <)

log(
|Ai∈γj

|

Ci∈γj

)

log(
Ri∈γj

Ci∈γj

)
, 1

]
α =

log(
|Ai∈γj

|

Ci∈γj

)

log(
Ri∈γj

Ci∈γj

)

(viii) |Ai∈γj
| = Ci∈γj

> Ri∈γj
α ∈ (0, 1] α = 0

below, (3.5) holds as a strict inequality while for the value of α on the right, (3.5) holds
as an equality

α ∈
[
0,

log( |Ai∈γj
|

Ci∈γj
)

log(Ri∈γj

Ci∈γj
)

)
, α =

log( |Ai∈γj
|

Ci∈γj
)

log(Ri∈γj

Ci∈γj
)
. (3.6)

Therefore, if for each γj ∈ C(A) there exists an interval of α for which (3.5) holds and the
intersection of all these intervals is a nonempty set and does not come exclusively from
equalities in (3.5), then this set will contain all values of α for which relations (3.5) will
hold simultaneously, and the conclusion will be that A belongs to the class of B-matrices.

Note that relations (3.5) are of the same nature as relations |aii|
ci

� ( rici )
α (∀i ∈ N)

considered in [12]. The latter relations led to the construction of a table. So, a similar
analysis, which is omitted here, leads to the construction of an analogous table, Table 1.

Based on Definition 3.1, the preceding discussion and Table 1, we can state and prove
the following theorem.

Theorem 3.2. Let A ∈ C
n×n, n � 2, be irreducible and that for each cycle γj ∈ C(A),

j = 1(1)k, there exists an interval of α, let it be Sj := {αlj , αrj}, for which a case
of Table 1 applies; otherwise Sj = ∅. Then, A belongs to the class of B-matrices iff
α ∈ S :=

⋂k
j=1 Sj, where S �= ∅ and S does not come exclusively from equalities of

Table 1. (Note: The symbol “{” denotes either “(” for an open left or “[” for a closed
left interval, whichever applies; similarly, “}” denotes a right open or closed interval.)

Proof. The proof will be given for k = 2 since it is easily extended to any k > 2
by induction. Let γj ∈ C(A), j = 1, 2, be the only cycles of the directed graph Γ (A)
of the irreducible matrix A. Suppose that the orderings of the quantities in (3.4) for
each γj ∈ C(A) belong to Cases of Table 1 and let Sj = {αlj , αrj}, j = 1, 2, be the
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Fig. 2. Directed graph of matrix A of Example 2.

corresponding intervals for α. Let that S := S1∩S2 �= ∅ and S does not come exclusively
from equalities in Table 1. Then, for any α ∈ S the orderings of the quantities in (3.4)
for each γj ∈ C(A) will satisfy relations of type (3.5) or, equivalently, of (3.1), where
at least one of them must be strict since S does not come exclusively from equalities of
Table 1. Consequently, for all α ∈ S the matrix A is a B-matrix by Definition 3.1.

Conversely, let A be a B-matrix. Then, for each cycle γj ∈ C(A), j = 1, 2, relations of
type (3.1) are satisfied for some α’s in intervals Sj = {αlj , αrj}, j = 1, 2. Since A is a
B-matrix, there must be α’s belonging to S := S1 ∩ S2 satisfying (3.1). Hence, S is not
empty and does not come exclusively from equalities in Table 1 since at least one of the
associated inequalities (3.5) is strict due to the B-matrix character of A. �

Note: It is pointed out that in Example 1, S comes exclusively from equalities of
Table 1, Case (i), and so neither A1 nor A2 is a B-matrix.

Example 2. Suppose A ∈ C
5×5 is irreducible and its directed graph Γ (A) contains only

the two cycles γ1 = (1 2 5 4 3), satisfying the ordering of Case (iv), and γ2 = (1 2 5),
satisfying that of Case (vii) (see Fig. 2). Then, from Table 1 we have that

α ∈ S1 = [αl1 , αr1 ] ≡
[
0,

log( |Ai∈γ1 |
Ci∈γ1

)

log(Ri∈γ1
Ci∈γ1

)

]
,

α ∈ S2 = [αl2 , αr2 ] ≡
[ log( |Ai∈γ2 |

Ci∈γ2
)

log(Ri∈γ2
Ci∈γ2

)
, 1
]
. (3.7)

If αl2 < αr1 , then A is a B-matrix for all α ∈ S = S1 ∩ S2 = [αl2 , αr1 ] and

∏
i∈γj

|aii| �
( ∏

i∈γj

ri

)α( ∏
i∈γj

ci

)1−α

, j = 1, 2, (3.8)

hold. Note that for α ∈ (αl2 , αr1) both relations in (3.8) are strict while for α = αr1 and
α = αl2 it is
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Fig. 3. Directed graph of matrix A of Example 3.

∏
i∈γ1

|aii| =
( ∏

i∈γ1

ri

)α( ∏
i∈γ1

ci

)1−α

and

∏
i∈γ2

|aii| =
( ∏

i∈γ2

ri

)α( ∏
i∈γ2

ci

)1−α

, (3.9)

respectively, meaning that the corresponding relation in (3.8) will be an equality.
If αl2 = αr1 =: α, then there is a unique value of α (the ratio of the two logarithms in

either of (3.7)) for which (3.8) hold as equalities and by Theorem 3.2 A is not a B-matrix
and so no conclusion as regards the nonsingularity of A can be drawn.

Finally, if αr1 < αl2 , A is not a B-matrix and again, as above, no conclusion can be
drawn.

In the sequel we give two specific examples where the classical Ostrowski Theorem
does not apply for any value of α while Theorem 3.1 does for all α’s in an interval to be
determined by Theorem 3.2.

Example 3. Let the irreducible matrix be as follows

A =

⎡
⎣ eıθ11 1.05eıθ12 0

0.6eıθ21 eıθ22 0.3eıθ23
1.1eıθ31 0 eıθ33

⎤
⎦ , (3.10)

where ı is the imaginary unit and θij , i, j ∈ {1, 2, 3}, are any real numbers. As is seen,
|a11| = 1 < min{r1, c1} = 1.05. Therefore, none of the two Lemmas 2.4 and 2.5 can be
applied as this is known from Table 1 in [12], which is analogous to Table 1 presented
before. However, Theorem 3.2 can be applied as we will see in the sequel.

The directed graph Γ (A) is seen in Fig. 3. Obviously, there are two cycles γ1 = (1 2)
and γ2 = (1 2 3). To find the Brualdi set it suffices to consider the two lemniscates
corresponding to the two cycles. Thus we have

|A12| = 1, R12 = 0.945, C12 = 1.785 =⇒ Case (vii),

|A123| = 1, R123 = 1.0395, C123 = 0.5355 =⇒ Case (iv). (3.11)
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Fig. 4. The Brualdi set B(A) of Example 3 constitutes of the Brauer–Ostrowski Cassini oval (dashed line)
and the component of the Brualdi lemniscate (solid line) located in the third quadrant.

From Table 1 it is readily seen that the above conclusions hold for any value of

α ∈
[ log( 1

1.785 )
log(0.945

1.785 )
,
log( 1

0.5355 )
log(1.0395

0.5355 )

]
≡ [0.9111, 0.9416], (3.12)

to four decimal places, and both relations (3.13) below hold as strict inequalities for all
α ∈ (0.9111, 0.9416), while for α = 0.9111 and for α = 0.9416 the first and the second
relations below hold as equalities, respectively. More specifically,

|A12| � (R12)α(C12)1−α, |A123| � (R123)α(C123)1−α. (3.13)

For all the aforementioned values of α, A is a B-matrix and, therefore, nonsingular.
Moreover, for the Brauer–Ostrowski Cassini oval and the Brualdi lemniscate we have
that

K(1 2)(A) :=
{
z ∈ C:

∣∣z − eıθ11
∣∣∣∣z − eıθ22

∣∣ � (0.945)α(1.785)1−α
}
,

B(1 2 3)(A) :=
{
z ∈ C:

∣∣z − eıθ11
∣∣∣∣z − eıθ22

∣∣∣∣z − eıθ33
∣∣ � (1.0395)α(0.5355)1−α

}
. (3.14)

It is pointed out that for α taking the values α = 0.9111 and α = 0.9416, K(1 2)(A) and
B(1 2 3)(A), respectively, are open. Finally, for the spectrum of A it is

σ(A) ⊂ B(A) = K(1 2) ∪ B(1 2 3),

where B(A) is the Brualdi set. In Fig. 4 the Brauer–Ostrowski Cassini oval K(1 2)(A)
and the Brualdi lemniscate B(1 2 3)(A) as well as the Brualdi set B(A), in case θ11 = 0,
θ22 = 2π

3 , θ33 = 4π
3 and α = 0.93, are depicted. Note that the Brualdi set is the union

of the disjoint sets K(1 2) and the component of B(1 2 3)(A) in the third quadrant. Also,
note that both components of B(A) are closed.
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Fig. 5. Directed graph of matrix A of Example 3.

Example 4. Let the irreducible matrix be as follows

A =

⎡
⎢⎢⎣

1 0.8 0 0
0.25 1 0.95 0
0.25 0 1 0.5
1.4 0 0 1

⎤
⎥⎥⎦ .

For the given matrix we have

aii = 1, i = 1(1)4,

r1 = 0.8, r2 = 1.2, r3 = 0.75, r4 = 1.4,

c1 = 1.9, c2 = 0.8, c3 = 0.95, c4 = 0.5.

First, we examine if either Lemma 2.4 or 2.5 applies. From the orderings

c1 > |a11| > r1, r2 > |a22| > c2, |a33| > c3 > r3, r4 > |a44| > c4,

and the use of Table 1 in [12], or even Table 1 we find that

1.9 > 1 > 0.8 =⇒ α ∈
[ log( 1

1.9 )
log(0.8

1.9 )
, 1
](
≡ [0.7420, 1]

)
,

1.2 > 1 > 0.8 =⇒ α ∈
[
0,

log( 1
0.8 )

log(1.2
0.8 )

](
≡ [0, 0.5503]

)
,

1 > 0.95 > 0.75 =⇒ α ∈ [0, 1],

1.4 > 1 > 0.5 =⇒ α ∈
[
0,

log( 1
0.5 )

log(1.4
0.5 )

](
≡ [0, 0.6732]

)
. (3.15)

As is seen above there is no common value of α belonging to all four intervals found in
(3.15). So, the matrix A is not a B-matrix and no conclusion regarding the nonsingularity
of A can be drawn.

However, we can check by a simple directed graph (see Fig. 5) that there are three
cycles in it; specifically, γ1 = (1 2), γ2 = (1 2 3), γ3 = (1 2 3 4).
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Considering the cycles γ1 = (1 2), γ2 = (1 2 3) and γ3 = (1 2 3 4) and using Table 1 we
find the three intervals for α below

[0.9112, 1], [0.5280, 1], [0, 0.9761],

respectively. This time there is a common interval for α ∈ [0.9112, 0.9761]. Therefore,

∏
γj

|aii| �
(∏

γj

ri

)α(∏
γj

ci

)1−α

, j = 1, 2, 3, ∀α ∈ [0.9112, 0.9761], (3.16)

the matrix A is a B-matrix and, therefore, nonsingular. Note that for all α ∈
(0.9112, 0.9761) the three relations in (3.16) are strict inequalities, while for α = 0.9112,
the relation for γ1 is equality and for α = 0.9761, the one for γ3 is equality; for these
two extreme values for α the other two relations remain strict.

For the Brualdi set Bγj∈C(A) that contains the spectrum σ(A) we have

Bγ1 :=
{
z ∈ C: |z − 1|2 � (0.8 × 1.2)α(1.9 × 0.8)1−α

}
,

Bγ2 :=
{
z ∈ C: |z − 1|3 � (0.8 × 1.2 × 0.75)α(1.9 × 0.8 × 0.95)1−α

}
,

Bγ3 :=
{
z ∈ C: |z − 1|4 � (0.8 × 1.2 × 0.75 × 1.4)α(1.9 × 0.8 × 0.95 × 0.5)1−α

}
, (3.17)

and, therefore,

σ(A) ⊂ Bγj∈C(A) := Bγ1 ∪ Bγ2 ∪ Bγ3 .

Note that for α = 0.9112 and α = 0.9761, Bγ1 and Bγ3 will be open Cassini ovals,
respectively.

From (3.17) it is clear that the Cassini ovals are concentric disks. Specifically, (3.17)
become

Bγ1 :=
{
z ∈ C: |z − 1| �

(
(0.8 × 1.2)α(1.9 × 0.8)1−α

) 1
2 =: f1(α)

}
,

Bγ2 :=
{
z ∈ C: |z − 1| �

(
(0.8 × 1.2 × 0.75)α(1.9 × 0.8 × 0.95)1−α

) 1
3 =: f2(α)

}
,

Bγ3 :=
{
z ∈ C: |z − 1| �

(
(0.8 × 1.2 × 0.75 × 1.4)α(1.9 × 0.8 × 0.95 × 0.5)1−α

) 1
4

=: f3(α)
}
. (3.18)

It is found that in the interval for α ∈ [0.9112, 0.9761], f1(α), f2(α) are strictly decreasing
functions of α, while f3(α) is strictly increasing. Also,

f1(0.9761) = 0.9852, f2(0.9761) = 0.9013, f3(0.9761) = 1.0000,

f1(0.9112) = 1.000, f2(0.9112) = 0.9149, f3(0.9112) = 0.9946.
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The function f(α) = f1(α) − f3(α) is a continuous and strictly decreasing function of
α in the above interval with f(0.9761) = −0.0148 < 0 and f(0.9112) = 0.0054 > 0.
Consequently, there exists a unique value of α ∈ (0.9112, 0.9761), let it be α∗, such
that f(α∗) = 0. It is found that α∗ =

log( c3c4
c1c2

)
log( r1r2c3c4

c1c2r3r4
) = 0.9285. As a consequence we

have that the disk Bγ2 is always the inner disk, the disk Bγ1 will be the outer disk
for α ∈ [0, 9112, 0.9285), while for α ∈ (0.9285, 0.9761], Bγ3 will be the outer one. For
α = a∗ = 0.9285, Bγ3 ≡ Bγ1 .

The definition for “Brualdi matrices” (“B-matrices”), Definition 3.1, can be extended
to “generalized Brualdi matrices” (“generalized B-matrices”) in case we are dealing with
weakly irreducible matrices.

Definition 3.2. Let A = [aij ] ∈ C
n×n, n � 4, be weakly irreducible and let Akk, k =

1(1)p, be the diagonal blocks of its Frobenius normal form of respective orders nk � 2,
k = 1(1)p, p � 2, with

∑p
k=1 nk = n. Then, A is called a “generalized Brualdi matrix”

(generalized B-matrix) iff each Akk, k = 1(1)p, is a B-matrix.

Remark 3.1. In case A ∈ C
n×n is a generalized B-matrix, let γj,k ∈ Ck, k = 1(1)p,

be the cycles associated with each Akk and Sk, k = 1(1)p, be the interval S defined in
Theorem 3.2 for each Akk. Then, there exist p-tuples of α, (α1, α2, . . . , αp), with αk ∈ Sk,
k = 1(1)p, such that

∏
i∈γj,k

|aii| �
( ∏

i∈γj,k

ri

)αk
( ∏

i∈γj,k

ci

)1−αk (
∀γj,k ∈ Ck, ∀Ck ∈ C(A)

)
(3.19)

hold, with strict inequality for at least one γj,k in each Ck. In addition, if S =⋂p
k=1 Sk �= ∅, then besides the aforementioned choice of the p-tuples of α’s one may

choose a single value for α ∈ S. In such a case relations (3.19) hold with αk = α,
k = 1(1)p.

A trivial extension of the Brualdi–Varga Theorem 2.10 of [22] for irreducible matrices
A ∈ C

n×n, n � 3, is as follows:

Theorem 3.3. Under the assumptions of Lemma 2.9, except that the matrix A ∈ C
n×n,

n � 3, is irreducible, let V (γi) denote the set of the vertices of the cycle γi ∈ C(A),
i = 1(1)s, s � 2, such that

(i) V (γ1) =
⋃s

j=2 V (γj), and
(ii) there is a positive integer m such that each vertex from γ1 appears

exactly m times in
⋃s

j=2 V (γj).
(3.20)

Then, the Brualdi lemniscate Bγ1 can be removed from the Brualdi set B(A).
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Proof. The proof follows exactly the same steps as those of Theorem 2.10 in [22], except
that quantities of the type ri in the latter are replaced by rαi c

1−α
i in the former. So, the

proof is omitted and the reader is referred to the original one in [22]. �
Corollary 3.1. If the matrix A in the above theorem is totally dense then the Brualdi set
coincides with the Brauer–Ostrowksi set.

The following example covers the last four statements.

Example 5. Let A ∈ C
7×7 be the weakly irreducible matrix given in its Frobenius normal

form below

A =
[
A11 A12
A21 A22

]
,

where

A11 =

⎡
⎢⎢⎣

1 0.75 0 0
0.5 1.5 0.95 0
0.5 0 2 0.5
1.4 0 0 0.5

⎤
⎥⎥⎦ , A12 ∈ C

4×3 any,

A21 = O3,4, A22 =

⎡
⎣ 1 0.5 0.8

0.7 1.5 0.9
0.5 ©x 1.8

⎤
⎦ ,

and where x takes, in turn, the values x = 0.7, 0.56, 0.49. The objective in this example
is to find whether for any of the above values of x the matrix A is a generalized B-matrix.

In the first diagonal block A11 there are three cycles γ1,1 = (1 2), γ2,1 = (1 2 3),
γ3,1 = (1 2 3 4), with γ1,1, γ2,1, γ3,1 ∈ C1, and its graph is that of Fig. 5. For the various
quantities needed we have

|a11| = 1, |a22| = 1.5, |a33| = 2, |a44| = 0.5,

r1 = 0.75, r2 = 1.45, r3 = 1, r4 = 1.4,

c1 = 2.4, c2 = 0.75, c3 = 0.95, c4 = 0.5.

For each of the three cycles using the values for |aii|’s, ri’s and ci’s and Table 1 we can
find an interval for α. Specifically,

S1,1 = [0.3618, 1], S2,1 = [0, 1], S3,1 = [0, 0.9742].

Hence, a common interval for α exists which is

S1 = S1,1 ∩ S2,1 ∩ S3,1 = [0.3618, 0.9742],

implying that A11 is a B-matrix.
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The second diagonal submatrix A22 is totally dense and by Corollary 3.1 we have to
consider only the three cycles γ1,2 = (1 2), γ2,2 = (1 3), γ3,2 = (2 3), γ1,2, γ2,2, γ3,2 ∈ C2.

For x = 0.7, using the values for |aii|’s, ri’s and ci’s as well as Table 1, we can find the
three intervals for α for each cycle. These are given below

S1,2 = [0, 0.1110], S2,2 = [0.4666, 1], S3,2 = [0, 1].

As is seen S2 = S1,2 ∩ S2,2 ∩ S3,2 = ∅. Hence, there is no common interval for α.
Consequently, A22 is not a B-matrix and, so, A is not a generalized B-matrix.

For x = 0.56, working in the same way, we find for the three cycles the intervals for α

below

S1,2 = [0, 0.3353], S2,2 = [0.3190, 1], S3,2 = [0, 1],

respectively. This time we have S2 = S1,2∩S2,2∩S3,2 = [0.3190, 0.3353]. This means that
A22 is a B-matrix and A is a generalized B-matrix. Since S2 = S1,2 ∩ S2,2 ∩ S3,2 �= ∅ we
can always choose any α = α1 ∈ S1 and any α = α2 ∈ S2 and according to Theorem 3.1
we will have relations

∏
i∈γj,k

|aii| �
( ∏

i∈γj,k

ri

)αk
( ∏

i∈γj,k

ci

)1−αk (
∀γj,k ∈ Ck, ∀Ck ∈ C(A)

)
, (3.21)

where γj,1 ∈ C1, j = 1, 2, 3, and γj,2 ∈ C2, j = 1, 2, 3, hold. Note that all the relations in
(3.21) are strict except in the following cases where they are equalities: (i) a1 = 0.3618
for γ1,1, (ii) a1 = 0.9742 for γ3,1, (iii) α2 = 0.3190 for γ2,2 and (iv) α2 = 0.3553 for γ1,2;
also, in the corresponding relations in (3.21) for any combination of α’s from (i) or (ii)
with (iii) or (iv).

For x = 0.49, working analogously, we find for the three cycles the intervals

S1,2 = [0, 0.4163], S2,2 = [0.2717, 1], S3,2 = [0, 1],

respectively. Again, S2 = S1,2 ∩S2,2 ∩S3,2 = [0.2737, 0.4163]. The conclusion is that A22
is a B-matrix and A is a generalized B-matrix. This time we also note that S = S1∩S2 =
[0.3618, 0.4163], meaning that we can choose distinct values of α’s from the two intervals
S1 and S2 or a common α ∈ S. In this last case α1 = α2 in relations (3.21) which will
be strict for all α ∈ (0.3618, 0.4163) while we will have equalities for α = 0.3618 for the
cycle γ1,1 and for α = 0.4163 for the cycle γ1,2.

Based on the theory developed we can give the following statement for the spec-
trum of the generalized B-matrix A which constitutes an extension of Lemma 2.8. More
specifically,
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Theorem 3.4. Under the assumptions and the notation of Definition 3.2 and in view of
Remark 3.1 the spectrum of A is contained in the region below

σ(A) ⊆ B(A)

:=
p⋃

k=1

{
z ∈ C:

∏
i∈γj,k

|z − aii| �
( ∏

i∈γj,k

ri

)αk
( ∏

i∈γj,k

ci

)1−αk

(∀γj,k ∈ Ck)
}
, (3.22)

for each p-tuple (α1, α2, . . . , αp), αk ∈ Sk, k = 1(1)p.

Remark 3.2. In case of any reducible matrix A ∈ C
n×n, Theorem 3.4 may be completed

adopting Varga’s approach [22], where 1 × 1 blocks in the Frobenius normal form of A
are allowed. Then, the spectrum of A is contained in a union of regions of type (3.22), of
the singletons whose elements are those of the 1 × 1 diagonal blocks and of type (3.22),
with αk = α, for each α ∈ [0, 1], for diagonal blocks that are not B-matrices, as this is
done in Corollary 2.13 of Brualdi [6] (Lemma 2.9).

To make it clear and without loss of generality, we may assume that of the p diagonal
blocks Akk of the Frobenius normal form of A ∈ C

n×n, n � 2, the first p1 blocks Akk,
k = 1(1)p1, are B-matrices, the next p2 blocks Akk, k = p1 +1(1)p1 +p2 are 1×1 blocks,
and the last p− p1 − p2 blocks Akk, k = p1 + p2 + 1(1)p, are not B-matrices. Then

σ(A) ⊆ E1 ∪ E2 ∪ E3,

where

E1 :=
p1⋃
k=1

{
z ∈ C:

∏
i∈γj,k

|z − aii| �
( ∏

i∈γj,k

ri

)αk
( ∏

i∈γj,k

ci

)1−αk

(for any αk ∈ Sk, ∀γj,k ∈ Ck)
}
,

E2 :=
⋃

k=p1+1(1)p1+p2

{akk},

E3 :=
p⋃

k=p1+p2+1

{
z ∈ C:

∏
i∈γj,k

|z − aii| �
( ∏

i∈γj,k

ri

)α( ∏
i∈γj,k

ci

)1−α

(
for each α ∈ [0, 1], ∀γj,k ∈ Ck

)}
.

4. M - and H-matrices

In this section we will discuss a little further nonsingular M - and H-matrices, where
the term “nonsingular” will be omitted.
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Recall that: “A matrix A ∈ R
n×n is called an M -matrix iff aii > 0, aij � 0, ∀i �=

j ∈ N , and the spectral radius of the associated Jacobi iteration matrix, JA (� 0), is
strictly less than 1. Namely, ρ(JA) < 1”. Many equivalent characterizations can be found
in [1].

In Brualdi [6] a new characterization for M -matrices was given. It goes as follows:
“Let A ∈ R

n×n, with aii > 0, aij � 0, ∀i �= j ∈ N , and A be weakly irreducible. Suppose
∏
i∈γj

aii >
∏
i∈γj

ri
(
∀γj ∈ C(A)

)
(4.1)

hold. Then A is an M -matrix”.
For the definition of the “comparison matrix” of a given matrix A ∈ C

n×n, n � 2, we
have

Definition 4.1. The comparison matrix of A ∈ C
n×n, n � 2, is the matrix 〈A〉 ∈ R

n×n,
with elements 〈aii〉 = |aii|, 〈aij〉 = −|aij |, ∀i �= j ∈ N .

The definition for a matrix A ∈ C
n×n, n � 2, to be an H-matrix, was introduced by

Varga [21]. One of its characterizations is: “A matrix A ∈ C
n×n is an H-matrix iff its

comparison matrix is an M -matrix”. Obviously, there are many equivalent characteriza-
tions for an H-matrix (see [1] and also [5]). A new one can be based on the following
statement, where to make things simpler, we assume that A ∈ C

n×n is irreducible.

Theorem 4.1. Let A ∈ C
n×n, n � 2, be irreducible. If A is a B-matrix, then it is an

H-matrix.

Proof. Let A be a B-matrix. Then, in view of Definition 3.1 and Theorem 3.1, A will
satisfy relations (3.1), namely

∏
i∈γj

|aii| �
( ∏

i∈γj

ri

)α( ∏
i∈γj

ci

)1−α (
∀γj ∈ C(A)

)
(4.2)

for some α ∈ [0, 1] and strict inequality for at least one cycle γj . Let 〈D〉 = diag(〈A〉),
and let B = 〈D〉 − 〈A〉 (� 0). Suppose that all the diagonal elements of A are multiplied
by a number ε ∈ [1,+∞). Take a certain ε0 ∈ (1,+∞) very large so that the new A,
A(ε0), is SDD and, therefore, 〈A(ε0)〉 is an M -matrix. Then, for any ε ∈ (1, ε0] each
new A, call it A(ε), will satisfy the corresponding relations to (4.2) and the inequalities
will be strict. More specifically,

εβj

∏
i∈γj

|aii| ≡
∏
i∈γj

(
ε|aii|

)
>

( ∏
i∈γj

ri

)α( ∏
i∈γj

ci

)1−α (
∀γj ∈ C(A)

)
, (4.3)

where βj is the number of nodes on γj ∈ C(A). Therefore, A(ε) will be a B-matrix.
Assume that ε starts decreasing from ε0 to 1+. 〈A(ε)〉 satisfies relations (4.3). Hence,
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it remains nonsingular. At the limit limε→1+〈D(ε)〉 = 〈D〉, limε→1+〈A(ε)〉 = 〈A〉 and
limε→1+ J〈A(ε)〉 = J〈A〉, limε→1+ ρ(J〈A(ε)〉) = ρ(J〈A〉). However, by Theorem 3.1, 〈A〉 is
nonsingular. From the continuity of all the functions of ε involved, 〈D(ε)〉, 〈A(ε)〉, J〈A(ε)〉,
ρ(J〈A(ε)〉), we get

〈
D(1)

〉
= 〈D〉,

〈
A(1)

〉
= 〈A〉,

J〈A(1)〉 = J〈A〉, ρ(J〈A(1)〉) = ρ(J〈A〉) < 1. (4.4)

These results and the nonsingularity of 〈A〉 imply that 〈A〉 is an M -matrix because
for no value of ε ∈ [1, ε0] ⊂ [1,+∞), 〈A(ε)〉 becomes singular. Consequently, A is an
H-matrix. �

An immediate consequence of the above theorem is the more general one.

Theorem 4.2. Let A ∈ C
n×n, n � 4, be weakly irreducible and a generalized B-matrix

which is already in its Frobenius normal form. Then, A is an H-matrix.

Note: It is reminded that the term generalized B-matrix means that
∏

i∈γj,k

|aii| �
∏

i∈γj,k

rαk
i c1−αk

i

(
∀γj,k ∈ Ck, ∀Ck ∈ C(A)

)
, (4.5)

with at least one inequality strict for γj,k ∈ Ck, k = 1(1)p, hold for some p-tuple
(α1, α2, . . . , αp), αk ∈ Sk ⊆ [0, 1], Sk �= ∅, k = 1(1)p.

Remark 4.1. It is understood that if A ∈ R
n×n has positive diagonal elements and

nonpositive off-diagonal ones, the (generalized) B-matrix character of A implies that in
both Theorems 4.1 and 4.2 the conclusion is that A is an M -matrix.

Notes: Under the same assumptions as those of Theorems 4.1 and 4.2 for a matrix
A ∈ C

n×n, the theorems of this section can apply to: (i) Reducible matrices A which,
in their Frobenius normal form, have nonzero 1 × 1 diagonal blocks and (ii) matrices
X−1AX, where X ∈ R

n×n is any positive diagonal matrix.

5. Concluding remarks

In the present work we used the theory presented in Brualdi’s paper [6] and in the
analytically developed theory in the recent book by Varga [22] and were able to de-
termine the value(s) of the parameter(s) α (αk’s) involved mainly in Lemmas 2.8 and
2.9 due to Brualdi, as well as to Theorem 2.10 of [22] due to Brualdi and Varga. This
determination was based on previous works by Cvetković et al. [8] and the first of the
present authors [12]. Theorem 3.2 together with Table 1, Remark 3.1, Theorem 3.3,
Corollary 3.1, Theorem 3.4, Remark 3.2 and Theorems 4.1 and 4.2 are considered as
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new results. The numerical examples given, together with the depicted figures, make the
theory in the paper easier for the reader to follow.

Last but not least we would like to point out that a similar theory can be developed
if, instead of the generalized geometric means, one considers the generalized arithmetic
means as this was done in [8] and especially in [12].
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