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On sign symmetric circulant matrices

Michael G. Tzoumas

Department of Mathematics, University of Ioannina, GR-451 10 Ioannina, Greece

Abstract

In the last four decades many researchers have studied and analyzed the study of sign symmetry and positivity of prin-
cipal minors of matrices, since these issues are related to stability. In this work we extend the theory about sign symmetric
basic p-circulant permutation and sifted p-circulant matrices. We present and prove sufficient and necessary conditions for
P-matrices and necessary conditions for P2-matrices. Finally we present a class of matrices, where the P2-matrices are
stable.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Consider two subsets a and b of f1; 2; . . . ; ng with the same cardinality (jaj ¼ jbj) and an n� n square real
matrix A. We denote by A½ajb� the minor with the rows indexed by a and columns indexed by b. If a ¼ b the
minor is a principal minor of A. The matrix A is called sign symmetric if A½ajb�A½bja�P 0, for all a and
b � f1; 2; . . . ; ng with jaj ¼ jbj. The matrix A is called weakly sign symmetric if A½ajb�A½bja�P 0, for all a
and b � f1; 2; . . . ; ng with jaj ¼ jbj ¼ ja \ bj þ 1.

A square real matrix A is called a Q-matrix (Q0-matrix) if the sums of principal minors of A of the same
order are positive (nonnegative), or equivalently a Q-matrix can be defined as the matrix whose characteristic
polynomial has coefficients with alternating signs. A square real matrix A is called a P-matrix (P 0-matrix) if all
the principal minors of A are positive (nonnegative). The positive definite matrices and the M-matrices belong
to the class of P-matrices. The class of P-matrices satisfies properties ðA1Þ–ðA6Þ of Theorem 6.2.3 in [5].

A square real matrix A is called a P S-matrix (QS-matrix) if Ak is a P-matrix (Q-matrix) for all k 2 S, where S

is a finite or a infinite set of positive numbers. Hershkowitz and Keller [6] use the notation P2 for the P f1;2g-
matrices and the same notation is adopted in this work.

Finally, a square real matrix A is called positive stable or simply stable if its eigenvalues have positive real
parts or equivalently if its eigenvalues lie in the open right half complex-plane. A square real matrix A is called
semistable if its eigenvalues have nonnegative real parts. For the important role of stability in applications the
reader is referred to Refs. [3,4].
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Many researchers have studied the connection among the class of P-matrices with stability and sign sym-
metry (see, e.g., [1,2]). Recently Hershkowitz and Keller [7] have studied the sign symmetry of basic and shift
basic circulant permutation matrices and have given a simple criterion for [anti] symmetric matrices of this
class. They have dealt with 3� 3 sign symmetric matrices and the arguments of their complex eigenvalues.
The same researchers, in [6], studied the relation between positivity of principal minors, sign symmetry and
stability of matrices. They devoted a large part of their work to discuss the relation between PS-and QS-matri-
ces and the sign symmetry. A number of open questions were raised in the aforementioned works and some
answers are given in this paper.

Our work is organized as follows: In Section 2, we generalize Hershkowitz and Keller ’s theory on sign sym-
metry of Circulant Permutation Matrices by presenting and proving more general statements. In Section 3, we
study Shifted Circulant Permutation Matrices making clear that the results in [7] are not valid in the general
case. In Section 4, we give a class of matrices, where a question raised in [6] is answered affirmatively. Finally,
in Section 5, we give an example to confirm the theory developed.

2. Sign symmetry of circulant permutation matrices

Definition 2.1. A n · n real matrix is called a circulant matrix if it is of the form

Cn ¼

a1 a2 a3 � � � an

an a1 a2 � � � an�1

an�1 an a1 � � � an�2

..

. ..
. ..

. ..
. ..

.

a2 a3 a4 � � � a1

0BBBBBBB@

1CCCCCCCA: ð2:1Þ

The following lemma for circulant matrices is well known [8].

Lemma 2.1. Let qi be the ith of the n roots of unity. The eigenvalues of the circulant matrix (2.1) are given by

ki ¼
Xn

k¼1

akq
k�1
i ; i ¼ 1ð1Þn1: ð2:2Þ

Definition 2.2. An n · n matrix is called a basic p-circulant permutation matrix if it is defined as follows

ðCðpÞn Þij ¼
1 j ¼ iþ p if 1 6 i 6 n� p;

1 j ¼ i� nþ p if n� p < i 6 n;

0 otherwise:

8><>:
The basic p-circulant permutation matrix has the form

CðpÞn ¼

0 0 � � �
..
. ..

.

0 0 � � �
1 0 � � �
..
. . .

.

0 � � � 1

0BBBBBBBBBB@
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

p

1 � � � 0

..

. . .
. ..

.

0 � � � 1

0 � � � 0

..

. ..
.

0 � � � 0

1CCCCCCCCCCA
:

1 The notation a(b)c is an abbreviation of all the terms of the arithmetic progression with first term a, step b>0(<0) and last term the
largest (smallest) one that is not greater (smaller) than c.
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Proposition 2.1. Let p,n be positive integers with g:c:d:ðp; nÞ ¼ 1. Then there holds

fx 2 N : x � kp ðmodnÞ; k ¼ 1ð1Þng ¼ f0; 1; . . . ; n� 1g: ð2:3Þ

Proof. Let A ¼ fx 2 N : x � kp ðmodnÞ; k ¼ 1ð1Þng. If x1; x2 2 A, then x1 6¼ x2, since x1 ¼ x2 ) k1p �
k2p ðmodnÞ with k1; k2 6 n) ðk1 � k2Þp � 0 ðmodnÞ. But this means that the l:c:m:ðp; nÞ < pn, which contra-
dicts the assumption g:c:d:ðp; nÞ ¼ 1. h

Theorem 2.1. Let p be a positive integer, CðpÞ2n the basic p-circulant permutation matrix, with g:c:d:ðp; nÞ ¼ 1, and

a, b different nonempty subsets of f1; 2; . . . ; 2ng of the same cardinality. The product CðpÞ2n ½ajb�C
ðpÞ
2n ½bja� 6¼ 0 if and

only if

fa; bg ¼ ff1; 3; . . . ; 2n� 1g; f2; 4; . . . ; 2ngg: ð2:4Þ

Proof. It is clear that

CðpÞ2n ½ajb�C
ðpÞ
2n ½bja� 6¼ 0() CðpÞ2n ½ajb� 6¼ 0 and CðpÞ2n ½bja� 6¼ 0: ð2:5Þ

We note that if i 62 a and iþ p 2 b (where iþ p is identified with iþ p ðmod 2nÞ), then CðpÞ2n ½ajb� ¼ 0, since the
column iþ p ðmod2nÞ contains only zeros. The first term of the right part of (2.5) implies that if
i 62 a) iþ p 2 =b, which, by the second term of (2.5) implies that iþ 2p 62 a. In general, for k ¼ 1; 2; . . . ,
we have

i 62 a) iþ 2kp ðmod2nÞ 62 a; ð2:6Þ
i 62 b) iþ 2kp ðmod 2nÞ 62 b; ð2:7Þ

where 0 ðmod 2nÞ is taken as 2n.
From Proposition 2.1, it follows that:

fx 2 N : x � 2kp ðmod2nÞ; k ¼ 1ð1Þng ¼ f2; 4; . . . ; 2ng; while

fx 2 N : x � 2kp þ 1 ðmod2nÞ; k ¼ 1ð1Þng ¼ f1; 3; . . . ; 2n� 1g:

So, if we take i = 1 then from (2.6) b ¼ f1; 3; . . . ; 2n� 1g, whereas if we take i = 2 then from (2.7)
a ¼ f2; 4; . . . ; 2ng.

Reversely, let p be even. In this case, since a 6¼ b and the number +1 is located in positions with only odd or
even indices, we have CðpÞ2n ½ajb� ¼ 0. Also, a ¼ b) CðpÞ2n ½ajb� ¼ 1 and so the matrix CðpÞ2n is sign symmetric.

Let p be odd. In this case the minors have the form:

CðpÞ2n ½ajb� ¼

0 0 � � �
..
. ..

.

0 0 � � �
1 0 � � �
..
. . .

.

0 � � � 1

����������������|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
p�1

2

1 � � � 0

..

. . .
. ..

.

0 � � � 1

0 � � � 0

..

. ..
.

0 � � � 0

����������������
; CðpÞ2n ½bja� ¼

0 0 � � �
..
. ..

.

0 0 � � �
1 0 � � �
..
. . .

.

0 � � � 1

����������������|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pþ1

2

1 � � � 0

..

. . .
. ..

.

0 � � � 1

0 � � � 0

..

. ..
.

0 � � � 0

����������������
The product of the minors above is given by the following expressions:

CðpÞ2n ½ajb�C
ðpÞ
2n ½bja� ¼ ð�1Þ

�
n�p�1

2

�
p�1

2 ð�1Þ
�

n�pþ1
2

�
pþ1

2 ¼ ð�1Þnp�2p2þ2
4 : � ð2:8Þ

Corollary 2.1. The basic p-circulant permutation matrix CðpÞ2n (p odd and g:c:d:ðp; nÞ ¼ 1) is sign symmetric if n is

odd and anti sign symmetric if n is even.
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Proof. Since p ¼ 2k þ 1, it is obvious that the exponent in (2.8) is given by

np � 2p2 þ 2

4
¼ nð2k þ 1Þ � 2ð2k þ 1Þ2 þ 2

4
¼ 2ðnk � k2 � kÞ þ n� 1: �

The case where g:c:d:ðp; nÞ 6¼ 1 is more complicated. We begin our analysis by giving the following lemma.

Lemma 2.2. Let p, n be two positive integers with g:c:d:ðp; nÞ ¼ l 6¼ 1. There are 2l classes (of integers) of

cardinality n
l:

ai ¼ x 2 N : x ¼ 2kp þ i ðmod2nÞ; k ¼ 1ð1Þ n
l

n o
¼ fi; iþ 2l; iþ 4l; . . . ; iþ 2ðn� lÞg; i ¼ 1ð1Þ2l:

Proof. Let lp ¼ p
l and ln ¼ n

l, then g:c:d:ðlp; lnÞ ¼ 1. Proposition (2.1) implies that

a2ln :¼ fx 2 N : x ¼ klp ðmod lnÞ; k ¼ 1ð1Þlng ¼ f1; 2; . . . ; lng; ð2:9Þ

where 0 ðmod lnÞ is taken as ln, or equivalently

a2l :¼ fx 2 N : x ¼ 2klpl ðmod 2lnlÞ; k ¼ 1ð1Þlng ¼ fx 2 N : x ¼ 2kp ðmod2nÞ; k ¼ 1ð1Þlng
¼ f2l; 4l; . . . ; 2ng: ð2:10Þ

Similarly, we can give the other sets ai.
Moreover, since

ai \ aj ¼£ and
[

i

ai ¼ f0; 1; . . . ; 2n� 1g

the statement is true. h

Lemma 2.3. Let p, n be two positive integers with g:c:d:ðp; nÞ ¼ l 6¼ 1; ai, i ¼ 1ð1Þ2l; be the classes of the pre-

vious lemma and lp ¼ p
l. Then

aiþp ¼ ak; where k ¼
iþ l ðmod2lÞ if lp odd;

i ðmod 2lÞ if lp even:

�
Proof. The above is obvious, by Lemma 2.2, since p ¼ lpl and

iþ p ¼ iþ lpl ¼
iþ lþ 2kl if lp odd;

iþ 2kl if lp even:

�
�

Theorem 2.2. Let p be a positive integer, CðpÞ2n the basic p-circulant permutation matrix, with g:c:d:ðp; nÞ ¼ l, and

ai i ¼ 1ð1Þ2l; different nonempty subsets of f1; 2; . . . ; 2ng of cardinality ln ¼ n
l. The product CðpÞ2n ½ajb�C

ðpÞ
2n ½bja� 6¼ 0

and the order of determinants is minimal, if and only if

lp is odd and fa; bg ¼ fai; aiþlg or lp is even and fa; bg ¼ fai; aig; ð2:11Þ
where lp ¼ p

l.

Proof. Here, relationship (2.5) holds. The fact that CðpÞ2n ½ajb� 6¼ 0 implies that there exists an element ai;iþp ¼ 1
in each row and in each column of CðpÞ2n ½ajb�. Now, if i 2 a, then iþ p 2 b and consequently iþ 2p 2 a. The fact
that CðpÞ2n ½bja� 6¼ 0 implies that there exists an element aiþp;iþ2p ¼ 1 in each row and in each column of CðpÞ2n ½bja�.
Therefore, if iþ p 2 b, then iþ 2p 2 a and so iþ 3p 2 b. This means, by Lemma 2.3, that

a ¼ fx 2 N : x ¼ iþ 2kp ðmod2nÞg 2 fai; i ¼ 1ð1Þ2lg and b ¼ aiþl

in case lp ¼ odd, while if lp ¼ even then a ¼ b 2 fai; i ¼ 1ð1Þ2lg. h
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The case where lp ¼ even is trivial and the matrix is sign symmetric. In case lp is odd, we call, for conve-
nience, the determinant CðpÞ2n ½ajb�; with a 2 fai; i ¼ 1ð1Þlg and b ¼ aiþl, a determinant of type I and the deter-
minant CðpÞ2n ½bja�; with b 2 faiþl; i ¼ 1ð1Þlg and a ¼ ai, a determinant of type II.

The following remarks can be readily checked.

• The two types of determinants, I and II, are determinants of basic p-circulant permutation matrices of order
ln � ln.

• The number of the two types of determinants is l.
• A determinant of type I has a +1 in the position ð1; 1þ q1Þ, where q1 is the largest integer less than p�l

2l , since
there must hold ð2k þ 1Þl < p.

• A determinant of type II has a +1 in the position ð1; 1þ q2Þ, where q2 is the largest integer less than p
2l, since

there must hold 2kl < p.
• q2 ¼ q1 þ 1, since p

2l�
p�l
2l ¼ 1

2
(recall that p ¼ lpl and lp is odd).

• The union sets of ai and the corresponding of aiþl give determinants of the same type and analogous size.
The total number of determinants of type I and type II is

l

1

� �
þ

l

2

� �
þ � � � þ

l

l

� �
¼ 2l � 1:

We can compute a type I determinant by moving the q1 bottom rows to the top and, similarly, a type II
determinant by moving the q2 bottom rows to the top. So, we have

DI ¼ ð�1Þðln�q1Þq1 and DII ¼ ð�1Þðln�q2Þq2 : ð2:12Þ
From (2.12) we find

CðpÞ2n ½ajb�C
ðpÞ
2n ½bja� ¼ DIDII ¼ ð�1Þðln�q1Þq1þðln�q2Þq2 ¼ ð�1Þln�1

: ð2:13Þ
In the same way we can compute determinants of type I and type II with a ¼ ai [ aj; 1 6 i; j 6 l and
b ¼ aiþl [ ajþl. For this we have

DI ¼ ð�1Þð2ln�2q1Þ2q1 and DII ¼ ð�1Þð2ln�2q2Þ2q2 ð2:14Þ
and

CðpÞ2n ½ajb�C
ðpÞ
2n ½bja� ¼ DIDII ¼ 1: ð2:15Þ

It is easy to prove that the union of odd ai’s gives a similar result to that in relation (2.13) while the union of
even ai’s gives a result as in the relation (2.15). After the above analysis we introduce the next theorem.

Theorem 2.3. Let p; n be positive integers, with g:c:d:ðp; nÞ ¼ l 6¼ 1, lp ¼ p
l, ln ¼ n

l, CðpÞ2n the basic p-circulant

permutation matrix, then

(1) lp ¼ even. The matrix CðpÞ2n is sign symmetric.

(2) lp ¼ odd.

(i) ln ¼ odd. The matrix CðpÞ2n is sign symmetric.

(ii) ln ¼ even. The matrix CðpÞ2n is not sign symmetric nor anti sign symmetric.

3. On shifted circulant permutation matrices

Hershkowitz and Keller [7] proved that the matrix

A ¼

x1 y1 0 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0

0 . .
. . .

.
yn�1

yn 0 . . . 0 xn

0BBBBBBB@

1CCCCCCCA; ð3:1Þ
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where the xi’s share the same sign and
Qn

i¼1yi > 0, in case n is even, is neither sign symmetric nor anti sign
symmetric. However, this is not true in a more general case. For example, let the matrix

A4;2 ¼

x1 0 y1 0

0 x2 0 y2

y3 0 x3 0

0 y4 0 x4

0BBB@
1CCCA:

Since aijaji 6¼ 0; i ¼ 1ð1Þ4; and j ¼ iþ 2 ðmod4Þ, it is easy to verify that

(i) When a and b are subsets of f1; 2; 3; 4g of cardinality +1

A4;2½ajb�A4;2½bja� ¼ yiþ1yiþ3; i ¼ 0; 1:

(ii) When a and b are subsets of f1; 2; 3; 4g of cardinality +2

A4;2½ajb�A4;2½bja� ¼
x2

i yiþ1yiþ3

or

y1y2y3y4

8><>: ; i ¼ 1ð1Þ4:

(iii) When a and b are subsets of f1; 2; 3; 4g of cardinality +3

A4;2½ajb�A4;2½bja� ¼ yiþ1yiþ3ðxiþ2xiþ4 � yiþ2yiþ4Þ
2
; i ¼ 0; 1:

Note: Recall that all indices are mod 4 and I0 ¼ I4.
So, since in all other cases there holds A½ajb�A½bja� ¼ 0, the next theorem is valid.

Theorem 3.1. Let xi and yi, i ¼ 1ð1Þ4; be real numbers. Then the matrix A4;2 is sign symmetric if and only if

y1y3 P 0 and y2y4 P 0. In all other cases the matrix is neither sign symmetric nor anti sign symmetric.

We consider now a more general form than that in (3.1) for shifted circulant matrices

An;k ¼

x1 0 . . . 0 y1 0 . . . 0

0 x2 . . . 0 0 y2 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 . . . xn�k 0 . . . . . . yn�k

yn�kþ1 0 . . . 0 xn�kþ1 . . . . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 . . . . . . yn 0 . . . . . . xn

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

Since a symmetric matrix is a sign symmetric one, then

Theorem 3.2. The matrix A2k;k with xi ¼ x and yi ¼ y, i ¼ 1ð1Þ2k, is a sign symmetric one.

Lemma 3.1. Let x, y be real numbers and a matrix Bn ¼ ðbijÞ, where

bij ¼
x; j ¼ iþ 1; i ¼ 1ð1Þn� 1;

y; j ¼ i� 1; i ¼ 2ð1Þn;
0; otherwise:

8><>: ð3:2Þ

Then

detðBnÞ ¼ �xy detðBn�2Þ: ð3:3Þ
Moreover detðB2nÞ ¼ ð�1Þnxnyn and detðB2nþ1Þ ¼ 0.

Proof. Relation (3.3) is obvious if we expand detðBnÞ twice in the terms of its first row. The other relations are
easy to prove, since detðB2Þ ¼ �xy and detðB3Þ ¼ 0. h
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Theorem 3.3. Let x; y be nonzero real numbers and n > 1 a positive integer. Then the shifted circulant permutation

matrices A2nþ1;2 is neither sign symmetric nor anti sign symmetric.

Proof. We have

D2n :¼ A2nþ1;2½1; 2; . . . ; 2n� 1; 2nþ 1j1; 2; . . . ; 2n� 1; 2n� ¼

x 0 y 0 � � � 0

0 x 0 y � � � 0

..

.

0 y 0 0 � � � 0

����������

����������
:

We expand the determinant once in the terms of its first column and once in the terms of its last row. Then,
from Lemma 3.1 we have

D2n ¼ yx det B2ðn�1Þ ¼ xyð�1Þn�1xn�1yn�1 ¼ ð�1Þn�1xnyn; ð3:4Þ

bD2n :¼ A2nþ1;2½1; 2; . . . ; 2n� 1; 2nj1; 2; . . . ; 2n� 1; 2nþ 1� ¼

x 0 y 0 � � � 0 0

0 x 0 y � � � 0 0

..

.

0 0 0 0 � � � x y

y 0 0 0 � � � 0 0

�������������

�������������
:

Now, we expand this determinant once in the terms of its last column and once in the terms of its last row.
Then from Lemma 3.1 we havebD2n ¼ �y2 det B2ðn�1Þ ¼ �y2ð�1Þn�1xn�1yn�1 ¼ ð�1Þnxn�1ynþ1: ð3:5Þ

From (3.4) and (3.5) we take

D2n
bD2n ¼ �xyðxn�1ynÞ2: ð3:6Þ

In an analogous way we find that

D2n�1 :¼ A2nþ1;2½1; 2; . . . ; 2n� 3; 2n; 2nþ 1j1; 2; . . . ; 2n� 1� ¼ y2n�1

and bD2n�1 :¼ A2nþ1;2½1; 2; . . . ; 2n� 1j1; 2; . . . ; 2n� 3; 2n; 2nþ 1� ¼ y2x2n�3

and finally

D2n�1
bD2n�1 ¼ xyðxn�2ynÞ2: ð3:7Þ

So, relations (3.6) and (3.7) prove the theorem. h

We are now able to prove a theorem analogous to Theorem 2.27 in [7].

Theorem 3.4. Let n > 2 be an integer and xi; yi; i ¼ 1ð1Þ2nþ 1, be nonzero real numbers so that all xi’s share the

same sign and
Q2nþ1

i¼1 yi > 0. Then the matrix

A2nþ1;2 ¼

x1 0 y1 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

y2n
. .

.
x2n 0

0 y2nþ1 � � � 0 x2nþ1

0BBBBBBBBB@

1CCCCCCCCCA
is neither sign symmetric nor anti sign symmetric.
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Proof. Without loss of generality we may assume that x1 ¼ x2 ¼ � � � ¼ x2nþ1 ¼ x since sign and anti sign sym-
metry are invariant under multiplication of the matrix by a positive diagonal matrix. Moreover, we define
r ¼ ðy1y2 � � � y2nþ1Þ

1=ð2nþ1Þ and the diagonal matrix D ¼ ðd1; d2; . . . ; d2nþ1Þ, where

di ¼

rn�lþ1Qn

j¼l
y2j�1

; i ¼ 2l� 1;

r2n�lþ1Qn

k¼1
y2k�1

Qn

j¼l
y2j
; i ¼ 2l;

1; i ¼ 2nþ 1;

8>>><>>>: l ¼ 1ð1Þn:

Then, the matrix D�1A2nþ1;2D is a shifted circulant permutation matrices and by virtue of Theorem 3.3 our
claim is proved. h

4. On positivity of principal minors of a shift circulant matrix A2n,2

Let x; y 2 IR. The A2n;2 shift circulant matrix has the form

A2n;2 ¼

x 0 y 0 0 0

0 x 0 y 0 0

..

. . .
. . .

. ..
.

0 0 0 x 0 y

y 0 0 0 x 0

0 y 0 0 0 x

0BBBBBBBBB@

1CCCCCCCCCA
: ð4:1Þ

Theorem 4.1. Let A2n;2 be a shift circulant matrix, with x; y 2 IR. This matrix is a P-matrix if and only if:

(i) x > 0; xþ y > 0, if n odd.
(ii) x > 0; x2 � y2 > 0, if n even.

Proof. The graph of A2n;2 is of the form shown in Fig. 1. This means that there exists a permutation matrix P,
so that the product P�1A2n;2P will have a block diagonal form, where the diagonal elements are the same with
shift circulant basic matrix Cn and where detðCnÞ ¼ xn þ ð�1Þnþ1yn. The graph of the matrix Cn is of type I as
in Fig. 1. The type II, in Fig. 1, is the graph of a shift circulant basic matrix Cn with zero in the position ðn; 1Þ,
that is a matrix with elements in the main diagonal and in its first upper-diagonal.

A principal minor of a matrix results by removing some rows and the corresponding columns. In its graph,
this means that we remove one or more nodes and it is clear that the new graph consists of sub-graphs of type
II, in Fig. 1, and of at most one graph of type I, in the same figure. In matrix form, it means that there exists a
permutation matrix P which transforms the principal matrix in a block diagonal matrix where its principal
minor takes the value

Dk ¼ xk or Dk ¼ xjðxn þ ð�1Þnþ1ynÞ if k P n;

Dk ¼ xk if k < n:
ð4:2Þ

This relation with the fact that D1 ¼ x and D2n�1 ¼ xn�1ðxn þ ð�1Þnþ1ynÞ prove the theorem. h

(I) (II)

Fig. 1. The graph of the matrix Cn of type I and type II.
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In the following we study the signs of principal minors of A2
2n;2. For this we give some essential lemmas.

Lemma 4.1. Let the n� n tridiagonal matrix, An ¼ ðaijÞ, where

aij ¼
x2; j ¼ i� 1; i ¼ 2ð1Þn;
2xy; j ¼ i; i ¼ 1ð1Þn;
y2; j ¼ iþ 1; i ¼ 1ð1Þn� 1:

8><>:
Then

detðAnÞ ¼ ðnþ 1Þxnyn: ð4:3Þ

Proof. Let Dn ¼ detðAnÞ, then it is easy to check, by induction, that the relationship Dn ¼ 2xyDn�1 � x2y2Dn�2

is valid and this implies (4.3). h

Two yet matrices are important for our analysis.

Lemma 4.2. Let the n� n matrix,

Bn ¼

x2 2xy y2 � � � 0 0

0 x2 2xy � � � 0 0

..

. . .
. . .

. ..
.

0 0 0 . .
.

2xy y2

y2 0 0 . .
.

x2 2xy

2xy y2 0 � � � 0 x2

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð4:4Þ

Then

detðBnÞ ¼ ðxn � ð�1ÞnynÞ2: ð4:5Þ

Proof. We conveniently expand and we have

detðBnÞ ¼ � � � ¼ ðx2Þn þ ð�1Þnx2y2Dn�2 þ ðy2Þn þ ð�1Þnx2y2Dn�2 þ ð�1Þn2xyDn�1 ¼ � � �

¼ x2n þ y2n þ ð�1Þn�12xnyn: �

The graph of the matrix Bn is presented in Fig. 2. The loops on the nodes have weight x2, the paths P iP iþ1 have
weight 2xy while the weight of the paths P iP iþ2 is y2. We note that P nþ1 is equivalent to P1 and P nþ2 is equiv-
alent to P2. h

Lemma 4.3. Let the n� n matrix,

bBn ¼

x2 2xy y2 � � � 0

0 x2 2xy � � � 0

..

. . .
. . .

.

0 0 0 . .
.

2xy

y2 0 0 � � � x2

0BBBBBBB@

1CCCCCCCA: ð4:6Þ

Fig. 2. The graph of the matrix Bn.
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Then

detðbBnÞ ¼ x2n � ð�1Þnnxn�1ynþ1: ð4:7Þ

Proof. It is easy to check. h

Lemma 4.4. Removing the kth, k 6¼ 1; n, row and column of the above matrix (4.6) results in a matrix eBn with

x2; y2; x2 in the ðk � 1; k � 1Þ, ðk � 1; kÞ and ðk; kÞ positions, respectively. Moreover,

detðeBnÞ ¼ x2n � ð�1Þny2ðdet Ak�2Þy2ðdet An�kÞ; ð4:8Þ
where the matrix An has a determinant given by (4.3).

Proof. Removing a row and a column, not the first or the last one, a matrix of the following block form arises:

eB ¼
a1

bA1 0 0

0 aT
2 y2 0

0 0 a3
bA2

y2 0 0 aT
4

0BBBB@
1CCCCA; ð4:9Þ

where aT
1 and aT

3 have the form ðx2; 0; . . . ; 0Þ, aT
2 and aT

4 the form ð0; . . . ; 0; x2Þ while bA1 and bA2 are tridiagonal
matrices with diagonal 2xy and sub-diagonals x2 and y2. Now, it is easy to check that the principal minor is
detðeBnÞ ¼ x2n � ð�1Þny2ðdet Ak�2Þy2ðdet An�kÞ.

Let now the A2
2n;2 matrix

A2
2n;2 ¼

x2 0 2xy 0 y2 0 � � � 0

0 x2 0 2xy 0 y2 � � � 0

..

. ..
. . .

. ..
. . .

. . .
. . .

. ..
.

0 0 0 . .
.

0 . .
. . .

.
y2

y2 0 0 0 . .
.

0 . .
.

0

0 y2 0 0 0 . .
. ..

.
2xy

2xy 0 y2 0 0 0 . .
.

0

0 2xy 0 y2 0 0 0 x2

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

:

The graph of this matrix consists of two independent strongly connected subgraphs of the forms given in
Fig. 2. By a permutation matrix P we can transform this matrix into a block diagonal matrix, where in the
two diagonal blocks we have the matrix Bn of (4.4). So, we study the new block diagonal matrix.

A principal sub-matrix of this matrix can result by removing some rows and the corresponding columns. In
its graph this means that we remove some nodes. If we remove nodes only from the one sub-graph, then in the
principal minor of the matrix the factor ðxn � ð�1ÞnynÞ2 (4.5) is present but obviously this does not change the
sign of its determinant. So, the sign of a principal minor is changed only if we remove some nodes of a sub-
graph. Now, we can distinguish two cases. In the first case, we can remove at least two consecutive nodes of
the graph. Then, the strong connection of the graph is lost and with a permutation matrix P we can transform
the sub-matrix into an upper triangular one, with diagonal elements x2. So, in the principal minor of this
matrix there is a factor x2k which does not change the sign of it. In the second case we remove nodes, but these
are not successive. Supposing that we remove only one row and the corresponding column. A permutation
matrix P can transform this matrix into bBn�1 (4.6) and the principal minor is analogous to
xn�2ðxn � ð�1Þn�1ðn� 1ÞynÞ. Removing more rows and columns (but not the first, the last or consecutive
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ones) a sub-matrix of analogous form as in (4.8) arises and so the principal minor is analogous to a term of the
form xk1ðxk2 � kyk2Þ; k > 2. h

The above analysis gives us the necessary background for the next theorem.

Theorem 4.2. Let A2n;2 be a shift circulant matrix, with x; y 2 IR. If this matrix is a P2-matrix, then
ðx; yÞ 2 fðx; yÞ : x > 0 ^ x2 � y2 > 0g.

Proof. Let n be even. Since a P2-matrix is a P-matrix, the validity of our claim is obvious by Theorem 4.1.
Let n be odd. The principal matrix of order 2n� 1 is a matrix of a 2 · 2 block diagonal matrix, where the

first diagonal block is the matrix (4.4) while the second diagonal block is the matrix (4.6). So, the principal
minor of this is analogous to the term

x2ðn�1Þ � ð�1Þn�1ðn� 1Þxn�2yn ¼ xn�2ðxn � ðn� 1ÞynÞ:
Since our A2n;2 matrix is a P2-matrix, the following relationship must be valid:

xn�2ðxn � ðn� 1ÞynÞ > 0() y <
1ffiffiffiffiffiffiffiffiffiffiffi

n� 1n
p x

This relationship along with Theorem 4.1 prove the validity of the theorem too. h

Remark 4.1. The statement of Theorem 4.2 can be improved. We note that the proof of the theorem uses only
minors of size 1; n� 1 and n, where n is the size of the matrix. So, in a circulant matrix all the minors of order
n � 1 are equal to each other, as well as all the minors of size +1. Hence, if the matrix is a Q-matrix, all its
minors of size 1; n� 1; n are positive, as in a P-matrix. Hence, the statement of the theorem can be improved
by replacing the P2-assumption by a weaker Q2-assumption.

In [6], Question 6.2, Hershkowitz and Keller ask if P2-matrices are stable. Below we prove, that the P2-
matrices A2n;2 are stable.

From Lemma 2.1, the eigenvalues of A2n;2 in (4.1) are

kl ¼ xþ yei2ðl�1Þp
2n 2 ¼ xþ yei2ðl�1Þp

n ; l ¼ 1ð1Þ2n: ð4:10Þ
It is obvious that all these n eigenvalues are of multiplicity two each. So, we have

kl ¼ xþ y cos
2ðl� 1Þp

n

� �
þ iy sin

2ðl� 1Þp
n

� �
; l ¼ 1ð1Þn: ð4:11Þ

Apparently, if xþ y cos 2ðl�1Þp
n


 �
> 0 the matrix (4.1) is stable. However, from Theorem 4.2, this is valid when

the matrix (4.1) is a P2-matrix. Since, the answer to Hershkowitz and Keller’s question is positive, for a class of
matrices, we think this question should be restated as follows.

Question: Which classes of P2-matrices are stable?

5. The shift circulant matrix A6,2

Let the shift circulant matrix

A6;2 ¼

x 0 y 0 0 0

0 x 0 y 0 0

0 0 x 0 y 0

0 0 0 x 0 y
y 0 0 0 x 0

0 y 0 0 0 x

0BBBBBB@

1CCCCCCA: ð5:1Þ

We denote Djaj ¼ A6;2½ajb�A6;2½bja�, where a; b � f1; 2; 3; 4; 5; 6g, with jaj ¼ jbj. We have njaj ¼
6
jaj

� �
sets a and

njaj
2

� �
products Djaj. So, there exist

P6
jaj¼1Djaj ¼ 430 products of the form A6;2½ajb�A6;2½bja�, with a 6¼ b. From

these products, +66 are different from zero and are distributed as follows:

614 M.G. Tzoumas / Applied Mathematics and Computation 195 (2008) 604–617



Author's personal copy

• There are +6 products, D5 6¼ 0, of the form

D5 ¼ �xyðxþ yÞ2ðx2 � xy þ y2Þ2y2:

• There are +36 products, D4 6¼ 0, of the forms

D4 ¼
�x3y5; ð18 casesÞ;

or

x4y6; ð18 casesÞ:

8>><>>:
• There are +18 products, D3 6¼ 0, of the form

D3 ¼ �x3y3:

• There are +6 products, D2 6¼ 0, of the form

D2 ¼ �xy3:

Now we can state the following theorem.

Theorem 5.1. Let the shift circulant matrix A6;2 in (5.1). This matrix is sign symmetric if and only if xy < 0.

Lemma 5.1 [6, Theorem 2.6]. Let A be a sign symmetric n� n matrix. The following are equivalent:

(i) The matrix A is stable.

(ii) The matrix A is a P-matrix.

Theorem 5.2. Let A6;2 be a sign symmetric shift circulant matrix. Then

(i) x > 0

xþ y > 0() A6;2 is a P -matrix:

(ii) x < 0) A6;2 is not a P-matrix.

Proof. The eigenvalues of A6;2 are all double and the spectrum of A6;2 is given by

rðA6;2Þ ¼ xþ y; x� 1

2
y þ i

ffiffiffi
3
p

2
y; x� 1

2
y � i

ffiffiffi
3
p

2
y

( )
: ð5:2Þ

Since A6;2 is a sign symmetric shift circulant matrix, it is obvious from Theorem 5.1 that if x > 0 then y < 0 and
so x� 1

2
y > 0. Therefore the matrix A6;2 is a stable matrix if and only if xþ y > 0. Lemma 5.1 proves the first

part.
In case we have x < 0 it is y > 0 and then x� 1

2 y < 0. This proves that the matrix is neither a stable nor a P-
matrix. h

Theorem 5.3. Let A6;2 be a shift circulant matrix, with x; y 2 IR. This matrix is a P2-matrix if and only if

x > 0; xþ y > 0; x� y
ffiffiffi
23
p

> 0.

Proof. We denote by Dk the kth order principal determinant of the matrix A6;2. Then a D5 principal determi-
nant results by eliminating a row and the corresponding column. From Fig. 3, in (I), we can see that all deter-
minants are of the same type, since the graph of this is taken by removing one node. Then, with an appropriate
permutation matrix P we have
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D5 ¼

x y 0 0 0

0 x y 0 0

y 0 x 0 0

0 0 0 x y

0 0 0 0 x

�����������

�����������
¼ x2ðx3 þ y3Þ: ð5:3Þ

Since two different graphs result from the removal of two nodes, there are two types of principal determinants
D4, which, by using an appropriate permutation matrix P, give

D4 ¼

x y 0 0

0 x y 0

y 0 x 0

0 0 0 x

���������

��������� ¼ xðx3 þ y3Þ or D4 ¼

x y 0 0

0 x 0 0

0 0 x y

0 0 0 x

���������

��������� ¼ x4: ð5:4Þ

Since two different graphs result from the removal of three nodes, there are also two types of principal deter-
minants D3, which again, in a similar way, give

D3 ¼
x y 0

0 x y

y 0 x

�������
������� ¼ ðx3 þ y3Þ or D3 ¼

x y 0

0 x 0

0 0 x

�������
������� ¼ x3: ð5:5Þ

Finally, we have

D2 ¼ x2 and D1 ¼ x: ð5:6Þ
Let now

A2
6;2 ¼

x2 0 2xy 0 y2 0

0 x2 0 2xy 0 y2

y2 0 x2 0 2xy 0

0 y2 0 x2 0 2xy

2xy 0 y2 0 x2 0

0 2xy 0 y2 0 x2

0BBBBBBBB@

1CCCCCCCCA
: ð5:7Þ

3

2

1

4

5

6

3

2

1

4

5

6

(II)
(I)

Fig. 3. The graph of the matrices A6,2 and A2
6;2.
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We denote by bDk the kth order principal determinant of the matrix A2
6;2. As before, from Fig. 3, in (II), we have

that all determinants bD5 are the of same type and can be transformed by using an appropriate permutation
matrix P to give

bD5 ¼

x2 2xy y2 0 0

y2 x2 2xy 0 0

2xy y2 x2 0 0

0 0 0 x2 2xy

0 0 0 y2 x2

������������

������������
¼ xðx3 þ y3Þ2ðx3 � 2y3Þ: ð5:8Þ

We determine the other principal determinants in an analogous way. So, we obtain

bD4 ¼
x2ðx3 þ y3Þ2

or

x2ðx3 � 2y3Þ2

8><>: ; bD3 ¼
ðx3 þ y3Þ2

or

x3ðx3 � 2y3Þ

8><>: ; bD2 ¼
x4

or

xðx3 � 2y3Þ

8><>: ; bD1 ¼ x2: ð5:9Þ

The above relationships prove the theorem. h
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