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Abstract

Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z-
or an M-matrix, that make the associated Jacobi and Gauss–Seidel methods converge asymptotically faster than
the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the
same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161–170], Gunawardena
et al. [LAA 154–156 (1991) 123–143]. In this work we generalize the previous preconditioners to obtain optimal
methods. “Good” Jacobi and Gauss–Seidel algorithms are given and preconditioners, that eliminate more than one
entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov
subspace methods is studied.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Consider the linear system of algebraic equations

Ax = b, (1.1)
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where A ∈ Rn,n is an irreducible dominant Z-matrix with positive diagonal entries (see [4,18,20]),
that is its off-diagonal elements are nonpositive, (aij �0, i, j = 1(1)n, j �= i) and b ∈ Rn. Since
aii > 0, i=1(1)n, we may assume for simplicity that aii =1, i=1(1)n. We consider the usual triangular
splitting of A,

A = I − L − U , (1.2)

where I is the identity matrix and L and U are strictly lower and strictly upper triangular, respectively.
Then, it is known that the iterative methods of Jacobi and Gauss–Seidel associated with (1.1) converge
and by the Stein–Rosenberg theorem [18,20,4] the Gauss–Seidel method is faster than the Jacobi one.

Many researchers have considered preconditioners, applied to system (1.1) that make the associated
Jacobi and Gauss–Seidel methods converge asymptotically faster than the original ones. Milaszewicz
[16], basing his idea on previous ones (see, e.g., [15,5,9]), considered as a preconditioner P1 ≡ I + S1,
the matrix that eliminates the off-diagonal elements of the kth column of A. Gunawardena et al. [6]
considered as a preconditioner the matrix P2 ≡ I + S2, which eliminates the elements of the first upper
diagonal. Kohno et al. [10] extended the main idea in [6]. Recently Li and Sun [13] extended the class of
matrices considered in [10] and very recently Hadjidimos et al. [8] extended, generalized and compared the
previous works. Modifications of the above preconditioners have introduced and studied by Kotakemori
et al. [11] and by Niki et al. [17] (see also Li [12]). The term “preconditioning” is used in Sections 2 and
3 as in the aforementioned works, namely, to reduce the spectral radius of the iteration matrix in order to
improve the convergence of the classical iterative methods. However, the same term is often used when
the goal is to improve the condition number of A and hence the convergence of the Conjugate Gradient
or other Krylov subspace methods and this is done in Section 4.

This work is organized as follows: In Section 2, we extend Milaszewicz’s and Gunawardena et al.’s
preconditioners by giving a family of preconditioners based on the elimination of one element in each row
of A, present the convergence analysis and propose the algorithm that chooses a “good” preconditioner.
In Section 3 we generalize the above preconditioners by introducing the idea of eliminating more than one
entry per row and perform the corresponding convergence analysis. In Section 4 we study the behavior of
the proposed preconditioners when applied to Krylov subspace methods, especially to Conjugate Gradient
and to restarted GMRES methods. Finally, in Section 5, numerical examples are presented in support of
our theory.

2. Extending known preconditioners

Milaszewicz’s preconditioner [16] is based on the elimination of the entries of the kth column of A,
aik, i = 1(1)n, i �= k, while Gunawardena et al.’s one [6] is based on the elimination of the entries
of the first upper diagonal ai,i+1, i = 1(1)n − 1. Their common feature is that they eliminate precisely
one element of A in each but one row. If we try to extend Milaszewicz’s preconditioner by eliminating
an off-diagonal element of the kth row we obtain the same convergence results for the Jacobi and the
Gauss–Seidel type schemes, since the spectral radii of the corresponding iteration matrices associated
with A1 = P1A, which are reducible, are independent of the off-diagonal elements of the first row of
A (see [8]). This does not happen in the case of Gunawardena et al.’s preconditioner, which eliminates
an off-diagonal element of the last row. If we choose the first element of the last row, we introduce
a new preconditioner having a cyclic structure and call it cyclic preconditioner: P3 ≡ I + S3, where
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(S3)i,i+1 = −ai,i+1, i = 1(1)n − 1, (S3)n,1 = −an,1 and 0 elsewhere. This observation gives us the idea
of considering a family of preconditioners by eliminating exactly one element per row. So, we have a
preconditioner of the following general form:

P ≡ I + S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a1k1

1 −a2k2

1 −a3k3
. . .

. . .
. . .

−ankn 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1)

where ki ∈ {1, 2, . . . , i − 1, i + 1, . . . , n}, i = 1(1)n. Obviously, there is a total number of (n − 1)n

choices for a preconditioner of type P in (2.1). We denote by Ã = PA the associated preconditioned
matrix and assume that there is at least one pair of indices i, j, such that aiki

akij �= 0, so that at least one
element of Ã is different from that of A. Applying P to (1.1) we obtain the equivalent linear system

Ãx = b̃, with Ã = (I + S)A, b̃ = (I + S)b. (2.2)

The elements ãij of Ã are given by the relationships:

ãij =
{

aij − aiki
akij �0, j �= ki, i,

0, j = ki,

1 − aiki
aki i > 0, j = i.

(2.3)

We define the matrices

Ds := diag(a1k1ak11, a2k2ak22, . . . , anknaknn) (2.4)

and

S(L + U − I ) := Ls + Ds + Us − SL − SU, (2.5)

where Ds, Ls and Us are the diagonal, the strictly lower and strictly upper triangular components of
S(L+U) while SL and SU are the strictly lower and strictly upper triangular components of S, which are
all nonnegative matrices. To introduce the iterative methods that will be studied the following splittings
are considered:

Ã =
{

M − N = (I + S) − (I + S)(L + U),

M ′ − N ′ = I − (L + U + Ls + Ds + Us − SL − SU),

M ′′ − N ′′ = (I − Ds) − (L + U + Ls + Us − SL − SU).

(2.6)

The corresponding Jacobi and the Jacobi type iteration matrices as well as their Gauss–Seidel and
Gauss–Seidel counterparts are given by

B := M−1N = L + U ,

B ′ := M ′−1
N ′ = (L + U + Ls + Ds + Us − SL − SU),

B̃ := M ′′−1
N ′′ = (I − Ds)

−1(L + U + Ls + Us − SL − SU), (2.7)
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and

H := (I − L)−1U ,

H ′ := (I − L − Ls + SL)−1(U + Ds + Us − SU),

H̃ := (I − Ds − L − Ls + SL)−1(U + Us − SU). (2.8)

The main results of this section can now be stated and proved:

Theorem 2.1. (a) Under the assumptions and the notation so far, the following hold: There exist y and
z ∈ Rn, with y�0 and z�0, such that

B ′y�By and H ′z�Hz, (2.9)

�(B̃)��(B ′)��(B) < 1, (2.10)

�(H̃ )��(H ′)��(H) < 1, (2.11)

�(H̃ )��(B̃), �(H ′)��(B ′), �(H) < �(B) < 1. (2.12)

(Note: Equalities in (2.12) hold if and only if �(B̃) = 0.)
(b) Suppose that A is irreducible. Then, the matrix B is also irreducible which implies that the first

inequality in (2.9) and the middle inequality in (2.10) are strict.

Proof. (a) (2.9): The matrices B and B ′ are related as follows:

B ′ = I − (I + S)A = I − (I + S)(I − B) = B − S(I − B). (2.13)

For the nonnegative Jacobi iteration matrix B there exists a nonnegative vector y such that By = �(B)y.
Postmultiplying (2.13) by y we get

B ′y = (B − S(I − B))y = �(B)y − (1 − �(B))Sy��(B)y = By, (2.14)

which proves the first inequality of (2.9).
For the nonnegative Gauss–Seidel iteration matrix H there exists a nonnegative vector z such that

Hz=�(H)z. Using the fact that H =(I−L)−1U we have that (I−L)−1Uz=�(H)z or Uz=�(H)(I−L)z

or equivalently

�(H)z = �(H)Lz + Uz. (2.15)

We rewrite now the matrix Ã of (2.2) as follows:

Ã = (I + S)A = (I + SL + SU)(I − L − U)

= I − (L − SL + SLL + (SLU)L + (SUL)L)

− (U − SU + SUU + (SLU)U + (SUL)U) = I − L̃ − Ũ , (2.16)

where by (Q)L and by (Q)U we have denoted the strictly lower and the strictly upper part of the matrix
Q, respectively. So,

L = L̃ + SL − SLL − (SLU)L − (SUL)L, U = Ũ + SU − SUU − (SLU)U − (SUL)U. (2.17)
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By substituting (2.17) in (2.15) we get

�(H)z = �(H)L̃z + Ũz + z′, (2.18)

where

z′ = �(H)(SL − SLL − (SLU)L − (SUL)L)z + (SU − SUU − (SLU)U − (SUL)U)z. (2.19)

If z′�0 then from (2.18) we get

�(H)(I − L̃)z�Ũz or �(H)z�(I − L̃)−1Ũz or �(H)z�H ′z (2.20)

from which the second inequality of (2.9) follows. It remains to prove that z′�0:

z′ = �(H)SL(I − L − U)z + �(H)(SLU − (SLU)L − (SUL)L)z

+ SU(I − L − U)z + (SUL − (SLU)U − (SUL)U)z

= SL(�(H)(I − L) − �(H)U)z + �(H)((SLU)U − (SUL)L)z

+ 1

�(H)
SU (�(H)(I − L) − �(H)U)z + ((SUL)L − (SLU)U)z

= (1 − �(H))SLUz + 1 − �(H)

�(H)
SUUz − (1 − �(H))(SLU)Uz + (1 − �(H))(SUL)Lz

= (1 − �(H))(SLU)Lz + 1 − �(H)

�(H)
SUUz + (1 − �(H))(SUL)Lz�0. (2.21)

(a) (2.10): It is known that (see [4]) a Z-matrix A is a nonsingular M-matrix iff there exists a positive
vector y(> 0) ∈ Rn such that Ay > 0. By taking such a y, the fact that P =I +S�0 implies Ãy=PAy > 0.
Consequently, Ã, which is a Z-matrix, is a nonsingular M-matrix. So, the last two splittings in (2.6) are
regular splittings because M ′−1 = I−1 = I �0, N ′�0 and M ′′−1 = (I − Ds)

−1 �0, N ′′�0 and so they
are convergent. Since M ′′−1 �M ′−1

, it is implied (see [19]) that the left inequality in (2.10) is true.
For the proof of the middle inequality in (2.10), we recall the first inequality of (2.9) which gives that
B ′y��(B)y. Then, we apply Lemma 3.3 in Marek and Szyld [14] to get our assertion.

(a) (2.11): To prove the first inequality in (2.11) we use regular splittings of the matrix Ã. Specifically,
consider the following splittings that define the iteration matrices in (2.8):

Ã =
{

M − N = (I + S)(I − L) − (I + S)U,

M ′ − N ′ = (I − L − Ls + SL) − (Ds + U + Us − SU),

M ′′ − N ′′ = (I − Ds − L − Ls + SL) − (U + Us − SU),

(2.22)

where we have used the same symbols for the two matrices of each splitting as in the case of (2.6). So,
the last two splittings in (2.22) are regular splittings because M ′−1 = (I − L − Ls + SL)−1 = I + (L +
Ls −SL)+· · ·+ (L+Ls −SL)n−1 �0, N ′�0 and M ′′−1 = (I −Ds −L−Ls +SL)−1 �0, N ′′�0 and so
they are convergent. Since M ′′−1 �M ′−1, it is implied (see [19]) that the left inequality in (2.11) is true.

To prove the second inequality of (2.11) we consider first that the Jacobi matrix B is irreducible. For
the nonnegative Gauss–Seidel iteration matrix H there exists a nonnegative vector z such that

Hz = �(H)z or (I − L)−1Uz = �(H)z or (�(H)L + U)z = �(H)z. (2.23)

We observe here that the matrix �(H)L + U has the same structure as the matrix B and consequently it
is also irreducible. So, from the Perron–Frobenius Theorem (see Varga [18]), the eigenvector z will be a
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positive vector. Recalling relation (2.20), the following property holds: There exists a positive vector z

such that �(H)z�H ′z. Based on this, we can apply Lemma 3.3 in Marek and Szyld [14] to get the second
inequality in (2.11). In the case where B is reducible, we consider a small number � > 0 and replace some
zeros of B with � so that the produced matrix B(�) becomes irreducible. Then, for the associated matrices
H(�) and H ′(�) there holds: �(H ′(�))��(H(�)). Since the spectral radius is a continuous function of the
elements of the matrix, the inequality above will also hold in the limit as � tends to zero, which is the
second inequality in (2.11).

(a) (2.12): Since A is a nonsingular M-matrix, the rightmost inequality is a straightforward implication
of the Stein–Rosenberg Theorem as was mentioned before. The other two inequalities in (2.12) are
implied directly by the facts that Ã is a nonsingular M-matrix, and the last two pairs of splittings in
(2.6) and (2.22), from which the four matrices involved, H̃ , B̃, H ′, B ′, are produced, are regular ones
with L + Ls + U + Us − S�U + Us − SU and Ds + L + Ls + U + Us − S�Ds + U + Us − SU.
It is noted that if �(B̃) = 0 then �(H̃ ) = 0 and the matrix B̃ would be reducible with its normal form
being a strictly upper triangular matrix. By the Stein–Rosenberg theorem, if �(B̃) = �(H̃ ) it is either
�(B̃) = �(H̃ ) = 0 or �(B̃) = �(H̃ ) = 1. Since �(B̃) = 0, both spectral radii would be zero. For the
second inequality of (2.12) we have that the matrix B̃ has the same structure as the matrix B ′. So, if
�(B̃) = 0, the matrix B ′ would be reducible with its normal form being an upper triangular matrix. This
means that in the directed graph G(B ′) of the matrix B ′, there is no strongly connected subpath except for
identity paths (loops) corresponding to the nonzero diagonal elements. For the matrix H ′ we have that
H ′ = (I − L − Ls + SL)−1(Ds + U + Us − SU) = (I + (L + Ls − SL) + · · · + (L + Ls − SL)n−1)(Ds +
U +Us − SU)=Ds +[U +Us − SU + ((L+Ls − SL)+ · · ·+ (L+Ls − SL)n−1)(Ds +U +Us − SU)].
The matrix in the brackets is a sum of products of nonnegative parts of B ′. Therefore, if there exists a
path in the graph of this matrix, then there exists also such a path,of some order, in the graph G(B ′). So, if
there exists a strongly connected subpath in the graph of the matrix in brackets, then it will also exist such
a subpath in G(B ′). This means that the matrix H ′ has also its normal form an upper triangular matrix,
with its diagonal elements those of B ′. This proves our assertion that �(B ′) = �(H ′).

(b) (2.9): Since B is irreducible, The eigenvector y, corresponding to �(B), is positive and according
to the steps in the proof of (2.9) in (a) we can see that inequality (2.14) becomes a strict one.

(b) (2.10): From the inequality B ′y < By we get B ′y < �(B)y. Now we can apply Lemma 3.3 in Marek
and Szyld [14] to get the strict inequality �(B ′) < �(B). �

2.1. “Good” Jacobi and Gauss–Seidel preconditioners

It was proved that the preconditioned Jacobi and Gauss–Seidel methods converge for each choice of
the matrix S and converge faster than their unpreconditioned counterparts. A question, then, arises: Is
there an optimal choice for the matrix S so that the associated method will be an optimal one and if
so how can one choose such a matrix S? This question cannot be answered yet and constitutes an open
problem. It seems to be difficult since we have to compare the spectral radii of (n−1)n different matrices.
Instead, we will try to answer a simpler related question: Is there a “good” choice of the matrix S such
that the associated method will be the best among many others and possibly the optimal one? To find a
“good” Jacobi preconditioner or a “good” Gauss–Seidel one we will work using sufficient conditions of
convergence rather than necessary and sufficient ones. So, we choose the matrix S such that to minimize
the maximum norm of B̃ (or of H̃ ) which constitutes an upper bound for its spectral radius. In the
following we give the analysis and the associated algorithm for the Jacobi method only. The analysis for
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the Gauss–Seidel method is analogous and straightforward and its associated algorithm is of the same
order of complexity. In the last section, we will show by numerical experiments, the efficiency of the
“good” Gauss–Seidel method as well.

For the Jacobi iteration matrix, B̃ to converge a sufficient condition is

�(B̃)�‖B̃‖∞ ⇐⇒ �(B̃)� max
i

l̃i + ũi

d̃i

< 1, (2.24)

where

d̃i = |̃aii | = ãii = 1 − aiki
aki i ,

l̃i =
i−1∑
j=1

|̃aij | = −
i−1∑
j=1

ãij = aiki

i−1∑
j=1

akij −
i−1∑
j=1

aij ,

ũi =
n∑

j=i+1

|̃aij | = −
n∑

j=i+1

ãij = aiki

n∑
j=i+1

akij −
n∑

j=i+1

aij . (2.25)

For each row i, of the method we propose, we choose ki such that all the ratios l̃i+ũi

d̃i
are minimized and

so their maximum will also be minimized. Since the choice of ki is not unique, S is also not unique. We
conjecture that since we minimize all the ratios for each row (the row sums of the nonnegative matrix B̃),
the new spectral radius will be as small as possible. We call this method the “Good” Jacobi preconditioned
method and the associated preconditioner, I + S, the “Good” Jacobi preconditioner. From (2.25) we get
that

l̃i + ũi = −
n∑

j=1,j �=i

ãij = aiki

n∑
j=1,j �=i

akij −
n∑

j=1,j �=i

aij = si + aiki
(1 − ski

− aki i), (2.26)

where si = −∑n
j=1,j �=i aij is the ith row sum of B. From the nonnegativity of B and from the diagonal

dominance of A, 0 < si < 1. So, the ratios in question are given by

l̃i + ũi

d̃i

= si + aiki
(1 − ski

− aki i)

1 − aiki
aki i

. (2.27)

To give an efficient algorithm that will choose the indices ki and consequently the matrix S we observe
that the Jacobi method requires O(n2) ops per iteration. The same number of operations is required for
the multiplication (I + S)A. So, the cost of the choice of S must require at most O(n2) ops. First, we
compute all the row sums si that require a total number of O(n2) ops. Then, we compute the ratios (2.27)
for every i and every ki . The number of ratios is (n − 1)n and so the number of required operations for
each one is O(1). The number of comparisons is also O(n2) and the total cost of the algorithm is O(n2) ops
per iteration. This makes it an efficient one. The previous analysis for the cost is illustrated more clearly
in the following algorithm written in a pseudocode form.

Algorithm of “Good” Jacobi Preconditioner
for i = 1(1)n

si = 0
for j = 1(1)i − 1



96 D. Noutsos, M. Tzoumas / Journal of Computational and Applied Mathematics 188 (2006) 89–106

si= si − aij

endfor
for j = i + 1(1)n

si= si − aij

endfor
endfor
for i = 1(1)n

r = 1
for j = 1(1)n

if j �= i then
t = si+aij (1−sj−aji )

1−aij aji

if t < r then
r = t

ki = j

endif
endif

endfor
endfor
End of Algorithm

We remark that in case there are multiple choices of the matrix S, this algorithm chooses the one with
the smallest value for each ki .

3. Generalized preconditioners based on multiple elimination

In this section we will generalize and extend our improved method by eliminating two or more off-
diagonal elements in each row. So, the matrix S, introduced in (2.1), will have more than one elements
in each row, at exactly the same positions as the elements we want to eliminate. First, we consider that
in the ith row we have to eliminate the elements ki and li , where ki < li . For this we have to compute the
elements siki

and sili of the matrix S. Denoting Ã = (I + S)A we have the equations:

ãiki
= 0 = aiki

+ siki
+ sili aliki

ãili = 0 = aili + siki
aki li + sili

⇔ siki
+ sili aliki

= −aiki

siki
aki li + sili = −aili

(3.1)

or

(siki
sili )

(
1 aki li

aliki
1

)
= −(aiki

aili ) ⇔ (siki
sili ) = −(aiki

aili )

(
1 aki li

aliki
1

)−1

. (3.2)

We generalize the above relations by considering that m elements of the ith row are to be eliminated.
For this we give the following definitions. Let k̂T

i = (ki1ki2 . . . kim) be a multiindex, where the indices
ki1 < ki2 < · · · < kim denote the positions of the elements of row i to be eliminated. Then, we define
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by sT
ik̂i

= (siki1
siki2

. . . sikim
) the vector of nonzero off-diagonal elements of the ith row of S, aT

ik̂i
=

(aiki1
aiki2

. . . aikim
) the vector of the elements of the ith row of A to be eliminated and the matrix

A
k̂i

=

⎡⎢⎢⎣
1 aki1ki2

· · · aki1kim

aki2ki1
1 · · · aki2kim

...
...

. . .
...

akimki1
akimki2

· · · 1

⎤⎥⎥⎦ , (3.3)

which consists of the rows and columns of A indexed by the multiindex k̂i . The matrix A
k̂i

is a principal

submatrix of the M-matrix A. So, A
k̂i

is also an M-matrix and its inverse A−1
k̂i

is a positive matrix if

A
k̂i

is irreducible or a nonnegative one if A
k̂i

is reducible. Therefore, relation (3.2) takes the following
generalized form:

sT
ik̂i

= −aT
ik̂i

A−1
k̂i

. (3.4)

After the previous notation and considerations the elements ãij of Ã are as follows:

ãij =

⎧⎪⎨⎪⎩
aij − aT

ik̂i
A−1

k̂i
a
k̂ij

�0, j �= i, j /∈ k̂i ,

0, j ∈ k̂i ,

1 − aT
ik̂i

A−1
k̂i

a
k̂i i

> 0, j = i.

(3.5)

The first inequality in (3.5) is obvious while the last one is to be proved.
We consider the matrix

Ã
k̂i

=
(

1 aT
ik̂i

a
k̂i i

A
k̂i

)
. (3.6)

The quantity 1−aT
ik̂i

A−1
k̂i

a
k̂i i

is the Schur complement of the above matrix Ã
k̂i

. Since the Schur complement

of a nonsingular M-matrix is also a nonsingular M-matrix (e.g., see [7, p. 128]), we get that

1 − aT
ik̂i

A−1
k̂i

a
k̂i i

> 0. (3.7)

We define the matrix

Ds := diag(aT
1k̂1

A−1
k̂1

a
k̂11, a

T
2k̂2

A−1
k̂2

a
k̂22, . . . , a

T
nk̂n

A−1
k̂n

a
k̂nn

), (3.8)

which is the diagonal part of the matrix S(L + U). Using the notation in (2.4) and (2.5), and considering
the splittings in (2.6), as well as the associated Jacobi (2.7) and Gauss–Seidel (2.8), we can prove the
theorem below, which is the generalization of Theorem 2.1.

Theorem 3.1. (a) Under the assumptions and the notation so far, there hold: There exist y and z ∈ Rn,

with y�0 and z�0, such that

B ′y�By and H ′z�Hz, (3.9)

�(B̃)��(B ′)��(B) < 1, (3.10)
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�(H̃ )��(H ′)��(H) < 1, (3.11)

�(H̃ )��(B̃), �(H ′)��(B ′), �(H) < �(B) < 1. (3.12)

(Note: Equalities in (3.12) hold if and only if �(B̃) = 0.)
(b) Suppose that A is irreducible. Then, the matrix B is also irreducible which implies that the first

inequality in (3.9) and the middle inequality in (3.10) are strict.

Proof. Using the same notation, the proof of Theorem 3.1 follows step by step that of Theorem 2.1, and
so, the proof of the present statement is complete. �

We remark here that our proposed multiindexed method is the most general method, among many
other improved methods, based on elimination techniques. It is a generalization of the block elimination
improved method proposed by Alanelli and Hadjidimos [1,2]. They have studied the block Milaszewicz’s
improved method, which eliminates the elements of the first k1 columns of A below the diagonal. This
is precisely the multiindexed method with k̂i = (1 2 3 · · · i − 1), i = 1(1)k1 and k̂i = (1 2 3 · · · k1),

otherwise.
As regards the cost of the present method we can observe that, for the construction of the matrix S,

we have to solve an m × m linear system for each row which has a cost of O(m3n) ops. The cost of the
matrix–matrix product (I + S)A is O(mn2) ops. Then follows the standard iterative process of Jacobi or
Gauss–Seidel method which has a cost of O(n2) ops per iteration. So, to obtain an efficient algorithm, the
number m must be chosen very small and independent of the dimension n. A question which arises is:
Which is the best choice of m? Observe that by increasing m what is gained in number of iterations is lost
in the construction of S and in the matrix–matrix product. Therefore there must be a golden section, which
also depends on the matrix A. Another question which arises is: How can one choose the multiindices
k̂i’s? Since this is difficult to answer we follow the idea we did in the “Good” Jacobi or Gauss–Seidel
algorithms, where we provided search algorithms by using sufficient criteria instead of sufficient and
necessary ones. In the case of m = 1, the cost of the searching algorithm is O(n2). If we take m = 2,
we have to do a double searching per row, so the cost increases to O(n3) and the algorithm becomes
non-efficient. If the value of m increases further, the power of n in the cost increases too. So, the only
efficient searching algorithm is the one where we search along one component of the multiindex, keeping
the others fixed. As we will see in the numerical examples, in many cases, by keeping the multiindices
fixed, the multiindexed preconditioner is better than the “Good” algorithm.

4. Eliminated preconditioners for Krylov subspace methods

In this section we study the behavior of the proposed preconditioners when they are applied to Krylov
subspace methods. First we study the conjugate gradient (CG) method when the matrix A is a real
symmetric positive definite matrix. It is well known that the convergence theory of the preconditioned
conjugate gradient (PCG) method holds if the preconditioner is also a symmetric and positive definite
matrix. This means that, to construct our preconditioner I + S, we have to choose the entries to be
eliminated in symmetric positions. We will study here the behavior of the multiindexed preconditioner,
where we have fixed the multiindices by taking k̂1=(2), k̂i =(i−1 i+1)T, i=2(1)n−1 and k̂n=(n−1).
In other words we eliminate the elements of the first upper and lower diagonals. So, the eliminated entries
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are in symmetric positions. The study of other multiindexed preconditioners having entries in symmetric
positions, could be straightforwardly generalized. First, we state and prove the following lemma which
is useful for the convergence properties below:

Lemma 4.1. Let A be a nonsingular M-matrix with aii = 1. Let also Ã= (I +S)A be the preconditioned
matrix with I+S being the multiindexed preconditioner defined by k̂1=(2), k̂i=(i−1 i+1)T, i=2(1)n−1
and k̂n = (n − 1). Then all the principal minors of Ã are positive and less than or equal to the associated
principal minors of A.

0 < det(Ãi1i2...ik )� det(Ai1i2...ik ), (4.1)

where by the indices i1i2 . . . ik we denote the rows and the associated columns which form the principal
submatrix.

Proof. The first inequality holds since all the principal submatrices of Ã and A are M-matrices. We will
prove the second inequality by induction. First we prove that for all the principal submatrices of the
preconditioner I + S, there holds

0 < det((I + S)i1i2...ik )�1.

Since each principal submatrix of order k can be put in the first k rows and columns by a permutation
transformation of the matrix I + S, we will prove, without loss of generality, the above inequalities only
for the upper left principal minors, i.e.,

0 < det((I + S)k)�1,

where (I +S)k is the principal submatrix, consisting of the first k rows and columns, of the matrix (I +S).
We denote also by Ak and by Ãk the principal submatrices consisting of the first k rows and columns of
the matrices A and Ã, respectively. We define now the k × k matrix

A′
k = Ak + Sk,n−kAn−k,k ,

where Sk,n−k is the k × (n − k) submatrix of I + S consisting of the first k rows and the last n − k

columns, while An−k,k is the n − k × k submatrix of A consisting from the last n − k rows and the first
k columns. From the above definition it is obvious that A′

k is the principal submatrix consisting from the

first k rows and columns of the matrix (I + S′
k,n−k)A, where S′

k,n−k =
(

0
0

Sk,n−k

0

)
. Since I + S′

k,n−k is a

nonnegative matrix, A is an M-matrix and (I + S′
k,n−k)A is a Z-matrix we get that (I + S′

k,n−k)A is also
an M-matrix. Therefore its principal submatrix A′

k is an M-matrix.
From the symmetric structure of the matrix I + S and since sij �0, i, j = 1, 2, . . . n, i �= j, it is

easily checked that if we use the Gauss elimination process step by step, the diagonal elements do not
increase. So, all the first principal minors would be less than or equal to 1. We will prove in the sequel that
these principal minors could not be less than 0. We will prove inequality (4.13) for the first principal
minors, i.e.

0 < det(Ãk)� det(Ak), k = 1, 2, . . . , n.
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The proof for any other determinant is given directly by a similar analysis which becomes a little more
complicated. From the notation above, we have that

Ãk = (I + S)kAk + Sk,n−kAn−k,k = (I + S)kAk +
(

0k−1,k

sk,k+1a
T
k+1;1:k

)
,

since the matrix Sk,n−k has only one entry different from zero in the position (k, k + 1). We have denoted
by aT

k+1;1:k the row vector consisting of the first k entries of the (k + 1)st row of the matrix A and by
0k−1,k the (k − 1) × k zero matrix. The above equality is written as

(I + S)kAk = Ãk −
(

0k−1,k

sk,k+1a
T
k+1;1:k

)
=
(

Ik −
(

0k−1,k

sk,k+1a
T
k+1;1:k

)
Ã−1

k

)
Ãk . (4.2)

Since Ã is an M-matrix, Ãk is also an M-matrix and consequently Ã−1
k is a nonnegative matrix. So,

−sk,k+1a
T
k+1;1:kÃ

−1
k is a nonnegative row vector. Therefore, the matrix(

Ik −
(

0k−1,k

sk,k+1a
T
k+1;1:k

)
Ã−1

k

)
is a lower triangular matrix with all the diagonal entries equal to one except the last one which is greater
than or equal to 1. This means that

det

((
Ik −

(
0k−1,k

sk,k+1a
T
k+1;1:k

)
Ã−1

k

))
�1.

By taking determinants of the matrices in (4.2) we get

det((I + S)k) det(Ak) = det

(
Ik −

(
0k−1,k

sk,k+1a
T
k+1;1:k

)
Ã−1

k

)
det(Ãk).

Since Ak and Ãk are both M-matrices, the associated determinants are both positive. So, from the above
equality it has been proved that det((I + S)k) > 0. From the fact that det((I + S)k)�1 and

det

(
Ik −

(
0k−1,k

sk,k+1a
T
k+1;1:k

)
Ã−1

k

)
�1

the above equality gives us the inequality we had to prove:

det(Ãk)� det(Ak). �

4.1. Preconditioned conjugate gradient method

Theorem 4.1. Let A be an irreducible and symmetric positive definite M-matrix with aii = 1 and with
its eigenvalues �i ∈ [a, b], i = 1, 2, . . . , n. Let also Ã = (I + S)A be the preconditioned matrix with
I + S being the multiindexed preconditioner defined by k̂1 = (2), k̂i = (i − 1 i + 1)T, i = 2(1)n − 1
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and k̂n = n − 1, which is symmetric and positive definite. Then the eigenvalues �̃i , i = 1, 2, . . . , n, of the
preconditioned matrix Ã are clustered in the interval [̃a, b̃] except for a possible small number of them
that are greater than b̃, where ã > a and b̃ < b. Consequently, the Preconditioned Conjugate Gradient
method converges faster than the unpreconditioned one.

Proof. It is well known that the characteristic polynomial of a matrix A is given by

Pn(�) = �n −
n∑

i=1

aii�
n−1 + · · · + (−1)k

∑
i1i2···ik

det(Ai1i2···ik )�n−k + · · · + (−1)n det(A). (4.3)

In terms of the eigenvalues the same polynomial is given by

Pn(�) = �n −
(

n∑
i=1

�i

)
�n−1 + · · · + (−1)k

⎛⎝ ∑
i1i2···ik

�i1�i2 · · · �ik

⎞⎠ �n−k + · · · + (−1)n�1�2 · · · �n.

(4.4)

So, ∑
i1i2···ik

�i1�i2 · · · �ik =
∑

i1i2···ik
det(Ai1i2···ik ), k = 1, 2, . . . , n, (4.5)

where the sums have been taken over all the combinations of n over k. By taking the same arguments of
the preconditioned matrix Ã we take∑

i1i2···ik
�̃i1̃�i2 · · · �̃ik =

∑
i1i2···ik

det(Ãi1i2···ik ), k = 1, 2, . . . , n. (4.6)

From Lemma 4.1 we have that

0 < det(Ãi1i2...ik )� det(Ai1i2...ik ), ∀i1i2 . . . ik, k = 1, 2, . . . , n. (4.7)

This inequality and equalities (4.5), (4.6) give us the main inequality which compares the eigenvalues of
the preconditioned matrix with those of the unpreconditioned one:∑

i1i2···ik
�̃i1̃�i2 · · · �̃ik �

∑
i1i2···ik

�i1�i2 · · · �ik , k = 1, 2, . . . , n. (4.8)

We observe that if for at least one combination i1i2 · · · ik inequality (4.7) is strict, then so is inequality
(4.20). It is easily seen that there are values of k such that an inequality exists. Obvious values of such
k’s are k = 1, k = 2 or k = n.

On the other hand, from the inequalities (3.10) of Theorem 3.1 and from the irreducibility of A we
have that �(B ′) < �(B) or �(I − Ã) < �(I − A) which means that

�̃min > �min. (4.9)
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Inequalities (4.20) and (4.21) imply that, when we apply the improved process to the matrix A, although
the minimum eigenvalue increases, some sums of products of them do not increase while some others
strictly decrease. This observation and the strong numerical evidence suggest that, although the new
largest eigenvalue might be outside the interval [a, b], the majority of the remaining eigenvalues must lie
(are clustered) in a smaller interval [̃a, b̃] ⊂ [a, b]. By the known Axelsson’s Theorem [3] concerning
the convergence of the Conjugate Gradient method, we have that the Preconditioned Conjugate Gradient
method converges faster than the unpreconditioned one. �

We remark that we could have had the same result as in Theorem 4.1 if we had proved the above
inequalities only for exact values of k (k = 1, 2, n) for which the proof could have been very easy. We
think that this general proof makes our result stronger. It is also remarked that the same result could be
proved, in the more general case of the choice of the multiindex. This will be shown by experiments, in
the next section, when we solve the Helmholz equation.

4.2. Preconditioned GMRES method

Theorem 4.2. Let A be an irreducible M-matrix with aii=1 and let its eigenvalues �i ∈ S, i=1, 2, . . . , n,
whereS is a bounded convex region in the complex plane with a=minx∈S Re(x) > 0. Let also Ã=(I+S)A

be the preconditioned matrix with I + S being the multiindexed preconditioner defined by k̂1 = (2),
k̂i = (i − 1 i + 1)T, i = 2(1)n− 1 and k̂n =n− 1. Then, under the assumption that the matrices V and Ṽ

of the eigenvectors of A and of Ã, respectively have both small enough euclidian condition number, the
eigenvalues �̃i , i = 1, 2, . . . , n, of the preconditioned matrix Ã are clustered in a convex region S̃ ⊂ S

with ã = minx∈S̃ Re(x) > a, except for a possible small number of them that are outside S̃, but with
real parts no less than ã. Consequently, the preconditioned GMRES method converges faster than the
unpreconditioned one.

Proof. The proof is straightforward and the same as the one of Theorem 4.1. All relations (4.2)–(4.21)
hold with the exception that now �i , �̃i , i = 1, 2, . . . , n, are complex numbers with positive real parts.
Since B ′ and B are nonnegative matrices, �min and �̃min are real positive numbers with (4.21) holding. It is
obvious that the sums of products in (4.20) decrease when the moduli of the eigenvalues decrease. Since
the smaller of them increase, most of the larger moduli should decrease. So, the eigenvalues are clustered
in a shorter region S̃ which belongs in S, except for a small number of eigenvalues that lie outside S̃.
Let c be the modulus of the center of the region in which most of the eigenvalues lie and s be the radius
of the same region. It is known that the convergence rate of GMRES method depends on the ratio s

c
, in

the case where the euclidian condition number of the matrix of the eigenvectors is small enough. For the
eigenvalues that lie outside, a constant number of GMRES additional iterations are performed. From the
analysis above, we have no information for the centers of the regions. Since the smallest moduli increase
and the largest ones decrease, the centers should be almost the same. For the radii, it is obvious that the
radius of S̃ is smaller than the one of S, due to the better clustering. So, the preconditioned GMRES
method converges faster than the unpreconditioned one, and the proof is complete. �

The same remarks, as before, could be stated here. In the next section we show the validity of the above
result by solving the Convection–Diffusion equation.
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5. Numerical examples

For 10,000 randomly generated nonsingular M-matrices for n = 10, 20 and 50 we have determined
the spectral radii of the iteration matrices of all the classical methods mentioned previously. Below, we
present two tables for the Jacobi and Gauss–Seidel methods, respectively (Tables 1 and 2). Each number
in the tables represents the percentage of the case worked out, the method in the first column is better than
the one in the head of the table, where M , G, C, “G” and M2 denote a method with the Milaszewicz’s,
the Gunawardena et al.’s, the Cyclic, the “Good” and the multiindexed, with m = 2, preconditioners,
respectively. For the multiindexed preconditioner we have fixed the multiindices by taking k̂1 = (2 n)T,
k̂i = (i − 1 i + 1)T, i = 2(1)n − 1 and k̂n = (1 n − 1)T. In other words we have eliminated the elements
corresponding to the Cyclic preconditioner and the symmetrically placed elements.

We remark that for the Jacobi method and for n large enough, the multiindexed improved method is
100% better than all the others. The “Good” preconditioner is 100% better than the remaining ones, the
cyclic preconditioner is 100% better than that of Gunawardena et al.’s, while the last two preconditioners
tend to be equivalent, regarding their performance, to the one of Milaszewicz’s, as n increases. For the
Gauss–Seidel method we can see that the “Good” preconditioner is better than all the others, then follow
the multiindexed, the cyclic, the Gunawardena et al.’s and finally the Milaszewicz’s preconditioner. At
this point, another question is raised: Is the “Good” preconditioner indeed better than the multiindexed
one? The answer is no! It depends on the choice of the multiindices. In this example we have chosen
one element over the diagonal and one under it. We observe that the elimination of the over-diagonal

Table 1
Jacobi method

n = 10 n = 20 n = 50

M G C “G” M G C “G” M G C “G”

M 60.88 48.8 6.19 58.01 48.94 1.35 54.61 48.98 0
G 39.12 0 1.05 41.99 0 0.06 45.39 0 0
C 51.2 100 2.88 51.06 100 0.19 51.02 100 0
“G” 93.81 98.95 97.12 98.65 99.94 99.81 100 100 100
M2 99.83 100 100 97.23 99.99 100 100 99.42 100 100 100 99.96

Table 2
Gauss–Seidel method

n = 10 n = 20 n = 50

M G C “G” M G C “G” M G C “G”

M 2.54 0.44 1.08 0.1 0.02 0 0 0 0
G 97.46 0 36.62 99.9 0 25.49 100 0 5.11
C 99.56 100 56.63 99.98 100 36.34 100 100 7.13
“G” 98.92 63.38 43.37 100 74.51 63.66 100 94.89 92.87
M2 99.75 100 100 68.39 100 100 100 44.8 100 100 100 8.95
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Table 3
Preconditioned conjugate gradient method, for two-dimension Helmholtz equation

n I S2 S4

16 51 45 27
32 100 86 52
64 191 163 100

128 374 306 194

elements play the most important role for the Gauss–Seidel method than that of the under-diagonal ones.
Since we have chosen one fixed over-diagonal element per row, for the multiindexed preconditioner,
while for the “Good” one we have searched one element per row (we guess that most of them are over-
diagonal elements), the last preconditioner becomes better than the first one. It has been checked that the
multiindexed preconditioner (m = 2) is 100% better than all the others for the Gauss–Seidel method if
we choose both elements to be over-diagonal ones for each row. So, the numerical examples confirm the
theoretical results for the proposed improved techniques.

For the Conjugate Gradient method we solved the two-dimensional Helmholtz equation

−�u + u = f

in the unit square � with Dirichlet boundary conditions. We have discretized the unit square by taking
the n × n uniform grid, then we approximated the above problem by finite differences. We solved the
n2×n2 irreducible positive definite system yielded by the CG method, by the PCG method, with improved
two-indexed preconditioner S2, as was described in Theorem 4.1, and by the PCG method, with improved
four-indexed preconditioner S4 which is based on the elimination of the first and nth diagonals over and
under the main diagonal. As a stopping criterion we chose ‖r‖2 �0.5 × 10−6, where r is the residual
vector. In Table 3 the numbers of required iterations, for the CG and for the two PCG methods, are given
for various values of n. The efficiency of the proposed method is clearly shown.

For the GMRES method we solved the two-dimensional convection–diffusion equation

−�u + �u

�x
+ 2

�u

�y
= f

in the unit square � with Dirichlet boundary conditions. We followed the same technique to approximate
the above problem. Then, we solved the n2 × n2 irreducible M-system yielded by the GMRES method,
by the PGMRES(S2) method and by the PGMRES(S4) one. The last two PGMRES methods are based on
the improved two-indexed S2 and four-indexed S4 preconditioners, respectively, as they were described
previously. The same stopping criterion was chosen and the restarted technique of GMRES was run. In
the first part of Table 4 the number of m = n iterations was chosen to restart the method while in the
second, m= n

2 . For each method, a pair of integers is given, where the first one corresponds to the number
of completed outer iterations while the second, to the number of the inner iterations, required in the
last uncompleted outer one. We also counted the number of the required operations in each case. So, in
Table 4 we give them, for PGMRES methods, in percentages with respect to the GMRES method, for
each case.
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Table 4
Restarted preconditioned GMRES method, for two-dimension convection–diffusion equation

m = n

n GMRES PGMRES(S2) ops% PGMRES(S4) ops%

4 6 0 4 0 93.95 2 0 55.71
8 5 3 3 7 97.42 2 0 59.37

16 4 9 3 5 92.10 1 14 59.75
32 4 1 2 25 78.67 1 26 56.15
64 3 42 2 28 71.96 1 45 53.07

128 3 83 2 35 64.77 1 65 41.75

m = n/2

4 17 0 10 0 86.62 6 2 70.61
8 14 3 9 3 94.14 5 3 66.23

16 12 5 7 6 83.08 4 6 59.91
32 12 4 7 11 79.03 4 2 48.96
64 11 20 7 17 75.89 3 29 43.78

128 10 51 7 1 72.63 3 54 41.55
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