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Abstract

In this work we consider the Helmholtz equation in a hyperparallelegipedR?, d=1, 2, 3,.. ., under Dirichlet
boundary conditions and for its solution we apply the averaging technique of the nonoverlapping Domain Decom-
position, where®2 is decomposed in two, in general not equal, subdomains. Unlike what many researchers do that
is first to determine regions of convergence and optimal values of the relaxation parameters involved at the PDE
level, next discretize and then solve the linear system yielded using the values of the parameters determined, we
determine regions of convergence and optimal values of the parameters ingfibrede discretization takes place,
that is at the linear algebra level, and then use them for the solution of the linear system. In the general case the
parameters obtained in this work aretthe same with the ones which are known and which have been obtained at
the PDE level. ©2000 IMACS/Elsevier Science B.V. All rights reserved.
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1. Introduction

LetQCcRY,d=1,2,3,.., be an open convex polygon with boundasy. We consider the boundary
value problem
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Lu= finQ, u=gondQ (1.2)

whereL is a linear elliptic operator andandg known functions.

For the solution of the continuous problem (1.1) a discretized analog (linear algebraic system) is
obtained. In practical problems the size of the system is enormous, and so the computing time required
for its solution is very large. This time issue and the development of parallel computers led to the idea
of splitting up the original problem into a number of smaller ones. Thus methods like the Domain
Decomposition (DD) methods have been developed.

The idea of DD with overlapping subdomains at the PDE level goes back to Schwarz [21] (1869).
His method is now known as Schwarz Splitting (SS). It was Miller [14], in 1965, who recognized its
importance for the numerical solution of PDEs.

Inthe last 15 years SS has attracted the attention of many researchers who have extended and generalized
the basic algorithm (Rodrigue and Simon [20], Rodrigue [19], Oliger, Skamarock and Tang [16]), analyzed
the convergence properties (Tang [23,24]), applied it in many important problems and implemented it
on computers of parallel architecture (see, e.g., [4,8-10]). At linear algebra level the DD as SS has been
studied by few researchers (see, e.g., [10-12,16,19,20,23,24]).

However, the actual performance of the overlapping DD was not quite satisfactory, mainly due to
the extra computing because the overlap participates in the solution of neighboring subdomains. So,
researchers were led to the consideration of the DD into nonoverlapping subdomains. One can see such
efforts in many works (see, e.g., [1,3,5,6,13,17,18,22,26] etc.).

In this work we will study the nonoverlapping DD known as theeraging techniquat linear algebra
level. For this technique let us consider the decomposition of the dofhamo two subdomains (the
technique is extended in an obvious way to consider more subdonsairss)d 2, with

Q=Q,UQy, QN Q =0, Q1 NIN # P, QNI £ 4. (1.2)

LetI’ =92, N a2, be the common boundary of the two subdomains. Then the algorithm of the averaging
technique at PDE level is as follows:
Algorithm 1.1. Fork =0, 1, 2,..., until convergence do

(i) SolveLu P = fin @ with u** = 0ul®™ + (1 — )ul® onT.

(i) SolveLu(Z"”) fin , with u(ZkH) = au2 2) + 1- oz)u(Zk) onT.

2k+2) 2k (2k+1)
(iii) SolveLu'**? = fin Q; with 3“1 =g L 1— g onr.

vl vl

+m +1)
(iv) SolveLu* ™ = f in ©, with 8”2 — ﬁa“gvz +- 5)3% onT.
End of |terat|on

In Algorithm 1.1,«, 8 € (O, 1) are relaxation parameters to be determined so that the iterative procedure
converges as fast as possible. Note that the first two problems in the algorithm have Dirichlet boundary
conditions onI" with values ofu on the common boundary a convex combination of the up to then
available ones. The last two problems have Neumann boundary conditiofiswetn values of the
outwardly directed normal derivatives on the common boundary a convex combination of the up to then
available. As is seen one solves alternatively a Dirichlet and a mixed boundary value problem in the two
subdomains smoothing each time the values of the function and those of the outwardly normal derivative
onT. This is done until convergence is achieved.
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For the determination of the (optimal) parameters involved most of the researchers work at the PDE
level. The advantage of working at this level is that the (optimal) parameters that are determined are
discretization independent. However, for the solution of the PDE problem by Algorithm 1.1 a discrete
equivalent algorithm is applied where the (optimal) values of the parameters of the continuous problem
are used for the solution of the discrete one. But these valuesotdoe the (optimal) ones that make
the discrete iterative algorithm converge as fast as possible. So, it is more natural, although more difficult
to analyze and study, to consider the problem of the determination of the (optimal) paraatfietdise
discretization takes place.

The first theoretical results for the nonoverlapping DD method at the PDE level for the Helmholtz
eguation in two-dimensional rectangular domains and two subdomains seem to have been obtained by
Rice, Vavalis and Yang [18]. Our objective in this work is to analyze and study in one and two dimensions
the same problem at the linear algebra level and then try to extend its study to three and more than three
dimensions.

Consider then the Helmholtz equation

—Au+qu=finQ, u=gonog, (1.3)

whereq is a positive constant ar@ a hyperparallelepiped iR?,d=1, 2, 3, . ..

First we will study Eq. (1.3) in the one-dimensional case. From the practical point of view, the study
of it seems to be worthless since the solution of the discrete analog of Eq. (1.3) can be obtained with
negligible computing cost by using classical methods. The computing cost is a serious issue when one
solves problems in two and more than two dimensions. However, as we shall see in the sequel the analysis
in the one-dimensional case helps a lot when one moves on to higher dimensional problems. The analysis
for the latter ones would be much more difficult if one could not have in mind how the one-dimensional
problem is attacked and solved.

In this work we will derive the linear iterative method from the discrete analog to Algorithm 1.1
using finite differences, will study it and will derive regions of convergence and optimal values for the
parameters and 8. We will describe the process of extending the method to two dimensions and will
derive corresponding regions of convergence as well as optimal values for the relaxation parameters.
Finally, an obvious extension will show how to determine regions of convergence and optimal parameters
in three and more than three dimensions.

2. One-dimensional case

We consider the two-point boundary value Helmholtz equation
—u"+qu=finQ=(0,1), u(0) =a andu(l) = b, (2.1)

whereq is a positive constant ara b given values. We discretize uniformfy into m+ n subinter-
vals of lengthh=1/(m+ n). We decompos& into two subdomains so tha?; = (0, m/(m+ n)) and
Qy = (m/(m+n), 1) as this is shown in Fig. 1.

The discretization of problem (2.1) using second-order finite differences foives at the nodg; the
equation

—ui_1+ 2+ qhz)ui —Ujy1 = hzﬁ, i=110m+n-—1, Ug=a, Umin = b, (2.2)
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Fig. 1. Discretization of the one-dimensional domain.

where we seu; = u(x;) andf; =f(x;). The discretization of problem (i) of Algorithm 1.1 yields the
(m—1) x (m— 1) linear system

F2+gh? -1 1 [P rr2fi+a .
-1 2+ qh? -1 uZh h2 f

= (2.3)
! —1 24+gn2 ] | W20 | Lr2foat @),

where $)1 and (1), are thejth approximate values aof at the boundary node, of the left and
the right subdomain, respectively. The valué?*+V); according to the condition of of the Dirichlet
problem will be given by

@) = a @) + (1 — a) @), (2.4)

In an analogous way the discretization of problem (ii) of Algorithm 1.1 yields the following linear system

F24qh? -1 T [ w2 fasa + @),
-1 2+gh? -1 u?5 h fu2
= (2.5)
L -1 2+gh? | _u,(nzﬁl_i)l_ | 7P fuin-1+ b
with
)2 = 0z + (L - @) ). (2.:6)

Discretizing the problems under conditions (iii) and (iv) of Algorithm 1.1 we will obtain similar to
(2.3) and (2.5) linear systems, respectively, with a superscript @ to u's and with the difference
that the boundary conditions admit one more discretization which will give one more equation for each
system. In this case:%+2); and (u(%**2?), are unknowns and are transferred to the left-hand sides of
the corresponding linear systems.

Note that the discretization of’ was done with a local truncation error of ordert@)( For consis-
tency the discretization of the first derivatives must be done with a local truncation error of the same order.
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Thus we take

ut’  1/3 D1

T =3 (§<u;{>>1 —2ul + 5“3)—2> +O(h?),
w1/ 3 D1

s = 1 (B + 2l - 5l +00%)

and the boundary condition of problem (iii) of Algorithm 1.1 gives the equation
= B[ 3@y - 2020 + Ju P3|

+1 = )| 3@, + 2

1 (2k+2)

3 2k+2 2k+2
Sy — 20,57 + Ju,

m—1

1 (k4D
2Um+t2

Substituting(u(#*Y); and(u#*Y), from Egs. (2.4) and (2.6) produces

m

1042 =3 + p — D)1+ 38 — ) @) + 1puPH

3, (%42 %42
Sy, —2u 0% m—2

~2Bu, 1 + 201 = B, 7 = 3= Py,
Following the same reasoning, from boundary condition (iv) of Algorithm 1.1, the following equation is
obtained
2Py — 2u 3P 4 Jui i =3+ B — D@2+ 3B — )@y — 31— Pu
21— Bl 1" = 2Bu 1" + 3By -

So, the discretization of problem (iii) of Algorithm 1.1 gives the linear system

[ 24+ gh? —1 T [u®? T
-1 2+qh2 -1 u(22k+2)
1 24qh? 1| | @42
;. 2 ; (u@+2),
Th?fi+a T
h? f>
= hzfm—l

[3@+ 8- D@1+ 36— )@@+ 3puls - 2puZy

m—1
20 - puit — 3 - puis?|
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2.7)

(2.8)

(2k+1)

-2

(2.9)

(2.10)



602 A. Hadjidimos et al. / Mathematics and Computers in Simulation 51 (2000) 597—-625

while the discretization of problem (iv) of Algorithm 1.1 gives the linear system

2 2 N
-1 24gh? 1
(2k+2)
-1 2+gh® -1 U2
— 2 2k+2
[ 1 2+4qgh~ | _u21+:_)1 |
{3+ 8- D02+ 36 - )@@ - 3@ - puly
+21 - B = 28ul30 + 3|
— hzfm+l ' (211)
h fm+2
_hzfm+rz—l +b |

Thus the discretization of Algorithm 1.1 gives the following discrete algorithm.

Algorithm 2.1. Give arbitrary values tm,@, i=1Dm+n—1i#m, and@®), @?),.
Fork=0,1,2..., until convergence do
(i) Solve systerR.3) under condition2.4).
(ii) Solve systert2.5)under condition2.6).
(i) Solve syster.10).
(iv) Solve syster(2.11).
End of iteration

Itis quite clear that steps (i) and (ii) as well as steps (iii) and (iv) of Algorithm 2.1 are fully parallelizable.
Thus Algorithm 2.1 can be modified as follows:

Algorithm 2.2. Give arbitrary values ta\”, i = 1(Lym +n — 1, i # m, and (@)1, @'?)s.
Fork=0,1,2,..., until convergence do
() Solve in parallel system®.3)and(2.5) under conditiong2.4) and(2.6), respectively
(i) Solve in parallel system2.10)and(2.1).
End of iteration

So after the discretization we succeeded in transforming the continuous PDE problem into a discrete
one of Linear Algebra. It remains then to study the problem at the linear algebra level and determine
the possible values of the pairg, (8) in order to have convergence. To study it we combine the steps
of the above iterative process into a classical iterative scheme and the study of the convergence of the
latter is made by means of the convergence properties of the corresponding iteration matrix (see, e.g.,

[2,25,27)).
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-1
d -1
-1 d
d -1
-1 d -1
—1 d
d -1
-1 d -1
-1 d -1
—3B 28 | 21-p) 51-5) | 3
3 72 5
1 1 3 -2 1
s(1=8) =2(1-p4) 2B —3B 2 2
-1 d -1
-1 d -1
-1 d 4
- k1)
u P fi+a
_ - ne
us* " i
k—1) )
U1 B2 fns
— (2k=1) .
; o l-o 1 B2 fingt
—a o _
Ao B fusa
Uy W foinr 4D
= uf® Pfi+a
ust " f2
ult, h? fucr
da+p-1 | p-o (el 0
13- | Fa+p-D || @G 0
ul) B2 g
L J1 u B2 finin—2
u® L A fusna +0 ]
- m+n—1 -

Tu®™Y = cu® + f

whered = 2 + gi?. Iterative Scheme (2.12) can be written as

%t2
UG+,

603

The four linear systems (2.3), (2.5), (2.10) and (2.11) are combined into the following one:

2k+1 9
u§+)

2
ug_AJrl)

(2k+1)
m—1
(2k+1)
m+1
(2k+1)
m+2

(2k+1)
m+n—1
2k+2
u§ +2)

2k+2
M(2+)

(2k+2)
m-1

ets
()

(2k+2)
Uy

(2k+2)
m+n—2
(2k+2)
m4n—1 =

(2.12)

(2.13)
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whereT, C € R2m+n=1.2m+n=1) gndyk+Dd yk)  f c R2m+n-1 gre the matrices and the vectors in the
sequence given in Eq. (2.12). From Eq. (2.123ndC can be written in the following block form

T,-1. O 0 0 0 0 Ci3 Cu4
0 T,.1. O 0 0 0 Coz3 Cy

T = and C = . 2.14
B3 By, T, O 0 0 Csz3 Ca (2.14)
By Byp 0O T, 0 0 Csz Cu

Asis seen from Eq. (2.12) the mat@has only nonzero elements in the(2- n — 2)"and (dn+n — 1)
columns. In exactly the same columns the iterative matrix

S=T1T"1C (2.15)

will have nonzero elements. This means that all the eigenvaluewilifbe identically zero except those
coming from the 2« 2 diagonal block

S$2m+n—2,2m+n—2 §2m+n—2,2m+n—1
Sp = : (2.16)
S2m+n—1,2m+n—2 S2m+n—1,2m+n—1

To determine the elements 8f, from Eq. (2.14) it is readily seen th@t! is given by

— -1 —_
T 0 0o o
. |0 T4 0 0
T = 2.17
~T,'BuT, Y, —T,'BT Y T,' 0 @17)
—1 _ —1 _ —1
L _Tn B41Tmill _Tn B42Tn711 0 Tn _
and then
S2m4n—2,2m+n—2 = (_121331Tm__llcl3 - Zy;lBSZTn__l]_CZS + I;1C33)m,m,
Somin-22min-1 = (=T BT, Y C1a— T, B3oT Cos+ T Caa)ma,
—1 1 —1 1 —1 (2.18)
Somin—12mn—2 = (=T, BT, 1C13— T, BaT, 1Co3+ T, Ca3z)1m,
—1 _ —1 _ —1
Somin-t2min-1 = (=T, BuT, 1Cia—T, BazT,  Coa+T, Cas)11
Next we compute one by one the elements of the first expression in Eq. (2.18). So
m—1
(—T, " BaaT,  Cralmm = — Y _ (L' Ba)m.i (T, "1 C13)im
i=1
m—1 m m—2
== [ @ Ba i ) (T, 20ii(Crgim | - (2.19)
i=1 \ j=1 =1

Since the matrixBz; has nonzero elements only in thgh row the indexj in the sum will take the
valuem only. Also, | takes only the valuen— 1 since the matriXC;3 has only one nonzero element,
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(C13)m—-1.m = . Therefore, Eq. (2.19) will give

m—1

(—TL, ' Ba1T, 1 Cadmm = — D (L0 man (BsDm i (T2 )im-1(C12)m—1.m
i=1

and sinceBz; has only Bs1)m.m—2 and Bz1)..m—1 a@s its nonzero elements it will be
(=T Ba1 T, C19)mm = (LD (BaDmm—2(Tpy t Dm—2.m-1(C13)m—1m

~ (T mm BaDmm—1(T  Dm—1.m-1(C13)m—1.m

= %aﬁ(z;,l)m,m(Ty;_ll)m—Z,m—l - Zaﬂ(zal)m,m(T,,?_l]_)m—l,m—l-

605

(2.20)

Tofind(T,Y),... we use finite difference equations. For this we setf? = 2 coshy and ify;, i = 1(1)m,

are the elements of theth column of7',* we will have

2coshty; —y, =0
—y1+ 2 COSh9y2 —y3= 0

—Ym—2+ 2 COShgym—l - Ym = 0

Egs. (2.21) are given by the difference equation
—yi-1+2cosy;, —yi;1=0, i=11m—-1
and the boundary conditions
yo=0 and Zyu-2—2ym-1+ 3ym =1

The solution of Egs. (2.22) and (2.23) is

_ 2 sinhig
i = sinh(m — 2)0 — 4 sinh(m — 1)0 + 3 sinhmo
Therefore,
1 2 sinhm6
(Zm )m,m = Ym

- sinh(m — 2)0 — 4 sinh(m — 1)0 + 3sinhmé
Following the same process we find

sinh(m — 2)0
sinhm6

sinh(m — 1)6

and (T,;,ll)m—l,m—l = sinhmo

-1
(Tmfl)m—z,m—l -

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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Hence, Eq. (2.20) becomes

208((1/2) sinh(m — 2)6 — 2 sinh(m — 1))

—T BT L Crn)pm = — - :
(=T, BaaT,,-1C13)m, sinh(m — 2)0 — 4 sinh(m — 1)6 + 3 sinhm#

(2.27)

Following the same steps we find all the other terms in the first expression of Eq. (2.18). Thus itis obtained
that

2 sinhmo
sinh(im — 2)6 — 4 sinh(m — 1)0 + 3 sinhm6

Som+n—22m+n—2 =

(1/2) sinh(m — 2)0 — 2sinh(m — 1)6 3
x [aﬁ sinhmo o@D
2sinh(n — 1)60 — (1/2) sinh(n — 2)0
+1-a)1-p) e ] . (2.28)
After some manipulation we can obtain that
S2m+n—2,2m+n—2 = alg - (1 - Ol)(l - ,B)pm,n (0)9 (229)
where
(@) = sinhmO[sinh(n — 2)6 — 4 sinh(n — 1)6 + 3 sinhnd] (2.30)

sinhnd[sinh(m — 2)6 — 4 sinhim — 1)@ + 3 sinhmé]’

We note that the second expression of Eq. (2.18) differs from the first one only as regards the elements of
the matrixC. It is easy to conclude that the corresponding relationship will be produced from Eq. (2.28)
if we replacex by (1— «). Thus we obtain

Somtn—2.2m4n-1 = (L= )B — (L = B) pi.n (6). (2.31)

Following the same steps as before we can derive the relationships that the third and fourth expressions
of Eq. (2.18) give. However, we observe a symmetry in the problem if we interchange the rotes of
andn. So the elemersy, 1 ,—1.2n+,—2 Will be produced from Eq. (2.31) if we interchangeandn, while
Som+n—1.2m+n—2 Will be produced from Eq. (2.28), in a similar way. More specifically,

Som+n—1,2m4n-2 = (L =) — (1 — B) pnm(6), (2.32)

Som4n—1.2m+n—-1 = o — (L= a)(1 = B) pu.m (0). (2.33)
The eigenvalues d¥, are roots of the equation

A2 —tr(So)A + det(S,) = 0 (2.34)
with

tr(S2) =2af — (1 = a)(1 = B)(Pm.n(0) + Pum(9)),
det(S2) =[af — L — )1 = B pua@][af — (1 — ) (L = B) pum(©)]
—[A-)f—adl =B pua@IA—)p —a(l = B)pnm@)]
=2a —-1)(28 - 1). (2.35)
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We observe that de8f) vanishes forr = 1/2 or g = 1/2 and tr&;) vanishes fo = (P, () + Pu.m (0))/
(24 Pirn (0P (6)) OF & = (P11 (0) + P ()2 + P (0)Pn . (6)), respectively. So, the (optimal) val-
ues of the parameters that make the spectral radius vanish have been found. However, for these values the
2 x 2 matrix$ in its canonical form is associated with a Jordan block of order 2 meaning that although
$ #0, §2 = 0. Since the only nonzero elements3Hre in the same two columns in which the elements
of S are, in view ofS5 = 0, for the optimal pair found, it will bes*=0 and so the exact solution
of the linear system will be obtained after two iterations. This basic result is given in the following
statement.

Theorem 2.1. For the solution of the two boundary value Helmholtz equation we discretize uniformly
the interval of definition and apply the method of decomposing the domain into two nonoverlapping
subdomains as this was described previously. Then the optimal pair of the paramnetgysafe given

by

(2.36)

(@ B) = (} Pmn(0) + pum(0) ) or <pm,n(9) + Pnm(0) })
’ 2’2 + Pmn(Q)an(@) 2+ Pmn(e)pnm(e) 2
and the algorithm converges to the exact solution of the linear system in two iterations.

If we choose the two subdomains to be of equal length, nafeby (0, 1/2),Q2, =(1/2, 1) andl" =1/2
then the application of the previous theorem gives the following corollary.

Corollary 2.1. For the solution of the problem defined in Theor2rh, considering equal subdomains
(m=n) the (optimal) pair of the parametefs, 8) is (1/2, 1/2)and the algorithm converges into one
iteration!

Notes. (a) The valuesr = 8 = 1/2 make all four elements of, 8anish As a result of this 5= 0 and the
exact values of the unknowns are obtained after only one itergtidi he results of this statement were
also obtained iff15].

Obviously the theory developed so far holds in the case of Poisson equation as well in which case
g=0. Then it will be6 =0 and is readily found that lig1, g P, (8) = (MVn). In this case Theorem 2.1
becomes:

Corollary 2.2. For the solution of the two boundary value Poisson equation we discretize uniformly
the interval of definition and apply the method of domain decomposition into two nonoverlapping
subdomains as this was described previously. Then, the optimal pair of the pararfeetgs are

(1/2, @P+n?)/(m+n)?) or ((m?+n?)/(m+n)?, 1/2), and the algorithm converges into two
iterations.

Also in the case of the two equal subdomains for the Poisson equation Corollary 2.1 holds the same.
The analysis we have done so far allows us to determine also the values of the pararaatésor
which convergence of the proposed scheme takes place. Thus we have:

Theorem 2.2. For the solution of the problem that is described in Theofnthe values ofr and 8
(regions of convergence) for which Schef®4.2)converges are

K ={(a,p) € R2:0<a<10< B <1land(6 — pu.,(0) — pum(®))ap
+(Pnn(0) + pam (@) — 2) (@ + B — 1) > O} (2.37)
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Fig. 2. Regions of convergence.

Proof. To determine the region of convergence we must find the conditions so that the roots of the
quadratic (2.34) lie strictly in the interior of the unit disk. An obvious condition is

det($y)| <1e —1<a—-128-1) <1 (2.38)

which gives the region between the two hyperbolas{21)(26 —1)=1and (2 — 1)(26 — 1)=—1, as

this is depicted in Fig. 2. This condition covers even the case where the quadratic has complex conjugate
roots with modulus less than 1. When, however, the roots are real they must lie in the intdryva) and

the quadratic must take positive values at the poirtsand 1. Therefore, we have also the conditions

1—1tr(Sy) +det(Sy) >0 and 1+tr(Sy) + det(S,) > O. (2.39)

Here it is noted that the same conditions would have been obtained if we had applied the Schur—Cohn
algorithm [7]. If we substitute the values of Eg. (2.35), the first condition gives

1l-a)1-8)>0 (2.40)
and the second one

(6 = Pun(©) = ppm @) + (Pmn(0) + pum(@) —2)(@+ B —1) > 0. (2.41)
Conditions (2.38), (2.40) and (2.41) are all satisfied in the reiohEq. (2.37). O

In Fig. 2a the curves of conditions (2.38) and (2.41) are depicted in the degenerate case-when®
— Pn.m(0) =0 and Eq. (2.41) becomes+ g — 1 >0, in Fig. 2b when 6- p,, ,(0) — Pu..(0) < 0 while in
Fig. 2c the curves are shown when 8, ,(6)—p...(6) > 0.

As in the case of the optimal parameters we can also give here analogous statements.

Corollary 2.3. Forthe solution of the problem defined in Theot&dand in the case of equal subdomains
m= n, the region of convergence is given by all the pairs of the paraméie) that lie in the open unit
square, that is

K={@pB) eR?: 0<a<1 0<pB<1]. (2.42)
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Fig. 3. Discretization of the two-dimensional domain.

Proof. In the present case Eq. (2.41) degeneratesste 0, and the region of convergence is the one
given in Eq. (2.42). O
Corollary 2.4. For the solution of the Poisson equation as this is defined in CoroRa2yhe region of
convergence for the parametdts, ) is given by

K={(a,ﬂ) eR?:0<a<1 0<p<land (6—T—£)a,8

n m

+<%+%—2>(0{+,8—1)>0}. (2.43)

Corollary 2.5. For the solution of the problem defined in Corolld&yt in the case of equal subdomains
(m=n), the region of convergence for the parametrsg) is that in Eq.(2.42) ©pen unit squarge

3. Two-dimensional case

We consider the Helmholtz boundary value problem
—Au+qu=finQ2=(0,a)x(0,b), u=gonaQ (3.2)

where g is a positive constant ang is given. We discretize uniformhf2 with m+ n subintervals
in the x-direction andl + 1 in the y-direction assuming thai=a/(m+ n)=b/(l + 1). We decompose
Q into two subdomains2; = (0, mh) x (0, b) and Q,=(mh, a) x (0, b) as this is shown in
Fig. 3.

In the discretization we first order the nodes alongyttkrection and then along thedirection. We
denote b)l]i(k) theith I-dimensional block element of the iteration vector duringKiheteration, namely
UY =[u 0.1 1 0 - ui1T. The discretization of the Dirichlet problem iy gives a linear
system which in block form corresponds to the one in Eq. (2.3)
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_Il
D

—1I

_Il

B U1(2k+1) 7]

U2(2k+1)

-, b L

(2k+1)
Um—l _

F1+4+ G,

F
(3.2)

Fpa4 (UZH)

In the same way the discretization of the Dirichlet probleringives the linear system

- D,
-1

_Il
D,

—1I

_IZ

-, D

[ 7 (2k+1) 7]
Um+l

(2k+1)
Um+2

(2k+1)
| Um+n—l |

wherel, is thel x | unit matrix andD; thel x | matrix

Fpi1 + (UZD),

Fm+2
: (3.3)

Fn1+n—1 + GZ

T4+ gh? -1 .
0,
1 4+gh? -1 89 7)
g0, y2)
Dl = 9 1 - 9
1 . ©, »)
! —1 44 gh? s
g(a, y1) h2 f (xi, y1) + g(x:, 0)
g(a, y2) h? f (xi, y2)
Gy = and F, = , i =10m+n+1andi # m.
gla, y) R2 £ (x;, y) + g(xi, b)

(3.4)

U1 and(UY), are in analogy to the one-dimensional casgtthapproximations ta on the common
boundaryl” of 2; and2,, respectively. As in the one-dimensional case these values are taken to be the
linear combinations

U =W+ A=) U2, U2 =aU,P)2+ A=) (U1 (35)

The discretization of the outwardly normal derivativesIois analogous to that in the one-dimensional
case. Taking the corresponding boundary conditions we end up with the one corresponding to (2.10) and
(2.11) linear systems
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D[ —I[ - U](_2k+2)
_Il Dl _Il U2(2k+2)

-, D, -] U(Zfirz)

i i 2 3 | (U2, |
[ F1+ G1 ]
F
= Fm—l (36)

[3@+8-DW2)1+ 36 - 0P, + 3pUSEY - 280277
21 lg)U,fﬁl) ~la- IB)U(Zk-'rl)}

m+2

and

_ — 1 7J(2k+2)2 7
3,  —21, iy Un 2

(2k+2)
— 11 Dl — I[ Um+1

NI

Rl v
| —1; D; | U(2k+2)
- Ym+n-1 -

i {%(a + 8- DU+ 3B - ) U — 21— U ]

2k+1 2k+1 2k+1
+21 - pULTY - 26U 0 + 3pU Y|

= | Fna . (3.7)

Fm+n72
Fm+n—1 + GZ

Based on the above the two-dimensional problem is solved with the following parallel algorithm.

Algorithm 3.1. Give arbitrary values ta/ >, U, i=1(1)m+n—1,i#m,and(U®)1, (U©D),.
Fork=0,1,2..., until convergence do
(i) Solve in parallel linear systen{8.2) and(3.3) subject to condition§3.4).

(ii) Solve in parallel linear systen{8.6) and (3.7) subject to conditions analogous to the ones in Eq.
(2.9)for the two-dimensional case.

End of iteration

For the study of the convergence of the problem we combine the four linear systems into one and study
the corresponding iterative scheme. After this combination takes place we obtain
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D —1I
=1 Dy -1
=1 D,
Dy -1
=1 D -1
-, D
D -1
-, D -1
=1 D, -1
_1 _ _ 1
381 281 20-p)L A -p)L o o o
3 i
Wa-pn —20-pL | 281 —Lp1, YT}
7’1 D[ *]1
=1 D -1
i —L D
k=1 o
Ui Fi + G
(2k—1)
2 P
(2k—1)
1 Um;l F1
al; - o=
[CX Y al; m+1 Fut1
(2k—1)
Um+2 Foi2
(2k-1)
m+n—1 F/)H»n—l + Gz
U Fi+ G
- 2 + I
U Fun
Ueo) 0
2@+ =D 3B-al ((7“1 :
38—l Ha+B-D (U"Zn )2 .
2 3 "
Ui mtl
U/S‘ iv)l -2 Fuin-2
U@ L Futn-1 + G2
L Yo

ek,
(Ur(n * ))3

U](2k+l) -

@kt
UZ

@k+1)
Umf 1

@&+
Um+1

2k+1)
Um+2

(2k+1)
m+n—1

2k+2
U](Jr)

U 2(2k+2)

@k+2)
Um -1

(U

@k+2)
Um +1

(2k+2)
Um+n—2

(2k+2
Wen =)
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To study the convergence of iterative Scheme (3.8) we denote agdimbgC the matrices that are
present in it and by the matrixT— C.

Let X e R" be the matrix with columns containing the normalized eigenvectods.dinceD; is real
symmetric X will be orthonormal. The Jordan canonical formfwill be

Ji=X"DX (3.9)
whereJ; =diag@.1, A2,...,A) with A;, i = 1(1)n, the eigenvalues d, which are

i

A = 24 gh? + 4sirf ,
tah 20+ 1)

i = 1. (3.10)

We consider the block diagonal matéx= diag(X, X, . . . , X) with 2(m+ n) diagonal blocks. It is obvious
that X will be orthonormal too. Hence¥~1 = XT. Considering the similarity transformations BfC
and S with similarity matrix X and recalling that the block elementsareD,; andl; while those of
C arel;, then after the transformation the matridesemain unchanged whil®, becomel;. Thus we
obtain

T=X"TX, C=X"CcXx
and
S=X"T"lcx=T"1 (3.11)

wheref: has the form ofl with J; in the place oD,. We now consider the permutation transformation of
matrix T which is produced from the permutation

P={11+121+1...,2m+n—1)l
11,2242, 2m+n—1i+2,
L2 20m + ). (3.12)

Using it we take the first elements form dls and place them into the firsti®(- n) x 2(m+ n) diagonal

block, the second elements in the second diagonal block etc. In other words it is the permutation that
recorders the nodes first along thdirection and then along thedirection. Thus the matri¥ becomes

similar to

T' = diag(Ty. T . T}) (3.13)

whereT;, i = 1(1), is given by
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Ao -1
-1 -1
-1
ao -1
-1 -1
-1 X
)\.,‘ —1
= -1 -1
L L -1 -1
—3B 28 -2(1-p) 5(1—/3) 1 _9 3
2 2 3 5 1
la- —-2(1— 28 —1 2 T4 3
s(1—8) Q-5 28 —38 210, A
-1 -1
i -1 % |

(3.14)

We note thafl; is the same matrix a8 of the one-dimensional case (2.12) with the only difference
being that to the diagonal elememtf the latter 4 si(iz/2(1 + 1)) is added. The same permutation
matrix acting onC transforms it into a diagonal matrix with diagonal blocks exactly the m&triX the
one-dimensional case (2.12). Sas transformed into a block diagonal matrix with diagonal bloSks
which are of the same form as the mat@wf the one-dimensional case. If we put

4

2 coshy; = 2 + gh® + 4 sirf ,
taht 2(+1)

i =11, (3.15)

then one can develop the theory of the one-dimensional case for each diagonal tlotkefefore, the
nonidentically zero eigenvalues 8fwill be 2l and will be given in pairs from the quadratics

M —[2af+@+B—-1—aB)B]r+ 2a —1)(28—1) =0, i = 1(1), (3.16)
as this is implied from Egs. (2.34) and (2.35), where we have put
Bi = pm,n(ei) + Pnm (61) (317)

Now we can state and prove statements analogous to the ones in the one-dimensional case regarding the
regions of convergence and the optimal values of the parametansl 5. Starting with the regions of
convergence the corresponding statement to Theorem 2.2 will be:

Theorem 3.1. For the solution of the two-dimensional Helmholtz equation under Dirichlet boundary
conditions, we uniformly discretize and apply the method of DD as this was described previously. The
region of convergence for the parameterand g will be

K={pB) eR2:0<a<1 0<B <1, 4af — (Bu —2)(L—a)(1— B) > 0}, (3.18)
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where

By = maxBi.
Proof. From Theorem 2.2 we have that

K:ﬂK,-:ﬂ{(a,ﬂ) €eR?:0<a<1 0<B<1 40— (B —2)1—a)(1l—B) >0l
i=1 i=1

(3.19)

We observe thd(; differ from each other only in their last condition. We also note that the left-hand side
of the last inequality is a decreasing functiorBpf Therefore, the inequality will hold for aR;s as long
as there holds faBy, = max B;. O

Theorem 3.2. For the problem of Theore®.1,the optimal pair of parameterg:, 8) are
1 1+(¢BM+2—¢Bm+2)2 1 l+(¢BM+2—¢Bm+2)2 .

1 \/BM+2—\/Bm+2 2 1 \/BM+2—«/Bm+2 2
(5[1+<\/BM—2+\/3m—2>}’ 5[1+(\/BM_2_«/Bm_2) D (3.20)

while the corresponding optimal spectral radius of the iteration matrix S is
_ \/BM +2_\/Bm+2

(S) = 3.21
P VBw +2+ /Bn+2 (3.21)
and where

Bm = min B;, By = maxB;. (3.22)

Proof. We have to solve a two-parameter optimization problem. Such problems occur very often in the
iterative methods and are very difficult to solve. Usually ‘good’ values of the parameters are found instead
of optimal ones. In our case, however, we will find optimal parameters. Since the problem is symmetric
with respect to its parametersand we may assume that> g. Fori = 1(1), we denote by

A =3[208 - Q- )@= BB+ V2B~ A-)A- PBP —42a— D26 - 1)| (3:23)

=328 - Q- 01— PB ~ V20— A-0)1- PBIP — 42— 126 - 1)| (324)

the roots of the quadratics (3.16) which are also the eigenvalugdiof easy to note that if; is that

out of Egs. (3.23) and (3.24) that corresponds to the maximum modulus then it is a decreasing function
with respect td; as long as.;” andi; are real. The modulus remains constant for thgstor which

AT, A are complex conjugate numbers. Also, we note that

si =28 — (1—a)(1— B)B; (3.25)

is a decreasing function @&;. So, if the spectral radius corresponds to a negative eigenvalue, that will
be 4, while if it corresponds to a positive one, it will be,. We investigate a little further these two
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quantities. First, we assume that the optimal value of the spectral radispf S corresponds ta,,.
Then there will bex andg in their region of definition such that

9 1 [(2,3 + (1= B)Bw)y/s4 — 4Q2a — 1)(2 — 1) — sM:| +42 -1
M _ = =0,

da 2 st —4@e — D@ - 1)

rpy 1[Qa + (1 — a)Bw)y/s — 42a — 1)(28 — 1) — sm] + 4(2x — 1) 0

op 2 \/sﬁ,l — 420 — 1)(28 — 1)
or

28+ (11— B Bu)(—iy) +2(28 - 1) =0, (200 + (1 — o) Bu)(—Ay) +2(2a — 1) = 0.

(3.26)
Eliminating,, from Eqg. (3.26) we obtain
(Bu+2)(@—B)=0sa=28. (3.27)
However, fore = 8, EQ. (3.26) give
(2a 4+ (1 — @) Bu)(—Ay) 4 2(2« — 1) = 0. (3.28)

Since the first term of the first member of Eq. (3.28) is positivejust be strictly less than 1/2. Conse-
quently,—iy, > /|AyAh| =1 - 2«, so

(20 + (L —a)Bu)(—Ay) +2(20 — 1) > (200 + (1 — o) Bv)(1 — 20) + 22 — 1)
=1-20)(Bu —2)(1—«) > 0. (3.29)

This means that the optimal value does not correspond to a local minimufp. &f we assume that
it corresponds to a local maximum bf;, then following a similar reasoning we end up with the same
conclusion. Therefore, if the optimal value corresponds to real eigenvalues it will correspond to a point
where the maximum goes froly, to A, or vice versa, implying that} = —A,. So, we have to minimize
A under the assumption that, = —1;.

Using Lagrange multipliers we will have

9
3B

First we examine the caséxr + 4,,)/0a = d(A} + Ay,) /38 = 0. Then Eq. (3.30) beconta.}, /da =

dxr+ /9B = 0, which can be proved, in a similar way as in the previous casg othat it can not happen.
Therefore, there exists no local extreme value that comes from a critical point meaning that the minimum
value will be assumed on the boundary of the region of definition. The region of definition is a subset
of the region of convergence, which was given in Theorem 3.1, scithat —i, € R. If « andp are

on the boundary of the region of convergence they will give a spectral radius equal to one and that will
be a maximum. Therefore, they must be taken at the other end of the boundary where they go from real

ad
o G+ 1O+ 2qp) =0, (Am+ 1Op+2ay) =0 (3.30)
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to complex conjugate roots, namely when they become double roots. Hence, the optimal pair will be
obtained for

whereAn, andAy denote the corresponding discriminants of the quadratics. Lefafd) (A +1y,) #
00r(3/9B) (A + Ay) # 0. Eliminatingu in Eq. (3.30) we find

oAt Oy OAL OAy

m_TM _ Tm M _ , (3.32)

da 9P B oa
Making the necessary substitutions and performing all the calculations in Eq. (3.32) we find out that this
is verified fora = 8. For the determination of the optimal parameters weapint the place ofs, in the
equationi,; + A, = 0. From this we obtain that it suffices to have

Sm—+sv =0 < 4a? — (1 — &)?(Bm + By) = 0. (3.33)
The solution of Eq. (3.33) gives that the optimal parameter is
~/Bm + Bm
0= —. (3.34)
v Bm+ Bv +2

If we put the value just obtained into the discriminang, we find out thatA,, < 0 which contradicts our
assumption that the roots are real. This means that there is no local minimum in the region of definition.
So, the optimal values will be given at the endpoint where they were given in the previous case that is
Eq. (3.31) holds.

The case that remains to be examined is when the optimal parameters are obtained when all the
eigenvalues are complex. Then the eigenvalues will lie on a circle centered at the origin O whose radius
will be /(2a — 1)(28 — 1), and so we have to minimize this value or equivalently the function

fla, ) =2a—-D(2B-D(>0), (3.35)

where because of the symmetry of the problem, eithex +58 >1/2 or 1/2 >x > 8 >0. Aswe saw in Eq.
(3.25), the real parts of (1/2)of A; can be ordered from the smallest (KgJo the largest (1/2),. Assume
that we have found the optimal values‘( 8*) so that the corresponding’s satisfy the inequalities

=2V fla*, B*) <spy < -+ < <0<y < 2/ fa¥, B¥). (3.36)

We consider are >0 small enough, that can increasé by ¢ and decreas@* by ¢, so that either
1>a*+e>p*—e>1/2 or 1/2>x* 4+ € > B*—e >0, whichever applies. We have that

fl@*+e B*—€)=2a*— 1+ 2¢)(28* — 1 — 2¢)

= (2" — 1)(2B* — 1) — de(a* — B*) — 4 < f(a*, B). (3.37)
On the other hand
sil@+e, B —e)=2@ +e)(B*—e)— (L—a*—e)(1—B*+€)B;
=s'+ (B —2e(@* — B +¢€) > s (3.38)

Due to the strict inequalities at the two ends of Eq. (3.36) we can find small enough such that
=2/ f(@*+ €, B* —¢€) < sm(a* + ¢, B* —e)andsm(a* + €, B* —€) < 2/ f(a* + €, B* — €). In this




618 A. Hadjidimos et al. / Mathematics and Computers in Simulation 51 (2000) 597—-625

way we improve the spectral radius which contradicts the assumption that thepdi)is the optimal
one. Therefore, for the optimal pair there will hold eitkgr= —2./f (a*, *) orsy, = 2/ f(e*, B*).

In the following we examine only the casg = 2./ f(a, 8). The other cassy = —2/f («, B) can be
examined similarly and can give the same results. So, we consider

Am =0 (3.39)

and try to minimize =f(«, ) under the assumption (3.39) using Lagrange multipliers. We will have

ad ]
@(f + nAm) =0, %(f +unlAm) =0 (3.40)
or equivalently

22 - 1)+ 2u{[28 + 1 — B)Bm][2af — (1 —a)(1 — B)Bm] — 4(28 — D} =0,

2Qa — 1) + 2uf{[20 + (1 — @) Bm][2a8 — (1 — a)(1 — B)Bm] — 42a — 1)} = 0. (3.41)

If we assume thad A/da = dAm/d8 =0 then Eq. (3.41) will givexr = 8 = 1/2, when, howeve A,/
da #0anddAn/dB #£0. Therefore, we examine only the cas®,/do £ 0 ord Am/d B #£ 0. Eliminating
u, EQ. (3.41) give after some manipulation that
[2a8 — (1 - a)(1 = B)Bm](Bm+2)(f —a) =0 (3.42)
which is equivalent tax = 8 since the first factor is;, >0. To determinex we putg =« in Eq. (3.39)
which then becomes
[20? — (1 — )?Bm]? — 420 — 1)’ =0 &
(Bm — 2)(e — 1)?[(Bm — 2)a® — 2(Bm + 2)a + (Bm + 2)] = 0. (3.43)

The double rootr =1 is discarded since it does not belong to (0, 1). We are left with the only root of Eq.
(3.43) which is in the region of definition

a_Bm—|—2—2«/Bm—|—2_ VBn+2(VBn+2-2) Bm+ 2 (3.48)
Bm — 2 (WBn+2—-2)(WBn+2+2 /Bn+2+2 '

If we put this value intesy,, we readily see tha, < 0, which means that the optimal value given by Eq.
(3.44) is outside the region of definition since then all the eigenvalues will be real. Therefore, there is no
optimal value in the domain of definition. So, the optimal value will be on the boundary and the critical
point will be that where.yy becomes complex from real and thereforg,is a double root. One case is
whena = 8 =1 when the spectral radius is 1 and is therefore discarded. This end of the boundary gives
the maximum value. The other end which is when

will certainly give the minimum. We note that Egs. (3.31) and (3.45) are exactly the same. This means that
the optimal subset of the real eigenvalugsandi, and the optimal subset of the complex eigenvalues
coincide and they both lie on the boundary of the subsets, that is where they all become double ones. To
determinex andg so that Eq. (3.31) hold we use fay, and Ay the expressions
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Am=[2@+B-1) — (L —a)(1— B)(Bm— 2] — 4(2a — 1)(2p — 1)
=1-a)?1—-P2*Bm—2° Mo+ — DL —a)(1—B)(Bm—2) + 4 — B>
Am=1—-a)?1—- BBy — 2> — Mo+ — (L —a)(1— B)(By —2) + 4 — )°. (3.46)

In view of Eq. (3.45), expressions (3.46) imply that the quantBigs- 2 andBy, — 2 will be roots of the
same quadratic. Letbe their sum ang their product. These will be given from the expressions

Ao+ B — 1) 4 — )2

2(a — B) >
= = =——|. 3.47

Tamwa-p T a—ora-py (ﬁ I—wd—p) (3:47)
From Eq. (3.47) we obtain

S et g potTAVP, L AP (3.48)

JP oa—p s+2/p s+2/p
Substituting Eq. (3.48) into the first of Eq. (3.47) we have

B s=2/p 2P\ _ s—2p 2,/p _)

s(1 a)(l s+2ﬁa s+2ﬁ)_4(a+s+2ﬁa+s+2ﬁ 1 (3.49)
or equivalently

(s—2ﬁ)a2—2(s—ﬁ+4)a+s+420 (3.50)
when

a:s—ﬁ+4—«/p+4s+16' (3.51)

s—2p

Substituting the expressions feandp into Eqg. (3.51) we have

o= Bm + Bm — /(B — 2)(Bv — 2) — /(Bm + 2)(Bu + 2)

(\/BM _2_\/Bm_2)2

_ Y/2[(Bm —2) + (Bu — 2) — 2/(Bm — 2)(Bm — 2)]

(WBm — 2= /Bm — 2)?
(1/2)[(Bm + 2) + (Bm + 2) — 2¢/(Bm + 2)(Bum + 2)]
(VBm —2— /B — 2)?
1 By +2—+/Bn+2 2
:§|:1+<\/BM_2_\/Bm_2>j|‘ (3.52)

Substituting Eqg. (3.52) into the last of Eq. (3.48) giykes

ﬂ_(JBM—z—JBm—2>2} 1+(¢BM+2—¢Bm+2)2 . 2/Bu—DBn-D
" \VBu—-2++Bn-2/ 2 VBu —2—/Bn =2 (VBw — 2+ v/Bm — 2)2

2
=E[1+<“/BM+2_*/B”‘+2>] (3.53)

2 By —2+ /Bm - 2
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Since the problem is symmetric and 8 can be interchanged. So, the spectral radius is given by the
following expression

VBum +2—+/Bn+2
VBu F2+/Bn+2
This concludes the proof of the theorem. O

p(S) =y2a—1(28—-1) = (3.54)

Remarks.

(i) The determination of the optimal values completes the study of the two-dimensional problem in
the case of two subdomains. Here we note that in the casenrthe theorem just proved givés,
B)=(1/2,1/2)and p(S) = 0 and the Corollary2.1holds in this case too. We also point out that the case
of the Poisson equation does not give any different results as this happened in the one-dimensional
case. Poisson equation is treated as a Helmholtz equation witld.dn other words statements
corresponding to the ones in the one-dimensional case (e.g., Cor@l3rgo not hold any more

(ii) A study of Bas a function ob; € (0, co) reveals that it is a strictly decreasing one in the interval
(0, arccosh 2ffrom (nn) + (n/m) to 2), where atarccosh a2t assumes its minimum val@e Then for
a small interval o®; it is strictly increasing, assumes a maximum value (very clog amd, finally,
strictly decreases and tends asymptoticallg t8ince for small values of h, §fs small then from Eq.
(3.15) arccosh & contained in the smallest interval that covers the spectrum @ ‘also it will not
be unrealistic if we consider as,Band By, the values of BandB; or 2 and By, respectivelyln the
latter case we have = 8. In all the cases and 8 are very close to each other and closeli@.

4. Three- and higher-dimensional cases

We consider the Helmholtz equation under Dirichlet boundary conditions
—Au+qu=fin2=0,a) x (0,b) x (0,¢), u=gonaQ (4.2)

where A is the three-dimensional Laplace operatpg positive constant angla known function. We
discretize uniformly2 subdividing it intom+ n subintervals in the-direction,l; + 1 in they-direction
andl, + 1 in thez-direction. Assuming thdt=(a/(m+ n)) = (b/(I; + 1)) = (c/(I> + 1)) we decompos
into two subdomains in thedirection takingn subintervals irf2; andnin €,. Thus,; = (0, mh) x (O,
b) x (0,c¢) andQ2, = (mh,a) x (0,b) x (0,c). Inthe discretization we order the nodes first inykdirection
then in thez-direction and finally in the-direction.

We can very easily realize how one can go on from the two- to the three-dimensional case applying
exactly the same analysis as before. Relationship (3.2) still holds with the only difference that in the place
of D; we have a matrix that is yielded from the presence of the extra two dimensions. Narhielg, tifie
matrix in the case of the one-dimensional Laplace equation, Eqg. (3.4) gives

D= 2+ gh®1 + H, (4.2)
In our case we will have the analog of the three-dimensional case, namely

D, = 2+ qh® 1, + 1, ® H, + H, ® I, (4.3)
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In an analogous way all the other entities can be created with no further problem. In this way the analog to
iterative Scheme (3.10) is created where in the plaé® ahdl; we now haveD, ;, andl,,;,, respectively.
It is known that the eigenvalues of,;, are given by
. jm

+ 4sirf ————,
2(11 1) 2(l+1)
Applying to D,,;, a similarity permutation transformation similar to the one in Eq. (3.9) and subsequently
the corresponding permutation similarity transformation to the iterative matrix we end up with a block
diagonal matrix of the form (3.13) where the number of blockisliswhile each block is of the form

(3.14) withA;; in the place ofi;. From this point on the theory is developed in exactly the same way. In
the place of Eq. (3.15) we now have

Aij =2+ qh® + 4sinf ——— i =1k, j = 1Dl (4.4)

2costg,; = 2+ gh? 4st— asif—I" 1Dk, j = 1Dk 4.5
; +qh”+ 2T 20, + D) i (Db, j=1D (4.5)
The only issue is that of changing the notation which becomes a little more complicated without any

other essential change. The smallest eigenvalue wilhhand the largest ong,;,. Finally, if we put
By = r?ijn{pm,n(eij) + Pum(0i))}, By = T?X{Pm,n(@ij) + Pum(0i))} (4.6)

the conclusions of Theorems 3.1 and 3.2 will hold exactly the same. This concludes, in brief, the
three-dimensional case.

In higher dimensions we can go on in exactly the same way. The main difference will always be the
formula that will give the eigenvalues. thdimensions the eigenvalues will be given by

d-1

Misig.iyy = 24 qh? + 4Zsm2 i; =1, j=11d -1 (4.7)

(lJ+1)’

Finally, B, andBy will be given from formulas analogous to Egs. (4.6) and (4.7) and Theorems 3.1 and
3.2 will hold the same.

With the above extension and generalization the study of the method of decomposing the domain
into two nonoverlapping subdomains and using the averaging technique as this was described has been
completed.

5. Numerical examples

In order to confirm the validity of the theory developed and also to compare our results against the best
available ones obtained at the PDE level we consider the two two-dimensional characteristic examples
worked out in the article by Rice, Vavalis and Yang [18]. In [18] the problems considered are the following
two PDEs:

Example 1. The Poisson equation (3.1) in the open unit square (0, 1) x (0, 1) withg=0 and the
functionsf andg being such that the PDE equation has the solut{eny) = sin((r/2)X)y(1 —y).

Example 2. The Helmholtz equation (3.1) in the open unit square (0, 1) x (0, 1) withg=0.5 and
the functions andg being such that the PDE equation has the solutigny) = 3 "% x(1 — x)y(1 —y).
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Table 1

Example 1: grid size 1/3Q 1/30

X Copt Bopt Popt(S Absolute errors

0.5 0.5 0.5 0 4.02—6

0.6 0.500423 0.500423 8.46ME% 4 12E-2
22 -5
3.56E—-6

0.4 0.500423 0.500423 8.46 % 4 9.2E -3
1.5 -5
44E -6

We considered the same uniform discretization as in [18] with mesh Bized30 and 1/60. Since
the local truncation error is of order B%) this will be of order O(0.00111.) and O(0.000277.),
respectively, for the two mesh sizes considered. In other words the first truncation error is of the order
of accuracy of two decimal places while the second one is of three decimal places. WersedN
programs with single precision arithmetic and the stopping critdtiofit? — u®||, < e, with u+H,
u® the two successive iterates of Eq. (2.13), whete0.5x 102 and 0.5x 104, for the two sizes
considered. As is seen we required an accuracy of one more decimal place than what the order of the local
truncation error suggests. In all the experiments that were worked out the initialigtiesas taken to
be zero. To find the solution of each of the four linear subsystems in each iteration the method of LU
decomposition for banded matrices was used.

In the illustrative tables the following items are exhibited: the position of the interiggetbie optimal
values of the two parameters involvet,§, Bopt) as well as the corresponding optimal spectral radius

Table 2

Example 1: grid size 1/68 1/60

X Qlopt Bopt Popt(S Absolute errors

0.5 0.5 0.5 0 1.8B-5

0.6 0.500422 0.500422 8.44897 4 1.2E-2
3.74E-5
3.56E-5

0.4 0.500423 0.500423 8.46M1% 4 9.2 E-3
27E-5
15 -5

0.65 0.501116 0.501116 2.23203 3 22F -2
1.1eE-4
1.8 -5
19E-5

0.35 0.501116 0.501116 2.23203 3 1.3E-2
7.0E-5
1.51E-5

15E-5
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Table 3

Example 2: grid size 1/3Q 1/30

X Copt Bopt Popt(S Absolute errors

0.5 0.5 0.5 0 2.68B—4

0.6 0.500382 0.500382 7.64138 4 3.2 -2
27E—-4
24EF -4

0.4 0.500382 0.500382 7.64138 4 2.6&E-2
296E-4
27E—-4

(popt(9), Obtained by our theory (see Egs. (3.20) and (3.21)), and finally the absolute|pifrs u ||,

whereu is the theoretical solution of the given PDE, for e&eh1l, 2,. . ., until the convergence criterion

is satisfied.

Looking very carefully at Tables 1-4 one can make the following observations.

(i) Whenx,, =0.5, that is the interface decompose#to two equal subdomain?; and<2,, conver-
gence is achieved in exactly one iteration as the theory developed predicts.

(i) Whenx,, # 0.5, in all the cases examined,:= Sopt at least for the accuracy sought. This is due to
the fact that the quantit®,, of Egs. (2.29), (3.15), (3.17) and (3.22) is very close to 2 as a result
of which the two parameters are almost equal as this was explained in Remark (ii) that followed
Theorem 3.2.

(iii) In most of the cases whereg, 0.5 convergence is achieved after three iterations. Looking at the
errors observed one could say that the solution had already been obtained after the second iteration.

Table 4

Example 2: grid size 1/68 1/60

X Qlopt Bopt Popt(S Absolute errors

0.5 0.5 0.5 0 1.06—-4

0.6 0.500381 0.500381 7.62953 4 3.2€E-2
1.44€ -4
99X -5

0.4 0.500381 0.500381 7.62953 4 26FE-2
1.3E-4
1.0E-4

0.65 0.501015 0.501015 2.03®%1 3 5.4& -2
3.1E—-4
1.0E-4
1.0 -4

0.35 0.501015 0.501015 2.03&% 3 4.0E -2
241E—-4
1.0E-4

1.0&-4
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So, convergence takes place at an earlier stage. The extra iteration(s) needed to satisfy the stopping
criterion can be explained by the presence of the round-off errors and the single precision arithmetic
used.

(iv) In the pairs of cases where the interface ixatand 1- x,,, respectively, the differences in the
values of the corresponding optimal parameters obtained are negligible. According to our theory,
this is due to the symmetry of the two problems (Theorem 3.2).

(v) As one can check the results in our experiments compared to the corresponding ones in [18], which
are the best ones among those in a number of comparable methods, enjoy a better accuracy in all the
cases tested.

6. Concluding remarks

As the reader may have realized a most important problem will be that of decomposing the domain
into more than two nonoverlapping subdomains. In this general case a preliminary analysis shows that
some matrices called Centrosymmetric play a vital role and the study of their properties has a tremendous
interest from the Linear Algebra point of view. We have been studying these matrices in order to be able
to find regions of convergence and/or optimal parameters in the case of more than two subdomains.

Another possible direction of further research is to study the nonoverlapping DD method as this was
described earlier for more general Elliptic PDEs.

We have been investigating all these issues and the very first results so far are very encouraging.
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