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Abstract

Suppose that 4 € C™” is a block p-cyclic consistently ordered matrix and let B and S,, denote the block Jacobi and the
block symmetric successive overrelaxation (SSOR) iteration matrices associated with A, respectively. Extending previous
work by Hadjidimos and Neumann, the present authors have determined the exact regions of convergence of the SSOR
method in the (p(B), w)-plane, for any p > 3, under the further assumption that the eigenvalues of B are real of the same
sign. In the present work the investigation goes on further, several questions are raised and among others the problem
of the determination of the optimal regions of convergence in the spirit of Niethammer and Varga as well as that of the
optimal relaxation factor are examined. (© 1998 Elsevier Science B.V. All rights reserved.

AMS classification: primary 65F10; CR categories 5.14

Keywords: lterative method; Symmetric successive overrelaxation; p-cyclic consistently ordered matrix; Conformal
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1. Introduction

We are given the nonsingular linear system
Ax = b, (1.1)
where 4 € C™" and x,b € C". Suppose that 4 is written in the p X p block form
A=D(I—-L-U) (1.2)

with D a p x p invertible block diagonal, p > 3, and L and U block strictly lower and strictly upper
triangular matrices, respectively. Suppose also that for the solution of (1.1) and (1.2) the symmetric
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successive overrelaxation (SSOR) iterative method (see, e.g., [25, 29, 1])
"D = (] — wL) (1 — ) + oUW + (I — wl)™'D™'h,

, (1.3)
XD = ([ — wU)7'[(1 = ) + oL L oI —wU)'D7's, m=1,2,...,

where x'9 € C" arbitrary and w € (0,2) the relaxation factor, is to be used. The block SSOR iteration
matrix, associated with A, relative to its block partitioning, is given by

S, = —oU) ' [(1 =) + oLl — oL) '[(1 = w)] + oU]. (1.4)

Let B := L + U be the block Jacobi matrix associated with 4. If 4 is block p-cyclic consistently
ordered then we may assume that B has the block form

0 00... 0 B
B, 00... 0 O
B=|080... 0 0] (1.5)

0 00...B,, 0

As is known the eigenvalues u of B (or of B") and A of S, satisfy the equation, discovered by
Varga, et al. [26],

2= (1 —w))P=MA+1—-w) 22 - ) w’u’ (1.6)

which generalized the corresponding relationship for p = 2 (see [2, 18]).

For the study of the convergence properties of the SSOR method any information about the

spectrum of B, ¢(B), may enable one to answer one or more of the following questions:
(i) For what pairs (p(B),w) does (1.3) converge (p(S,,) < 1) and for what pairs (p(B),w) does
(1.3) converge in the sense of [22] (namely that p(S,) < 1/y, for a given = 1)?
(ii) What is the largest region, in the complex plane, that contains ¢(B) for which (1.3) converges
in the sense of [22] as in (i) previously? and
(i11) What is the (optimal) value of « that minimizes p(S,) for a given p(B) and what is the
(optimal) region in the complex plane that contains a given og(B8)?

Complete answers to the first part of question (i) have been given by Neumaier and Varga [19] for
the entire class of H-matrices, by Hadjidimos and Neumann [9] for consistently ordered matrices,
and [10] for the class of p-cyclic matrices, and by Hadjidimos et al. [12] for the class of p-cyclic
matrices with o(B?) real of the same sign. An answer to question (ii) was given by Galanis et al.
[7] for p = 2 only. Finally, an answer to the first part of question (iii), for p = 2, was given by
D’Sylva and Miles [2] and by Lynn [18] and, in a more general case, by Hadjidimos and Noutsos
[11]. It seems that for p > 3 the problems in the second part of question (i) and in questions (ii)
and (iii) have not been studied so far. On the other hand, the corresponding problems in the simpler
case of the p-cyclic SOR method have been extensively studied. Here we mention some of the
researchers in this area and refer to their works; Young [28] (see also [29]), Varga [24] (see also
[25]), Kredell [17], Niethammer [20], Young and Eidson [30] (see also [29]), Niethammer and Varga
[22], Niethammer et al. [21], Hadjidimos, et al. [8], Galanis et al. [4-6], Wild and Niethammer [27]
Eiermann, et al. [3], Kontovasilis, et al. [16], Hadjidimos and Plemmons [14], Noutsos [23] and
others.
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In this work we try to answer the questions, raised previously, for the p-cyclic consistently ordered
SSOR case for p > 3. The reader is reminded that some parts of the exact boundaries in [12] had
to be determined computationally because of the nature of the equations involved. Since the regions
in [12] correspond to n = 1 while the ones in this work correspond to any # > 1 we must expect
that some of the analogous results here can be found only computationally.

In Section 2 of this work, the mapping that connects the spectra in (1.6) is studied to find the
conditions under which it is conformal or not. In Section 3, the study of the (optimal) regions of
convergence and of the (optimal) relaxation factor w is made and results for the nonnegative case
are obtained. For the nonpositive only the main statements are presented; the analysis can be found
in [13]. In Section 4, the special case p = 3 is briefly treated, separately. In Section 5 numerical
results to support the theory developed are presented while in Section 6 some (theoretically) open
questions in the form of conjectures are addressed.

2. Conformal mappings of the SSOR spectral regions

We begin our analysis with the functional equation (1.6) which is rewritten as follows:

P () &

T2 -0Pori4+ 1 —w)p? (2.1)

Using the transformation ¢ = 1/4 substituting into (2.1) and setting z = u”, we obtain the mapping

[1—( —w)el
2 = oPwrg[l + (1 - w)plr=?

z: z(¢):( (2.2)
Our objective is to find the smallest region in the complex plane containing u? € ¢(B8”) which has
an image, through the mapping (2.2), in the exterior of the circle

oD, = {¢:p=ne", n>0, 0<[0,2n)}, (2.3)
where D, is the corresponding disk, or, since 2= (1/n)e™", in the interior of the circle 0Dy ,. Then,
the spectral radius of the SSOR iteration matrix will be less than or equal to 1/5 (p(S,) < 1/y) with
equality holding if and only if (iff') there is an eigenvalue of B” on the boundary of the region to
be found.

For the solution of this problem we study the mapping (2.2) as 5 increases continuously from the
value 0. For # = 0 the circle dD, is trivially the point 0 of the complex plane. So, (2.2) transforms
the point 0 onto the point oo and the mapping is conformal. Due to the continuity of the mapping
as n varies, it will be conformal for some # > 0 in the neighborhood of 0. As is known, a mapping
like (2.2) is not conformal if there is a ¢ € D, such that dz/d¢ = 0. This suggests that the smallest
value of #, for which dz/d¢ = 0 for some ¢ € ¢D,, must be found. Considering « constant and
differentiating (2.2) with respect to (w.r.t.) ¢, we can obtain after some simple manipulation that

EdZEﬁ =0 <= F(@)=(-wPd"+(p— D1 -w0)2-w)p+1=0. (2.4)



4 A. Hadjidimos et al. | Journal of Computational and Applied Mathematics 90 (1998) 1-14

By considering the discriminant of the quadratic in (2.4) it is readily checked that F(¢) has only
real zeros. Since ¢ = ne'’, the possible (real) zeros of (2.4) must correspond to 6§ = 0 and 6 = .
Therefore, we have to distinguish two cases which are studied in the sequel.

Case 1: For 6 =0, (2.4) gives

M-’ +(p-1D1-0)2—-wy+1=0 (2.5)

and our problem turns out to be the determination of the smallest positive root of (2.5). Obviously,
o # 1 because for w = 1, (2.5) cannot hold. The two roots of (2.5) are given by

_—(p- D -0)2-o)t |l —o|[(p— 172 —wf +4w-1)]"

" 21— 0y (2.6)
For w < 1, n, _ are negative and the mapping is conformal. For @ > 1, (2.6) gives

- 21 — w)

So, for n < n_ the mapping (2.2) is conformal. For n > #_ it is not and the image of the circle
dD, of (2.2) has an intersection (double) point on the real axis.
Case 2: For 0 = m, we have

(-l —(p—1D(1 -)2-wy+1=0. (2.8)
The two roots of (2.8) are given by

_(p-DI-—w)2-w)£|l -ol[(p - 1)2 - 0) + 4w —1)]

172

" 2(1 — w) (29)
For w < 1, the smallest positive root of (2.8) is
D2 —w)=[(p— 12— 0P +4w-—1)"
_(p-DR-w) - [(p- 1P -0) +4w-1)]" 2.10)

- 21 — o)

The value n = 5_ just found is the only value of x at which the mapping (2.2) ceases to be
conformal. This is because, as we saw before, for § = 0 the mapping is always conformal. For
w > 1, the positive root of (2.8) is

(p-D2-0)+ [(p— 12— 0) + 4w~ 1)
- 21 — w)?

1/2

(2.11)

To find the value of n at which the mapping ceases to be conformal we compare the value n = 5_
in (2.11) with that given in (2.7) for & = 0. Obviously, the smallest of the two #’s is the one
corresponding to 6 = 0. We note that _ in (2.11) is greater than 1/(1 — w)* and since for n =
1/(1 —w)* and # = 0, z in (2.2) becomes zero it is implied that there exists no convergence region
for the SSOR method for # > 1/(1 — w)?. This is not unexpected since p(S,,) = (1 —w)* holds (see,
e.g., [29]). Therefore, #_ in (2.11) is of no interest.

The analysis above leads to the following conclusions.
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Theorem 2.1. The transformation (2.2) maps the circle oD, in (2.3) into a closed curve C, in the
complex plane. For w > 1, this mapping is conformal for all

~(p— D2 -0)+[(p— 172~ o) + 4w -1)]" 1
21 = wy (<(1 P) (2.12)

n€(0,n], n=
and is not conformal otherwise, while for w < 1, the mapping is conformal for all

(p-1@2-0) = [(p— 172 - w) +4o-1]" !
2(1 — w) (< ( )2> (2.13)

ne0,n], n=

and is not conformal otherwise.

Corollary 2.2. For the values of n of Theorem 2.1 for which the mapping (2.2) is conformal, (2.2)
maps the interior of the disk D, = {¢ : |@| < n} onto the exterior of the closed simple curve C,.

Remark. The curve C, is symmetric w.r.t. the real axis.

3. Optimal regions of convergence

The analysis in the previous section provides us with the main tool for the study of the (optimal)
convergence properties of the SSOR iterative method. Since 1/5 is the spectral radius of the SSOR
iteration matrix, to have convergence, # > 1 must hold.

For w = 1 (Aitken’s method) the curve C, is the circle (1/9)e™ and the mapping is conformal
for all n. So, we distinguish two cases, depending on whether w is greater or less than 1.

Case 1. w € (1,2). We take a certain » € (1,2) and increase # continuously from n = 0. For
n = 0, (2.2) maps the point 0 of the complex plane onto co. For 0 < # <7, it maps the disk
D, onto the exterior of the curve C, and the mapping is conformal. C, is then a simple closed
curve containing the point 0 in its interior. Moreover, for n > 1, the interior of C,, let 2 denote
it, is such that if ¢(B7) € Q then the associated SSOR method will converge with an asymptotic
convergence factor p(S,) (< 1/5). Obviously, the larger # is the smaller the region Q is. The region
of convergence £ is shown in Fig. 1(a) for p =4, w =12 and n = 1.1.

n = n is the largest value of # for which the mapping is conformal. Since dz/d¢|,-; = 0, C,
has a cusp at ¢ = 0. The corresponding convergence region 2 is shown in Fig. 1(b) for p = 4,
w = 1.2, where from (2.12), 1 =~ 2.01562.

For #§ < # < 1/(w — 1), the mapping is not conformal. The analysis shows that there is an inter-
section point of C, on the positive real semiaxis and the convergence region Q is the subregion
formed by C, that contains the point 0 in its interior and has its images in the exterior of the circle
ne’. Due to the nature of the equations involved the intersection point for a specific pair w and
n can be found only computationally. Fig. 1(c) depicts the case p =4, w = 1.2 and # = 2.4 and
shows C, the intersection point and the region € which is the one on the left of the two subregions
formed by C,.

For n = 1/(w — 1), the same conclusions hold except that the point of C, corresponding to = 0
goes to oo. So, C, is not a closed curve.
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Fig. 1. Regions of convergence.

For 1/(w — 1) <y < 1/(w — 1) the point of C, for § = 0 lies on the negative real semiaxis for
odd p and on the positive real semiaxis for even p. The analysis shows that the curve C, is much
more complicated in shape. For some #’s we have more than one intersection (double) points of the
curve C, with the real semiaxis and more intersection (double) points of C, with itself. Due to the
continuity of the mapping, the convergence region €2 is the smallest subregion formed by C, that
contains the point 0 in its interior.

For n = 1/(w — 1)?, the region of convergence reduces to the point 0 of the complex plane.

For n > 1/(w — 1)?, there exists no region of convergence for the SSOR method.

Case 2: w € (0,1). Results analogous to the ones in the previous Case 1 can be obtained. The
main differences are that 7 takes the place of 7, 1/(1 —w) replaces 1/(w— 1), in the various intervals
considered, and the roles of the positive and negative real semiaxes are interchanged.

Based on the analysis of this section we can state the following theorem.

Theorem 3.1. Let n > 1 be given and let Q be the region defined in the previous analysis for a
given w € (1 — 1/,/m,1 + 1/\/n). Let also that a(B”)C Q. Then, the associated SSOR method
converges with a spectral radius p(S,,) < 1/n. In the last relationship equality holds iff at least one
element of a(B*) lies on the boundary dQ of Q.

The analysis so far gives answers to the second part of question (i) as well as to question (ii)
of the Introduction. In the following two subsections we shall try to answer questions (i) and (iii)
under the assumption that the spectra ¢(B”) are real of the same sign.

3.1. Nonnegative case

In [12] we determined the regions of convergence of the SSOR method (p(S,) < 1) in the
(p(B),w)-plane for nonnegative and nonpositive spectra o(B?) for all p > 3. Here we will try
to determine regions in the (p(B”),w)-plane such that p(S,) < 1/4 for a given # > 1 and also,
whenever possible, optimal values of the relaxation factor w for a given p(B).

For a given 5 > | we study the transformation (2.2) for all values of w € (0,2). More specifically,
in the present case we must determine the closest to the origin O(0,0) point of intersection of the
curve C, with the positive real semiaxis. Thus,
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For 0 < <1~ 1//4, it is obvious that no such region exists since then n > 1/(1 — w)*.

For 1 — 1/\/n € @ <1, it is checked that |z| takes its minimum at the point corresponding to
6 = 0. So, the closest to 0 point we are seeking is that corresponding to 6 = 0.

For 1 <w <1+ 1/\/n, it is known from our analysis that for certain w's the mapping (2.2) is
not conformal for > 4. The question that arises is: For the given value of # can one find an @
for which the mapping ceases to be conformal? To answer it, a further study of Eq. (2.4) must be
made. Setting x = 1 — w, (2.4) becomes

)= +(p—1 P +(p—Dygx+1=0. (3.1)

Itis f(0)=1>0and f(~1/p)=(p—2)1/n— 1)< 0. By studying the sign of the derivative of
f wurt. x as a function of x it is concluded that there is precisely one zero of f in the interval
in question. This implies that there is precisely one value of w, denoted by @, in the interval
(1,1 + 1/,/n) for which the mapping ceases to be conformal. Since the mapping is conformal for
w = 1, it will be conformal for all the values of @ € [1,@].

For @ < <14 1//, the mapping is not conformal. The closest to the origin intersection
point of interest corresponds to a  # 0 that can be found only computationally. For this, one sets
Imz(ne") = 0, solves for € and then finds the value of 6 that gives the smallest positive Rez(ne'”).

For 1 +1/\/f <w <2, it is n > 1/(1 — w)* and there exists no region of convergence.

The analysis so far gives the boundary curve of the region of interest in the (p(B”), w)-plane. For
1—1/\/1 < w < @, this boundary curve can be given analytically by putting ¢ = 0 in (2.2). So, we
obtain

[ (1~ oy’
(2 - w)Pory[l + (1 — w)] poE

Br(w) = w € [l - —l—c‘a] (3.2)

Vi

For @ < w <1+ 1/,/7, the boundary curve f,(w) can be found only computationally.

The above analysis gives an answer to the second part of question (i) of the Introduction.

To determine optimal values of w, we must determine those ’'s which maximize # for a given
p(B) or 's that maximize p(B) for a given 5. The above analysis can be used to determine the
desired optimal values. Specifically, we must determine w* such that

B(w*):mgx flw),w € <1 ~%,l+ﬁ), (3.3)
where
1
Brw). w € (1 _ .—_}
v
Blw) = | (3.4)
.BZ(CU), w e (6),1 + ﬁ) .

For this we must find the maximum values of the functions f;(w) and f,(w). In the following, we
work with ff;(®) only and not with 8,(w) since the latter can be given only computationally.
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To study the function f(w) first we differentiate it w.r.t. @ and then use the transformation
x = 1 — w. After some simple algebraic manipulation we obtain

Bi(w) ~ (p—2nx* + (p+ 2nx® + (p+ 21 +(p — 2) = f(x;), (3.5)
where a relationship of the form 4 ~ B denotes that sign(4) = sign(B).
To find the sign of f(x;n) for x € [1 — w,1/,/7) and n > 1 we find first the sign of
SO =(p =20 +(p+2" +(p+2x +(p—2)
=(x+D(p—2x"+4x+(p-2)] (3.6)
f(x:1) has the simple zero —1 for all p > 4, the triple zero —1 for p = 4, and the zeros —2 — /3,
—land —2++3 for p=3.So, f(x;1)>0, Vxe[l —,1/\/m) and p > 4. For p =3 the zero
—2 + /3 lies in the interval [1 — @, 1/\/n) for some values of 1. So, f(x;1) may change sign in

this interval. Since, f(x;1) behaves differently for p = 3 this case will be examined separately in
Section 4. From (3.5) and (3.6) we have that

fsn) = fos 1) +x3(n = DI(p — 2+ (p+2)]. (3.7)

Since for p > 4, both terms on the right-hand side of (3.7) are positive we have that f(x;n)>0,V x¢
[1—,1/,/n). This means that §,(w) is a strictly increasing function in [1 —®, 1/,/7). Consequently,

~ ]
max Pi(w)= pi(®), we [1 — w,«ﬁ> . (3.8)
Based on the above analysis we state and prove the following theorem.

Theorem 3.2. Let p =4, o(B”) be nonnegative and p(B) (< 1) be given. Then there exists a
unique root ® € (1,2) of the equation
2 2 1/2 r
) 2+(p-1D2-0)-[(p- 1’2 -0f +40-1)]"]
p — 271
22 — w)w? [*—(p — DR -0+ [(p=1P2 - 0P +4w - 1) 1'“]

(1 —w)”

y — (3.9)
pu_wy4p~nm-wnﬂuhﬁﬁa—wv+«w—UV@

and the SSOR method converges for all o € (0,0] with @ being the optimal value of w in this
interval. The associated optimal spectral radius is p(S;) = 1/5, where 3 is the value of n given by
Theorem 2.1.

Proof. From the theory developed we have that for a given % > 1 there exists a unique value of
o € (1,2) given from the expression (2.12) of Theorem 2.1. From (3.2), the pair @ and 7 corresponds
to the largest p(B). Conversely, for a given p(B) < | there exists a unique value @ € (1,2) and
a corresponding value for 7 such that the convergence will be optimal for all w € (0,®]. (3.9) is
obtained using the expressions for @ and # in (3.2). O
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3.2. Nonpositive case
An analysis analogous to the one in Section 3.1, but much more complicated this time, can also
be done. Because of its many technical details only the main theoretical result is presented. For

more, the interested reader is referred to [13].

Theorem 3.3. Let p > 4, o(B?) be nonpositive, p(B) be given and

14+ (1 —w)? .
P = L= 1~2 3.10
p (2 — w P} P ( )
with
20p —2)? A p— 1)
o, = (p—2) - (p=1) (A1)

(pr2yF+(p=2 DRI
(a) For any p(B) < pi, there exists a unique root o € (0,1) of the equation
2+(p =12 =)~ [(p— 172~ o) +4o - 1)]"'2] !
22 — wyer|(p— N2~ )~ [(p~ 12 - 0 + 4o - 1)
(1 — w)”
[2(1 —0)~(p—D2-0)+ [(p— 1722~ ) +4w - 1)) ""2} "~

p(B”) =

X (3.12)

and also for any p(B) < oo, unless p = 15 and 1 < p(B), there exists a unique value @ which
is the smallest w € (1,2) such that there is an intersection point of the curve C, at (—p(BP), O)
for a 0 £ 7. Let n* =7 (resp. 4* = 17) denote the corresponding value of n; if both & and ®
exist let N = max{n,n} Then, if @ (resp. u)) exists there is always an interval of @ containing
w (resp. a)) in which the SSOR method converges with local optimal spectral radius at w* = @
(resp. w* = 5)), namely p(S,-) = /5"

(b) For any p =4 and any p(B) < p, the SSOR method converges for all w in an interval
containing both o and & with optimal spectral radius p(S,-) = 1/n*.

Note. One can be more specific about the intervals of convergence containing o (resp. (f)) if one
uses the theory in [9, 12], the preceding analysis and Theorem 3.3.

4. The special case p =3

From the analysis of Section 2 and specially from Theorem 2.1 and Corollary 2.2, for p = 3, we
have that

Q-0 +[C-0)i+w- 1"

1/2
; and ﬁ_(2~w)—[(2—w)2+w—l]

(0~ 1) - (017
Following the analysis of Section 3 we try to find the boundary curves of the regions of conver-
gence in the nonnegative case while for the nonpositive case the reader is referred to [13].

(4.1)
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4.1. Nonnegative case

For w < 1, the conclusions are the same as those of the general case. So, for | <w <1+ 1/y
there exists an @ corresponding to 7 such that for @ < @ the mapping (2.2) is conformal while for
® > @ it is not. Consequently, the boundary curve of the convergence region is that given in (3.4),
where

2.13
i) = 5= a[)l)zwg,;p i)zln]_ o € = %@] (42)
while f,(w) can be found only computationally.
From (3.5) we have that
Bi(w) ~ m + 5 + 5x 4+ 1 =1 fi(xin) (43)
It is obtained that f3(—1/n;n) > 0 and f3(0;#) > 0. Differentiating f3(x;%) w.r.t. x we have
fi(x;m) =3nx* + 10nx + 5. (4.4)

Since fi(—1/m;n) <0 and f}(0;n) >0, fi(x;n) has one zero &= (—5+ V25 - 15/7])/36
(—1/11, O). By plugging ¢ in (4.3) we can find, with as much accuracy as we want, an 5 so
that f3({;n) = 0, which, to eight significant figures, is 1.3615345. So, for n € [1,1.3615345),
f3(&n) <0 and f3(x;n) has two zeros in (—l/n, O). To find out which one of the two zeros

belongs to the interval (x,0), where x = 1 — @, we find the value of # such that ¥ is one of the
two aforementioned zeros. Applying the Sylvester’s resolvent to the equation f%(x;#) = 0 and to
equation (2.5) for p = 3, we obtain that X can be a common root of these two equations only if
n = 1. This implies that for all # € [1,1.3615345) the two zeros belong to the interval (%,1). For
1 increasing continuously from 1, these two roots remain in the interval (¥, 1) until # = 1.3615345
when they coincide with the double root . From the value # = 1.3615345 onwards the two roots
become a pair of complex conjugate ones.

Since Bi(w) is an increasing function at w = I, it will be increasing in a neighborhood of 1.
So, by increasing @ continuously from 1 to @ we will pass first through a value of w, let it be
denoted by «’, which will correspond to the local maximum of f,(w) and then through a value of
w corresponding to the local minimum.

The previous discussion leads to the conclusion that the optimal value of w € (l = 1/, cT)}, let
it be w*, will be given by that value of the pair {w',®} that maximizes f3;(w).

By putting @ for @ in (4.2) and # for n in (4.1) we obtain

) [G-a)- [(2—@)2+(@—1)]"’2]3 (- o)
Bl(w) = PR N . N 172 X N N 1/2
(2—w)2w3[—(2~(u)+ (2-32+@-1)" ] [-1 +[e-ar+@-1)" ]

=: g(@). (4.5)

It is readily seen that g(w), defined in (4.5), is a continuous function of w € (1,2). By differentiating
g(w) and studying the sign of its derivative it can be found after a long manipulation that dg(w)/dw
is positive in (1,2) with lim,, .+ g(w) = 0 and lim,,_,,- g(w) = % Therefore, g(w) is a strictly
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increasing function in [1,2) which implies that for p(B*) € (£,1) there is no ® such that f(®) =
p(B*). This constitutes one of the main differences of the special case p = 3 from the general case
p=4

4.2. Nonpositive case

The analysis in this case is along the lines of that of the corresponding one of the general case
in Section 3.2. It is much more complicated than the ones in Sections 3.2 and 4.1 although some
of the very complicated expressions and functions studied in Section 3.2 have now a more concrete
form because p = 3. Since the analysis in this case is full of technical details and, on the other
hand, some of the points raised can be answered only computationally we prefer not to give it here.
Instead, the interested reader is referred to our Technical Report [13].

5. Numerical examples and concluding remarks

A number of numerical examples run on a computer are illustrated in Table 1 for p =4 and for
selected values of . In each case, based on the theory developed a systematic search was made with
= 0.00001(0.00001)1.99999 to find the one for which p(B) was as large as possible. The w found
appears as @,y in the table. Then, we worked the other way around. So, for each computationally
obtained @y, using the value of p(B) that was found, we computed the corresponding value of #.
The n's we obtained were very close to the ones originally considered. Some minor discrepancies

Table 1
Case p=4
Nonnegative Nonpositive

n 0(S.) Wopt p(B) Wopt p(B)
1.01 0.990099 1.75757 0.999825 1.99010 7.08862
1.025 0.975610 1.68152 0.999397 1.97562 4.50044
1.05 0.952381 1.61069 0.998455 1.95242 3.20247
1.1 0.909091 1.52737 0.996048 1.90946 2.29492

2 0.833333 1.43243 0.990037 1.83559 1.66714

1.3 0.769231 1.37312 0.983163 1.77491 1.39772
1.4 0.714286 1.33046 0.975863 0.798640 1.30969
1.5 0.666667 1.29762 0.968374 0.810338 1.27384
1.7 0.588235 1.24954 0.953348 0.830029 1.21361
2.0 0.5 1.20194 0.931606 0.852860 1.14327
2.5 0.4 1.15401 0.898763 0.879690 1.05839
3.0 0.333333 1.12473 0.870202 0.898198 0.997075
4.0 0.25 1.09054 0.823413 0.922104 0911813
5.0 0.2 1.07113 0.786582 0.936897 0.853412
7.5 0.133333 1.04634 0.720355 0.957192 0.760582

10.0 0.1 1.03438 0.674892 0.967603 0.702961

15.0 0.066667 1.02268 0.613961 0.978201 0.630867

200 0.05 1.01692 0.573289 0.983574 0.585088
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Fig. 2. Convergence region of the general case.

Fig. 3. Special case p = 3.

can be attributed to the presence of the round-off errors and the final effect of their propagation
during the many complicated computations involved.

Some of the results in the table are depicted in Fig. 2, that is a good representative of the general
case, for both the nonnegative and nonpositive cases in the (u*, w)-plane. It shows the region of
convergence for p = 4 and 5 = 1.5. We would like to draw the attention of the reader to the two
local maxima in the nonpositive case.

Similarly, Fig. 3 depicts in the (u},w)-plane the special case p = 3 for the values of n =
I, 1.1, 1.5 and 3. The outmost curves correspond to # = 1 and the inmost ones to # = 3. The
reader should note the main difference in the shape of the boundary curve in the nonpositive case
for some value of # compared to that in the general case. In particular, as # increases from the value
1 there is a maximum value for some @ < | and at the same time it seems that there is a cusp
in the boundary curve for another value of @ < 1 greater than the previous one. As # continues
on increasing the smaller value of w corresponding to the maximum tends to the cusp until some
value of n where these two w's coincide. From that point onwards only the value of w at the cusp
appears which corresponds to a local maximum. The appearance of the maximum and the cusp at
two different values of w for some values of # is what distinguishes the behavior of the shape of
the boundary in this case for p = 3 from the one in the general case for p > 4.

It should be noted that in Figs. 2 and 3 the lower parts of the graphs tend to the point (0,0)
as p(B) — 0" while their upper parts tend to the point (0,2). Both these points constitute singular
points for all the graphs since the SSOR method does not converge for w = 0 or 2.
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6. Open questions

We conclude this work by giving a brief summary of what was done and by addressing a number
of open questions in the form of conjectures.

In the present work we made an effort to determine, among others, the optimal values of the
SSOR relaxation factor w in the p-cyclic consistently ordered case when the pth powers of the
eigenvalues of the associated Jacobi iteration matrix were all of the same sign. We think that our
effort was successful in the sense that we were able to determine these values analytically when
a subinterval of the interval of convergence (0,2) was considered. Due to the very complicated
nature of the functions that describe various parts of the boundaries of the convergence region we
were not able to extend analytically our theory to cover the whole interval (0,2). However, strong
numerical evidence based on numerous experiments and computer graphics for various values of all
of the parameters involved (a very characteristic sample of the corresponding situations can be seen
in Figs. 2 and 3) have convinced us that the optimal values we found are also the overall optimal
ones.

There are a number of open questions one should answer in order to make a complete theoretical
proof. These are raised explicitly or implicitly in this work and also, mainly, in [13]. Here we present
only the most basic ones in the form of conjectures.

Conjecture 1. In the nonnegative case, for p = 4, and under the assumptions of Theorem 3.2, the
optimal o is the value of @ given in this theorem.

Conjecture 2. In the nonpositive case, for p = 4, and under the assumptions of Theorem 3.3, the
optimal w is the value of w™ given in this theorem.

Conjecture 3. In the nonnegative case, for p = 3, and under the assumptions of the analysis in
Section 4.1, the optimal o is the value of w* given in this analysis.

Conjecture 4. In the nonpositive case, for p =3, and under the assumptions of the analysis pre-
sented in Section 4.2 of [13], the optimal w is the value of w* out of the triad (v, (f),EI)) that
maximizes the corresponding value for the boundary curve. (See [13] for the notation used and
for further explanations.)
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