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ABSTRACT

Suppose that A € C™" is a block p-cyclic consistently ordered matrix, and let B
and S, denote, respectively, the block Jacobi and the block symmetric successive
overrelaxation (SSOR) iteration matrices associated with A. Neumaier and Varga
found [in the ( p(| B), ) plane] the exact convergence and divergence domains of the
SSOR method for the class of H-matrices. Hadjidimos and Neumann applied Rouché’s
theorem to the functional equation connecting the eigenvalue spectra o(B) and
a(8S,,) obtained by Varga, Niethammer, and Cai, and derived in the ( p(B), w) plane
the convergence domains for the SSOR method associated with p-cyclic consistently
ordered matrices, for any p > 3. In the present work it is further assumed that the
eigenvalues of BP are real of the same sign. Under this assumption the exact
convergence domains in the ( p(B), @) plane are derived in both the nonnegative and
the nonpositive cases for any p > 3.
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1. INTRODUCTION

Consider the linear system
Ax =D, (1.1)

where A € C™" and x,b € C", and suppose that A is written in the p X p
block form

A=D(I-L-U) (1.2)

with D being a p X p block diagonal invertible matrix and L and U being
strictly lower and strictly upper triangular matrices, respectively. Suppose also
that for the solution of (1.1)-(1.2) the symmetric successive overrelaxation
(SSOR) iterative method (see, e.g., [14,16, 1] is used. The SSOR method is
defined by

"D = (1 - wL) '[(1 - )] + 0U]x™ + o(I — wL) " 'b,
2D = (I~ wU) 7 '[(1 -~ 0)] + oL]x™ /2 + (I — wU) " 'b,
m=12,..., (13)
where x@ & C" is arbitrary and w € (0, 2) is the relaxation factor. The block

SSOR iteration matrix associated with A, relative to its block partitioning, is
given by

Su=(I - 0U)'[(I - @)I + oL](I = L) '[(I — @)I + oU].
(1.4)

Let B :== L + U be the block Jacobi matrix associated with A. If A is block
p-cyclic consistently ordered, then without loss of generality B may be
assumed to have the block form

0o 0 o0 - 0 B
B, 0 0 0 0

B=]|0 By 0 - 0 0 . (1.5)
0 0 0 B 0
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It is well known that the sets of eigenvalues u of B (or of BT) and A of S,
satisfy the functional equation obtained by Varga, Niethammer, and Cai [15],

[A - -0)] =aA+1-0)" @2 - 0)omr. (16)

It is noted that (1.6) generalized the corresponding relationship for p = 2
(see [4, 11D and was later generalized in [3] to cover the entire class of
p-cyclic, not necessarily consistently ordered matrices.

Recently, Hadjidimos and Neumann [7] have found in the (v, w) plane,
with v = p(B) and p(-) denoting spectral radius, the domain of convergence
for the SSOR method for block p-cyclic consistently ordered matrices A,
p = 3. Later the same authors generalized their research to the entire class of
p-cyclic matrices [8]. In the analyses in [7, 8] the application of Rouché’s
theorem (see, e.g., [10, 13]) led to the determination of the convergence
domains. The main result of [7] is given in Theorem 1.1, and a typical SSOR
convergence domain is depicted in Figure 1.

THEOREM 1.1. Let A be a nonsingular block p-cyclic consistently or-
dered matrix, p > 3. Let B and S, be the block Jacobi and the block SSOR
iteration matrices associated with A and given in (1.5) and (1.4) respectively.
Suppose the p(B) = v. Then p(S,) < 1 provided that (v, ) € R(p), where
R(p) is the region in the (v, w) plane defined by

0<w<l1l,0gsv<1=y(w),

1+ (1- o)
(2 - 0) PP = vy(@),

l<w<®d,0<<v<

R(p) = d<w<2,0<v
4 2 /2
[1+(1-0) 201 - w)g

< 2/p 2 1/2-1/p

o(2 — w) [l +(1-w) +2(1 - w)go]

= v3( @)
(1.7)
where

s A-jr)” jo P Crt 16
(= + )%+ (= — )% 2(p - 2) ’

(1.8)



216 A. HADJIDIMOS, D. NOUTSOS, AND M. TZOUMAS

.

-0

v=p(l)
Fic. 1. Convergence domain of SSOR for p-cyclic matrices (p = 5).
o= o(w) =i[-(p—2y* —py +2p -2,

1

1-w

y=y(o)=1-wt (1.9)
NoOTE. It is worth pointing out that on the right boundary of R(p) given

by the union of the three arcs v,(@), v,(®), and vy() of (1.7) the following
hold:

(i) When | ul = 1 = v (), a necessary and sufficient condition for A €
o(8,), 1Al = 1, is that A = 1 and P = 1. This property can be extended to
all w € (0, 2).
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(i) When | ul = v,(w), a necessary and sufficient condition for A €
a(8,), IAl=1, is that A= —1 and u? = —[1 + (1 — w)?]?/@2 -
w)’0*? ™%, a property that can also be extended to cover all w € 0, 2).

It is noted that as p — o, then, from (1.8), § = —27, @ — 27, and the
right boundary of R(p) in (1.7) tends to v(w) =[1 + (A — w)’]/w® (or
w=2/[1+@v— 1Y%], $< v < 1) (see dashed line in Figure 1). In this
limiting case R(p) describes the point SSOR convergence domain for the
entire class of H-matrices A found by Neumaier and Varga [12]. An open
question in [12] regarding convergence on the upper part of the right
boundary of the region was settled in [6]. We also note here that » in [12]
and [6] denotes v = p(| B)) and not v = p(B).

In this manuscript we obtain, in the (¥, w) plane, the exact SSOR
convergence domains for (block) p-cyclic consistently ordered matrices for
which o (B?) is (i) nonnegative and (ii) nonpositive, with o(-) denoting the
spectrum. However, by Theorem 1.1 and its note, we notice that we actually
seek the following:

(i) In the nonnegative case, the right boundary of the domain in question
for 1 < @ < 2. Obviously, this boundary must lie strictly to the right of
v(w) =[1+ ({1 - 0)?]/w?* and to the left of v (w) = 1.

(i) In the nonpositive case, the corresponding right boundary for 0 < @
< land & < < 2. This boundary must lie strictly to the right of v(w) =1
and to the left of v,(w), for 0 < w < 1, while for @ < w < 2 it must be
strictly to the right of ¥(w) = [1 + (1 — w)*]/* and to the left of v(w).

To derive the parts of the desired right boundaries, our study will have as
a starting point the functional equation (1.6), which, except for some trivial
cases, can be rewritten as

[/\ -(1- w)Z]p
(2 - w) oA +1- )"

uh = (1.10)

The basic idea is to use (1.10) and find, for either nonnegative or nonpositive
spectra o (BP), all possible pairs (1P, o) [or equivalently (v, ), with
v = | wll, where u? belongs to a real interval having as one of its endpoints
the point 0, such that |Al < 1. For this we set

AN=1 e ar=¢e? oelo,n], (1.11)
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and replace A in (1.10) by the expression in (1.11) to obtain

[e”’ -(1- w)z]p

2 - w)zwpem(em +1- a))]o_2 .

Fi=F(w,0) = (1.12)

In Section 2, after we identify our problem, a complete study of the
function F for each fixed w €(0,2) and for all 8 € [0, 7] is made. In
Sections 3 and 4 the application of the results obtained in Section 2 allows us
to determine the exact domains of convergence of the SSOR method in the
nonnegative and the nonpositive case, respectively. Finally, in Section 5 some
remarks are made, and some particular cases treated in the previous sections
are further investigated.

2. STUDY OF THE FUNCTION F IN (1.12)

2.1. Introduction

Before we begin with the study of the function F(w, 8), we shall identify
our problem.

Consider the two transformations below, which are inverse of each other:

1
y=y(0) =l-w+ ——  ©0cO\{1}, (21
2—y+yy*—4
d 2y . Yy E(2, +),
©= w(y) = : (2.2)
2—y—yy?—4
3 , ye(—w,—Z).

REMARK.  The function F and those to be defined are given in terms of
® because we are interested in domains in the (v, @) plane. However, use of
y = y(w) greatly simplifies our analysis.

The function F(w, 6) can be written explicitly as

F(w,0) =ReF +ilmF. (2.3)
Furthermore,
Re F(w,0) = 1 > 0, (2.4)
y?
ReF(w,7m) = — (2.5)

— <0
(y +2)(y—2)"
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Also all other values of 6 € (0, w), if any, such that Im F = 0 have to be
found.
Let 8% be the set of all 8 € [0, 7) such that

ImF(w,0) =0, ReF(w,0)>0. (2.6)
Let also 8~ be the set of all 8 € (0, ] such that
ImF(w,8) =0, ReF(w,0)<0. 2.7)

Then our problem is twofold. Specifically, for the nonnegative case, deter-
mine 8 € 8 such that

Re F(w, 0) is a minimum, (2.8)
and for the nonpositive case, determine 8 € 6~ such that
Re F( w, 6) is a maximum. (2.9).

In the subsequent analysis and for each fixed w € (0,2) \ {1} we find all
p such that besides the obvious solution 6 = 0 for the problem (2.6) [6 = 7
for (2.7)], there exists at least one more (0 #) 8 € 6% [(w #) 8 € 67] that
solves the problem (2.8) [(2.9)].

2.2. Study of F(w, 6)
Our analysis is greatly facilitated if we rewrite the function F(w, 6) in
(1.12) in the form below:

F=FF'?, (2.10)

where

¢’ — (1 - w)’
o(e®+1—-0)’

I

F, = F,(w,0): (2.12)
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Then we introduce the functions
a, =afw,0)=argF,, a; =ay(w, 0) = arg F,,
a=a(w,0) =argF=a + (p— 2)a,, (2.13)
r=r(w,0)=|Fl r,= ry(w, 8) =|Fl r:= r(w, ) =r1r2"—2,

and distinguish the two cases w € (0,1) and w € (1.2).

2.2.1 Case w € (0,1). From the expressions (2.10)-(2.13) and in view of
(2.1), it can be readily obtained that

y(y2—4)l/zsin0 (y* —2)cos 6 — 2

i _ P
N y? — 2 —2cos 9 ’ cos i y?—2 — 2cos 8

. (214)

) (y +2)"*sin 6
sin @y = — Y% e (2.15a)
(9> —2—2cos0)""(y + 2cos 0)

(y —2)1/2(y+ 1+ cos 6)
(y*>—2 - 2cos 0)1/2(y + 2cos 6)%

I

Ccos a, (2.15b)
1/2

y> — 2 — 2cos 6 y®?—2—2cos 0
. (2.16)

PTG -9 T ooy T 2o o)

(y* —2 — 2cos 0)p/2
. Ly —- (2.17)
(y = 2)""(y + 2)(y + 2cos 0)

Below, two important theorems are proved, where to simplify some
relationships we shall use the new relation A ~ B to denote that the
expressions A and B are of the same sign.

THEOREM 2.1.  For a fixed w € (0,1), a of (2.13) strictly increases with
0€[0,7] if we (w**, 1). On the other hand, if we€ (0, w**), then a
strictly increases with 6 € [0, 0,1 and strictly decreases with 6 € [6,, 7]
Moreover, a(w,0) = 0, a(w, ) = 7, while

o _ 2(p - 2)"*
(p+2)""+(p-2)"

w

(2.18)
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and

y2+p—2

m) € (0, 7). (2.19)

8, = arccos( -

Proof. Differentiating a of (2.13) w.r.t. 8 € [0, 7], we obtain

da _ (y*~49)"[(py +p—2)cos8+y>+p -2

2.20
70 (y* —2 —2cos 8)(y + 2cosh) (2.20)
Obviously,
da
%~(py+p—2)cosf)+yg+p—2, (2.21)
which gives
o 24 py +2 2) >0 oa 2.22
0 le, " Y TPy HAP - >0 —o  ~y(y—p). (229

From (2.20)~(2.22), for y > y** = p, da/3@ cannot vanish in (0, 7], while
for y < y**, da/ 36 does vanish for § = 6, given by (2.19). From (2.2) it is
found that y** = p corresponds to w** given by (2.18). Considering the
variation of the sign of da/d6, the assertions of the present theorem are
readily verified. |

THEOREM 2.2. For a fixed w € (0, 1), r in (2.13) strictly increases with
0 € [0, 7). Moreover,

y* .
(y+2)(y-2)""

r(w,0) =1, r(w,m) = (2.23)

Proof. The proof is easy (See Theorem 2.4 of [9]). [ ]
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222 Case w € (1,2). This time, in view of (2.1), y € (—o, —2),
Working in exactly the same way as in Section 2.2.1, we obtain almost
identical expressions to those in (2.14)~(2.17), which are given below:

y(y® - 4)1/2 sin 6 (y> = 2)cos 6 -2

y?—2—2cosf = o HT y> —2 — 2cos

sina;, =

. (2.24)

i (—y —2)"*sin 6
sinag, = — % T (2.25a)
(y>~2—2cos 0)""(—y — 2cosh)

—y+2)"*(y+1+cos 8
cos ay = ~ — (zy+2) (32 ) e (2.25b)
(y>—2—2cos0) " (—y — 2cos 9)
y> —2 — 2cos 0 (2.262)
r = , .26a
g+ 2)(y - 2)
(?/2—2—20030)1/2 (2.26b)
v+ 2y -2 '

(y>—2 — 2c0s60)""* (2.960)
= ) .
—y + 2)"(—y = 2)(—y — 2cos 6)"/>! ¢
Y ) 4

Again, statements corresponding to those in Section 2.2.1 can be proved.
More specifically:

THEOREM 2.3.  Suppose w € (1,2) is fixed. Then for p = 3,4 the func-
tion a in (2.13) strictly increases with 6 € [0, w]. For p =5, a strictly
increases with 6 € [0, w] for any w € (1, w*], while if w € [w*,?2), then a
strictly decreases for 6 € 0, 6,] and strictly increases for 6 € [8,, w]. One
has a(w,0) = 0 and a(w, 7) = 1. The value of 6, is given again by (2.19),
while

. 2p1/2 .
w _p1/2+(p—4)1/2. (2.27)
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Proof. We work in an analogous way to the proof of Theorem 2.1. Thus,
(2.21) and (2.22) are obtained. Because y < —2, the first expression in (2.22)
changes sign at y* = —(p — 2) provided p > 5. For p = 3,4, the first
expression in (2.22) is positive, implying that the function a strictly increases
with 6 € [0, 7). For p > 5, we have da/d0le-o > 0 for y < y*. Hence, a
strictly increases with 8 € [0, 7]. Since da/d0lg-¢ < O for y > y*, da/ 30
= 0 has a unique root 6, given by (2.19). Obviously, the monotonicity of the
function a in the two subintervals of w directly follows. Also w* in (2.27) is
obtained from (2.2) for y = y*. [ ]

THEOREM 2.4. Suppose w € (1,2) if fixed. Then r in (2.13) strictly
decreases for € [0, w] if w € (1, ®). If € [@, 2), then r strictly decreases
for 8 € [0, 8,] and strictly increases for 6 € [0, w]. Here & is given by

o 2-§+2)" . _p+(9p*—16p)”
(-i+27 (-7 ap-2
(2.28)
and 0, by
-2y +py —2(p—2
6, = arccos| — (p=2)y Zy (r=2 . (2.29)
Moreover § > y*.
NoTE. The values in (2.28) are the ones in (1.8), obtained in [7].
Proof. Differentiating r in (2.26), we obtain
ar
i —4cosf — (p — 2)(y® —2) — py. (2.30)

From (2.30), dr/36 > 0 if and only if 68 € (6,, 7), with 6, given by (2.29).

Since

i [ (PR Py —2Ap -2}
y—> 27 4

1

>

the existence of a unique 6, € (0, 7) is guaranteed if and only if

(p-yitpy—2Ap -2
4

-1,
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which, in turn, holds if and only if y > §, where § is given by (2.28). The
monotonicity of r in the intervals stated are consequences of the sign of
dr/ 38 in (2.30). Finally, it can be checked that § > y*. [ |

3. THE NONNEGATIVE CASE

From the analysis in Sections 1 and 2.1, to derive the right boundary of
the convergence domain one has to solve the problem (2.6), (2.8) for any
fixed w € (0, 2) (and any fixed p > 3). From [7], for @ € (0,1], 8 = 0 is the
only element of 6*. So the corresponding right boundary is given by

v(w)=1  ©c(01]. (3.1)

We concentrate then on w € (1, 2).

From Theorem 2.3, for p = 3,4, 6 = 0 is the only § € 6" satisfying
(2.8). Hence the right boundary in (3.1) is also the right boundary of the
convergence domain for all w € (1, 2), and the convergence domain R*( p),
p = 3,4, is the whole rectangle with vertices (0, 0), (1,0), (1,2), and (2,0),
except its bottom, right, and top sides. (Note: The result for p =3 was
known [5, 2].)

For p > 5, from Theorem 2.3 we have that for a fixed w € (1, @*) the
only solution to (2.6), (2.8) is 6 = 0. So the arc of the right boundary is given
by (3.1). Also, we have that for a fixed & € (0*, 2), a(w, 8) strictly decreases
in [0, 8,] and strictly increases in [6,, 7], with a(w,0) = 0, a(w, 7) = .
This implies that there is at least one value of 6 € (6,, 7) such that
6 € 6°\{0}. The question that arises is the following. Among all § € 6"\{0}
is there one that satisfies (2.8)?

For w € (w*, @] the answer can be given immediately by Theorem 2.4,
because r = |F(w, )| strictly decreases for 8 € [0, 7r]. Therefore among all
6 € 0"\{0} there will be one that will satisfy (2.8).

To proceed in the case of w € (®,2) we prove four lemmas which are
useful in the sequel.

LEMMA 3.1.  There exists a value of y =y € (§, —2) such that for all
y € (y, —2) there exists a 0, € (0,, 7) satisfying

(p—2)(y*+y—2)
4

_ ~(P—2)y2—(P2—1)y+2(P—2). (52)

cos 0, = cos 6, —
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Proof. From (3.2), cos 8, strictly increases with y € (§j, —2). Since
cos B,],- -2 = 1, 6, exists if and only if the rightmost expression in (3.2) is
greater than —1, or if and only if

_ —(p-1)—(9p®—28p+17)”"
y>y:= — .
2(p —2)

(3.3)

It can be readily checked that y € (§,2) and that 6, € (6,, ), which
completes the proof. ]

LEMMA 3.2. For 5 < p < 24, one has ol w, 8,) > 0 fordlly € (y, —2).

Proof. By using (3.2) in (2.24), (2.25) we obtain

cos o, = 2-9)"[(p-2)y - (p- 1] 3.4)

2p -1 (p -2y -1)

and

oS ay| = (P =9y’ +(p-3)y*+2Ap -y -2Ap-1
2(p -y - D ’

(3.5)
respectively. Differentiating (3.4), (3.5) w.r.t. y, we have
J 2
5y (s ailo-0.) ~y[=2(p = 2)y* + (4p ~ 9y ~ 2(p ~ 3] >0
(3.6)
and
I 2
g (s azlo=0,) ~ =(p = 2)y* + (2p =5y ~ (p =5) <0, (3.7)

with the inequalities holding for all p > 5. The inequalities (3.6), (3.7)
together with cos a,/g-, > 0 and cos a,]g- ¢, < 0 imply that both a(w, 6,)
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and a,(w, 8,) are strictly decreasing functions of y. So is a(w, 0,). It can be
checked that for p > 5 the largest value of p giving the smallest positive
value of a(w, 6,), and corresponding to y = —2, which is a2, 6,) = 0.0206,
is p =24 n

LEMMA 3.3.  The function r(w, 8,) is given by

(p— D" (y—-1)

r(w,0,) = — TR (3.8)
and is a strictly increasing function of y € (y, —2).
Proof. The proof is easy (see Lemma 3.3 of [9]). [}
LEMMA 3.4. The function F(w, 7) is given by
NP
Flo,7) = — (Z9) (3.9)

2-9" ' (-y-2)
and strictly decreases for all y € [§, —2) with lim,_, _,- Flo, 7) = —.
Proof. The proof is easy (see Lemma 3.4 of [9]). [ |

From Theorem 2.4, for a fixed w € (, 2), r(w, 6) strictly decreases for 6
in [0, 6,] and strictly increases in [6,, 7]. Its maximum value is then attained
at either 0 or 7. So, if (o, 7) < 1[= r(w, 0)], then r(w, 8) < 1, 8 € (0, 7].
Since, by Lemma 3.4, r(w, ) [= —F(w, 7)] strictly increases with y €
(4, —2], then r(w,7) <1 for all y € (§, ), if r(®, 7) < 1, where @ is
the value of @ € (1, 2) that gives y. As can be checked, r(®, w) < 1 for all
5 < p < 24. This implies that there is a value of 0§ € 6"\{0} that satisfies
(2.6) and (2.8) for all y € (g, 7).

For y € (g, —2), from Lemma 3.2, the real positive value of F(w, 8)
corresponds to a 6 € (0, 6,]. Thus if r(w, 6,) <1 then r(w, §) <1 for all
6 € (0, 8, ]. Since, from Lemma 3.3, r(w, ,) increases w.r.t. y, then (2, 6,)
< 1 will imply r(w, 6,) < 1 for all y € (7, —2). By direct computation, it
can be verified that the values r(®, ) and r(2, 6,) are indeed less than 1 for
all5 < p <24
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The analysis so far effectively shows that for any 5 < p < 24 and for each
o € (0*,2) there exists a value of § € 8"\{0} that satisfies (2.8). For this

value of 8, F(w, 8) < 1. Consequently, the right boundary of the conver-
gence domain will be given by an expression of the form

vy = [F(w,0)]"?, oc(o*?2). (3.10)

A typical convergence domain for 5 < p < 24 is illustrated in Figure 2.

£

F1G. 2. Nonnegative case (p > 5).
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For p > 25 we study the sequences of a,(&, 8,), az(lf) 8,), and a(d, 6,),
where & and 6, are given by (2.28) and (2.19) with y = §, as functions of p.
It can be found that a(®, 00)|p o5 = —7.4578 < —27. This means that
there are more than one real nonnegative value of F(w, 8) for 8 € (0, 7),
with at least one of them less than 1. This is because r(w, 8) strictly
decreases in (0, ,) and 6, > 6,. So for 26 < p < 30 we have exactly the
same conclusion as before, since a(&, 6 o) strictly decreases as a function of
p- For p = 31, we can find that (p — 2)a2(w BO)I,, 31 = —9.5058 < -3,
and since 0 <a(w 6 olp=a1 < 7, we have a(®, 00)|p a1 = af@, 6 Mp=31
+(p — Daa, 90)|p 3 < —27. Therefore we reach the same conclusion.
For any p > 31, we note that a,(&, 6,) strictly decreases, so the same
conclusion follows. Thus, the right boundary for w € (w*,2) is given by
(3.10).

We summarize the analysis in this section in the following statement.

THEOREM 3.5. For p = 3,4, the right boundary of the convergence
domain R*( p) is given by

v, =v(w) =1, w€(0,2). (3.11)
For p > 5, it is given by the union of the two arcs v, and v}, where
v, =v(w)=1, &0, o], (3.12)
and
v, = vi(w) = [F(w,0)]"”, oc(0*,2), (3.13)

with 6 € °\{0} being the solution to (2.8).

4. THE NONPOSITIVE CASE

As in Section 3, we try to find if a 8 € 67 \{7} exists satisfying (2.9).
From [7], for any w € [1, @], 8 = 7 is the only element of 67. So the right
boundary of the convergence domain is

1+ (1~ w) .
vo(w) = )2/pw2 2y we [1, 8] (4.1)

(2
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By Theorem 2.1, for any w € (w**,1) the only real nonpositive value of
F(w, 8) is F(w, 7). This is because a(w, 6) strictly increases. Therefore the
right boundary will be given again by

1+(1-w)

2 - w)Z/pwz_z/” '

vy( @) = w € [0**,1]. (4.2)

To proceed, for a fixed w € (0, ®**), we recall from Theorem 2.1 that
there exists a 6, € [0, 7] corresponding to the maximum value of a(w, ) >
. So there will exist a 6 € (0, 6,] which will satisfy (2.7),(2.9). Since, by
Theorem 2.2, r(w, 8) strictly increases with 6, it will be F(w, 7) < F(w, 6)
< 0. In case there are more than one 6 € 67\{w} satisfying (2.9), the
smallest one, let it be 6,,, will give the right boundary. In other words,

Vi(w) = [-F(w,6,)]"", o€ (0, o**). (4.3)

For w > 1 the case w € (&, 2) is to be studied. The two lemmas below
facilitate the analysis.

LEMMA 4.1. For all 11 <p <30, afw, 8,) is a strictly decreasing
function of y € [§j, —2), where 6, and § are given by (2.19) and (2.28),
respectively. Moreover

[y(y—2)(P—y)(y+p—2)]l/2_

(4.4)
y>— 2y +p

tan a,( w, 8,) =

Proof. See Lemma 4.1 of [9]. ]

LEMMA 4.2. Forall p > 3, ay(w, 0,) is a strictly decreasing function of
y for all y € [§ — 2). Moreover,

_ o2
tan a,( w, 6,) = — [p =)y +p 23}2 . (4.5)

(p—D(y* - 2y)

Proof. See Lemma 4.2 of [9]. |
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One of our main results is given in the following statement.

THEOREM 4.3.

() Forany 3<p <14 anda fixed o € (@, 2) there exists a unique real
negative value of F(w, 0) satisfying (2.7) and corresponding to 6 = 1r.

(i) Forp > 15, there exists a § such that for any fixed y €[§, —2) there
is at least one real negative value of F(w, 0) + Fw, 7).

Proof. (i): For any 3 < p < 11, by virtue of Lemma 4.2,

V2(p+2)"(p—4)?
4p-—-1)

ay(w, 8,) > lim a,(w,0,) = arctan| —
y—>—27
(4.6)

By direct computation it can be obtained that (p — 2lim g —2- aw, 6p) >
— 7. Since a,(w, 6,) > 0, we have a(w, 6,) > —r, implying that there is no
value of 6 other than 8 = 7 for which (2.7) holds true. For p =12,13,14,
using Lemmas 4.1 and 4.2, it can be obtained computationally that

22 (p +2)"*(p - 4)'*
p+8

min a( w, 0,) = arctan(

/2, (172
+(p—2)arctan(—@(p+2) (r=9 )>-7r.

4(p-1)

In other words, the same conclusion as before holds.

(ii): As in the analysis of the nonnegative case, we study the sequences of
values a,(®, 6y), ay)(d, 8,), and a(, §,) corresponding to §, given by
(2.28), as functions of p. From Lemmas 4.1 and 4.2, al(é‘),AOO) is a strictly
decreasing function of p for 11 < p < 30, while a,(®, 6,) is a strictly
decreasing function for all p. This is because, § strictly increases with p and
lim p—o= Y = —2. Therefore a(®, 0,), as a function of p, strictly decreases
for 11 < p < 30. Computationally, it can be found out that

a(&,8y)lp-15 = —2.985 > —7 > a®, &, )l,-16 = —3311. (4.7)
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This result implies that for all 16 < p < 30 and for all y € [§, —2) it will
hold that a(w, 8,) < — . Hence, there exists § € (y*, §] such that @D
will be satisfied for moreAthan one 0 € 6~ for any fixed y € [Q —2). On
the other hand, a\(&, 6,)l,53 € (0, 77), while (p — 2a (@, 8))|,-21 =
-6.090 > —27 > (p — Day(d, 8),-22 = —6.432. Therefore
a(@, By)l, 5 25 < — 7. Consequently the same conclusion as before holds for
any p > 30. For p =15, it can be checked that min aw, 0,) < —,
meaning that there exists 7 € (4, —92) such that there are more than one
6 € 6 foranyfixed y € [7, —2). This completes our proof. [ |

From Theorem 4.3 (i) it is concluded that the right boundary for
3 < p < 14 and for all w € (1, 2) will be given by the formula (4.1). A typical
region of convergence is illustrated in Figure 3.

For p > 16 and for a fixed y € [4, ], Theorem 2.4 states that the
largest real negative value of F(w, 8) is F(w, m) = —r(w, 7). From (2.26)
this value is given by

(—y)"
@-y)" " (-y-2)

Flo,m) = - (4.8)

Differentiating the above expression w.r.t. y, it can be proved that it is a
strictly decreasing function for all y > —2p/(p — 2). Since § > —2p/(p
— 9), it is concluded that F(w, m) strictly decreases for y € [, —92), with
lim, , _,- F(w, ) = —o. Based on continuity arguments, we can say that
the above value, F(w, 7), must be the largest one in an interval of y whose
right endpoint ' > §. Then it is concluded that for y € (y', —2) the largest
real negative value F(w, 0) satisfying (2.9) will become greater than F(w, 7).

Summarizing the conclusions so far, we have that for y <y’ the right
boundary of the convergence domain will be given by v,(w) of (4.1), while
for y > y' there will exist a right boundary, other than v,(w), corresponding
to the solution of (2.7), (2.9).

In the previous analysis the case p = 15 was not covered. This is done
using the lemma below.

LEMMA 4.4. The function r(w, 68,) which is given by

pr’® (—y)\"*
r(w, 8,) = (p_2)p/2—1(2_y) (1-y) (4.9)

is a strictly decreasing function w.rt. y € (y*, —2).
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9 . N
1‘5 1\
! -‘\
0.3 4\
-0 \\I T T T v
0 0.2 0.1 0.6 0.8 1
FIc. 3. Nonpositive case (3 < p < 14).

Proof. A direct substitution of (2.19) in (2.26) yields (4.9). Since both
~y/(2 — y)and 1 — y are positive and strictly decreasing functions of y, so
is r(w, 6,). u

For p =15, it is found computationally that for y, = —2.0959 and
ys = —2.0949

a(w,, 8,) = —3.1406 > —7 > a( w,, 6,) = —3.1421.
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On the other hand, we can find out that

r(w,, 8,) = 0.65519,  r(w,,6,) = 0.65508,

r(w,, m) = 0.431965, r(w,, m) = 0.432354. (4.10)

Since r(w, 6,) strictly decreases while r(w, m) strictly increases with y, it
is implied from (4.10) that there will be a § € (—2.0959, —2.0949) such
that F(&, 0,) € (—0.65519, —0.65508) and F(&, 7) € (—0.431965,
—0.432354). Consequently, F(&, 8,) < F(®, 7). the rest of the argumenta-
tion is that of the case p > 16, implying that for p = 15 exactly the same
conclusion holds.

Therefore for all p > 15 and for any w € (&', 2) the right boundary will
be given by an expression of the form

vi(w) = [-F(w,0)]"", (4.11)

with 8 € 8~ \{7} being the solution to (2.9).
A typical convergence domain for p > 15 is illustrated in Figure 4.

5. FINAL REMARKS AND PARTICULAR CASES

The analysis so far has allowed us to determine the exact convergence
domains for the block SSOR method when the corresponding block Jacobi
matrix B (or its transpose) is weakly cyclic of index p > 3. This was done in
the two cases of o(BP) nonnegative or nonpositive. It is recalled that except
for those parts of the arcs of the right boundaries of the convergence domains
that were known (see [7]) or are extensions of the known ones, the remaining
parts can be determined through (2.6), (2.8) [or (2.7), (2.9)]. It is noted that
analytic expressions for cos 8, 6 € (0, 7r), can only be found of p = 3, 4, 5,
and 6. In all other nontrivial cases, for each p > 7 and each w, cos 0 has to
be found computationally. Consequently, the same holds true for the corre-
sponding parts of the right boundaries.

In what follows we work out the cases p = 3 and 4 for o (B P) nonposi-
tive, since the corresponding nonnegative cases have already been examined
in Section 3.
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Fic. 4. Nonpositive case (p > 15).

p = 3. From (2.7) and (2.9) by using (2.1) we can take

~1+5
2

y’ —y® — 2y =2
2(y* -y —1)

w € (0, wf™), f*=

cos 8 = —

(5.1)
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(the golden section number). So, using (5.1) in (2.3) and then in (2.1), it can
be obtained that

[(1-w) +1]2 - w)”
(1= 0)°[(1 - )’ + 1]

vo(w) = o€ (0, wi*). (5.2)

It is interesting to point out that lim,_, o+ ¥5(w) = 2. It is noted that the
convergence domain R™(3) is the only convergence domain whose arc of the

right boundary for w € (0, w}*) lies strictly to the right of the line v =

vs{w3*) and not to the left of it as is illustrated in Figure 3.

p = 4. This time it is found that

2
-y +2y+2
6= —_—, S5 (), s g = -1 3. (53
COs ( ) w ( a)4') w¥* + v ( )

From (5.3) and (2.3), (2.1) it can be obtained that

[(1-w)®+ 1]
(1- )1 - w) - (1-w)+1]

Vy(w) = 71 w € (0, wf*).

(5.4)

On the other hand we have lim, _, ,+ vi(w) = V2.

Finally, we report that we have worked out the case p = 5, computation-
ally, by using Sturm sequences [10]. The results obtained confirm the
theoretical ones in Section 4.
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