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Abstract .

Linear systems whose associated block Jacobi iteration matrix B is weakly cyclic gen-
erated by the cyclic permutation a = (a1, 0. 2, . . . , 0",) in the spirit of Li and Varga are
considered . Regions of convergence for the corresponding block p-cyclic SOR method
are derived and the exact convergence domains for real spectra, a(Br), of the same
sign are obtained. Moreover, analytical expressions for two special cases for p = 5 are
given and numerical results are presented confirming the theory developed . The tools
used for this work are mainly from complex analysis and extensive use of (asteroidal)
hypocycloids in the complex plane is made to produce our results .
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1 Introduction and preliminaries .

Suppose that A E W" 1 ° ' is partitioned in a p x p block form and its diago-
nal blocks Aii, i = 1(1)p, are square and nonsingular . Suppose also that the
associated block Jacobi iteration matrix

(1-1)

	

B:= I - D-'A,

with D := diag(Aii, A22, . . . , App), is weakly cyclic generated by the cyclic per-
mutation a = (a + , a2 , . . . , ap ) in the spirit of Li and Varga [16] . According to
their definition: "The p x p block matrix B is a weakly cyclic matrix generated
by the cyclic permutation a = (91, a2, . . . , ap ) of the integers { 1, 2, - . . , p} iff

( 1-2 )

	

Brjc;+l 4t 0, j = 1(1)p, ap+1 = 01 1,

and

(1-3)

	

Biz = 0 otherwise ."
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We note here that the block Jacobi matrices associated with a class of block
p-cyclic consistently ordered matrices [27, 31, 1] are generated, according to
the above definition, by a = (p, p - 1, p - 2, . . .., 1while those of a class of
the (q, p - q)-generalized consistently ordered matrices (or (q, p - q)-GCO) (see
[31]) are generated by a = (a l , a2 ) . . . . or,) with 1 < aj < p, j = 1(1)p, and
u.7+ 1 = p - q + aj or a.,+1 = o j - q. So, the definition presented above is the
most general one for the family of block p-cyclic matrices which have only p
nonidentically zero blocks and diagonal blocks square nullmatrices . Obviously,
the block graph of the block matrix B is a cycle .

For the solution of the nonsingular linear system

(1 .4)

	

Ax=b

the Successive Overrelaxation (SOR) iterative method

(1 .5)

	

x('"'-+1) = ,C,,,x(,n)
+ Cw ,

	

m = 0, 1, 2 . . . .

is considered, where x(° ) E a" is arbitrary, w is the relaxation factor and

~~

	

(I - wL) -1 [(1 - w)I + wU],
c,, := w(I - wL) -1D- 'b

with L and U being the strictly lower and the strictly upper triangular compo-
nents of the Jacobi matrix B, respectively.

In case A belongs to the family of matrices mentioned previously the sets of the
eigenvalues p E a(B) and A E o-( .C,) are connected via the functional equation

(1 .7) (A+ w - 1)P = WPiiPA 1 SL I .

Equation (1.7) is a special case of the functional equation

[~-(1-w)(1-CJ)]P = A k [Aw+w-Ww]1CLi k X
(1 .$)

[.via + w - wc:~] I~u I-k (w + C~ - ww)ZkpP

which connects the eigenvalues u of B and A of the Unsymmetric Successive
Overrelaxation (USSOR) iteration operator T,,,w . Equation (1 .8) is due to Li
and Varga [16] . In (1 .8), I(LI, 4(ui and k are integers which are well-defined in
[16] (see also [23]) . More specifically, from the definitions in [16], ICL3 and 1(uj
are the numbers of the nonzero blocks in the block triangular matrices L and
U while k is the number of nonzero blocks of the matrix product LU. Note
that (1.7) is derived from (1 .8) for is = 0, with w being the underrelaxation
parameter .

The functional equation (1 .7) generalizes the one for (q, p - q)-GCO matrices
of Verner and Bernal [28], which was first mentioned by Varga (see [27]) . It is
derived from (1 .7) for I (L I = p - q . In this work we study equation (1 .7), where,
without loss of generality, we assume that ~(L~ = p - q and that g.c .d .(p, q) = 1 .
After the most recent work on the best block p-cyclic repartitioning by

Markham, Neumann and Plemmons [17], Pierce, Hadjidimos and Plemmons [24],
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Eiermann, Niethammer and Ruttan [3] and Galanis and Hadjidimos [4] and the
work on the solution of large scale systems arising in queuing network problems
in Markov analysis, which plays an increasing role in computer, communication
and transportation systems, by Kontovasilis, Plemmons and Stewart [14] and
Hadjidimos and Plemmons [12, 13] the study of the convergence properties of
the p-cyclic SOR has become more demanding . More specifically for the study
of the aforementioned convergence properties, in the case we are interested in,
information about the spectrum of B, a(B), may enable us to answer one or
more of the following questions :

(i) What is the largest region, in the complex plane, containing a (B) for which
(1 .4) converges?

(ii) For what pairs (p(B), w) does (1.4) converge? and

(iii) What is the (optimal) value of w that minimizes p(,C,) for a given p(B)?

Complete answers to the three questions above have only been given for very
particular classes of p-cyclic matrices . Answers to question (i) have been given
for the class of block p-cyclic consistently ordered matrices, among others, by
Young [30], (see also [31]), Varga [26], (see also [27]), Niethammer and Varga
[20], Galanis, Hadjidimos, and Noutsos [5, 6, 7], Wild and Niethammer [29],
Eiermann, Niethammer, and Ruttan [3], Kredell [15], Niethammer [19], Konto-
vasilis, Plemmons, and Stewart [14], Noutsos [22], and Hadjidimos and Plem-
mons [13] . Answers to question (ii) have again been given for the block p-cyclic
consistently ordered matrices by many researchers (see, e.g ., [30], [10], for non-
negative spectra a(BP), as well as [15, 19, 21, 5, 6, 7, 29], for nonpositive spectra
a(Br) and [10, 29, 22] for both nonnegative and nonpositive spectra) . For block
(q, p - q)-GCO matrices q zA 1 by Nichols and Fox [18] for nonnegative spectra,
by Galanis, Hadjidimos, Noutsos and Tzoumas [8] for nonpositive spectra in the
case of (p - 1,1)-GCO matrices and by Hadjidimos, Noutsos and Tzoumas [11]
for both cases . Finally, answers to question (iii) for the block p-cyclic consis-
tently ordered matrices have been given in [30, 15, 19], for p = 2, in [21] for
p = 3, and in [26, 7, 29], and other works, for any p .

In the present work we shall try to give an answer to the first two questions
raised for the general case of the family of matrices A considered in the beginning .
We organize our work as follows . In Section 2 the answer to question (i) is given,
where among the well-known hypocycloidal curves used in the analysis asteroidal
ones are also considered . In Section 3 we study the domains of convergence in
the (p(B), w)-plane. Finally, in Section 4 we study in detail the particular cases
(p, q) = (5,2) and (5, 3) . As will be seen some new results are obtained and some
known ones are recovered. We conclude our study by presenting and working out
numerical examples from Markov chain analysis . As will be seen the numerical
data obtained confirm the theoretical findings of previous works as well as of the
present one .
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2 Hypocycloids and regions of convergence .

We begin our analysis with the functional eigenvalue relationship (1 .7) by
replacing IKL I, with p - q, and we consider that w E (1, 2) . The analysis for the
case w E (0, 1) is similar. Using the transformation

and substituting in (1 .7) we obtain

(2 .2)

Our objective is to find the smallest region in the complex plane containing the
eigenvalues p E a(B) and which has an image, through the mapping (2.2), in
the exterior of the circle 8D,. (where D,, := {0 : 0 = geio , 71 > 0, 0 E [0, 27r)},

or, equivalently, in the interior of 8D1I ,, since A = l e-Z B . Then the spectral

radius of the SOR iteration matrix, p(C ), will be less than or equal to 1, with
equality holding iff there is an eigenvalue of B on the boundary of the region to
be found .
Extracting pth roots of both sides of (2.2) we obtain

(2.3)

(1 - (1 - W)O)P = Wp f tp0 q .

1 - (1 -W)q =W/l(`1'q)i/p = Wttolp

and the corresponding region for p is defined by the transformation

(

	

1-(1-w)t~
2.4)

	

z :_	
Woglp

To study the mapping in (2.4) we use the transformation

(2.5)

	

:_ oq/p

and then (2.4) becomes

1 - (1 -W)(Ple
(2.6)

	

z := z(C) =	
W(

From (2.5) we have that the closed disk D,,, 101 < 71, is mapped onto the sectors

Sk = {PgJpei(2k ,r+s)glp : p E [0, 77], 9 E [0, 27r)},

	

k = 0(1)p - 1

or, equivalently, onto

(2.7) Sk = {pq/Pe i( 2 +a) : p E [0,n], 9 E [0, 2qx )},

	

k = 0(1)p- 1 .

Consequently, we have to study the transformation (2 .6) for each one of the
2kq~ ..

above sectors . However, since from (2.6), if

	

Cez P , k = 1(1)p- 1, then for

the images z' of (' and_z of ( there holds z' = ze-22D , it suffices to study (2 .6)
for So only. Let then S o be the associated closed sector, i .e .,
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(2.8)

	

So = {Pq/reie
: p E [0,11], 0 E [ 0 , 2p~]}

Obviously, the boundary of So is the closed curve

(2 .9) aSo = {p : p E [0,17]} U {pe z2 P r : p E [0,77]}
U {geie : 8 E [0,

2q
]} .

The image of 8S0 by means of (2.6) is a closed curve that consists of the union
of the images of the three segments in (2.9) . Since the second line segment in
(2.9) is obtained from the first one by a rotation about the origin through an
angle Z

P
it suffices to study the first line segment and the third curved one . For

this we have :

LEMMA 2 .1 . The image of the line segment {p : p E [0,r7]} via (2.6) is
an infinite line segment on the positive real semiaxis . Moreover, if q < Tl :_

q/p
[(p-q)(w_1)]

	

the mapping in question is a 1 - 1 onto the line segment
r1-(1-W)~,P4

' 00] . On the other hand if 77 > r7 the image is the line segmentL

	

W~

[1-(1-WW/q, oo] and the corresponding mapping is not a 1 - 1 one .W 7~

PROOF: Differentiating (2 .6), for = p, with respect to (wrt) p, it is readily
checked that ap < 0 for p < i, ap = 0 at p = 7], and aP > 0 for p > il . Therefore,
for p increasing continuously from 0 to r7 < r7 the corresponding images decrease

continuously from oo to 1- ( 1
-- ) 17 ' /4

and the mapping is 1-1. On the other hand,

for 77 > ri the images of p, increasing from 0 to n, decrease from oo to I-(1-W)npi4
W97

and as p keeps on increasing up to r7, its images increase from 1-(1	
w~wp/9 to

1-(1-W)7]P~4 Hence the mapping is not 1 - 1 . 0

To study the image of the third curved segment of (2.9) via (2.6) we consider
the parametric equations of the curve . These are given by

(210)
x = Rez - W,n9 p [ cosh - (1 -w)77cos ((%q)0)]

	

0 E [0
2g7r ] .

y=lmz = -W~Q~ P [sin0+(1-w)r7sin((~Qq)o)]

	

, p

As is known equations (2.10) define a hypocycloidal curve . Equations (2 .10) can
be rewritten as follows

(2.11)

	

x = (R - r) cos t + h cos ((R r)t)

	

t E [0, 27r],y = (R - r) sin t - h sin ((r )t)
where R and r are the radii of the large and of the small circle, respectively, and
h is the distance from the center of the small circle of the fixed point on the disk
of the small circle when this circle rolls in the interior of the large one without
sliding. From (2 .10) and (2 .11) it becomes clear that

473
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(2.12)

	

R-r=
1

	

h- (w-1 rlP-4

	

R-r - p-q .

wrtq

	

W

	

r

	

q

A study of the transformation (2 .6) using these hypocycloidal curves in a similar
way as in [29] follows .

LEMMA 2.2 . The image of the arc {i)e io : 0 E [0, 2p"]} via (2.6) is the

hypocycloidal curve (2.10) . The mapping is I - 1 and the curve obtained is

symmetric with axis of symmetry the straight line {pe_
zP : p E IR} .

PROOF : Using (2.6) it is easy to prove that the images of two symmetric

points with respect to the axis {pe'P : p e RI are symmetric points wrt
peep.

To prove that the mapping is 1 - 1, consider two distinct points geze', ge2°2

with 01, 02 E (0, 2p" ) . Let that the images of these two points coincide . From

(2.10), after some operations take place, we obtain that sin(2q (01 + 02 )) = 0 or

01 + 02 =
2kP" . Since 01 , 02 E (0, ZP' ), k = 1. Also, since 01, 02 are distinct it is

implied that the images are distinct and symmetric wrt the axis {pezq", p E 1R} .
This conclusion contradicts our assumption that the images of the two points
coincide. Consequently, the mapping is 1 - 1 .

	

CJ

We distinguish the two cases pq < 1 and Pqq > 1 . The first inequality

implies that the number of nonidentically zero blocks I(LI of the matrix L is less
than that of U, 1(ul, while in the second case the situation is reversed . On the
other hand, from (2 .12), P=q < 1 implies R < 2r while P=q > 1 implies R > 2r .

After the analysis done so far we give in Figure 2.1 the various shapes of the
corresponding hypocycloidal arcs in all possible cases .

Based on the previous analysis the following theorem can be stated and proved .

THEOREM 2 .3 . The sector So := So \ {p : p E (0, ,q]} is mapped via (2.6)

onto the set of points Ro = z(S'c) which is an open sector of the complex plane

described by a semiline by a rotation about the origin through an angle of - 2 "
P

and has as a boundary the image of the curve 8So via (2 .6). Furthermore, the

mapping in question is 1 - 1 .

PROOF: First we define the set Ro := z(S o ) and note that So, from which
R'o was defined, is nothing but So from which the boundary line segments are
excluded. This is done because, in view of Lemma 2 .1, the mapping for g > rt
is not 1 - 1 . Consider then the point (o = poe 'A ) E So . This point can be
defined as the intersection of the semiline {pez 9o : p > 0} and of the arc {p oe 2 B

0 E (0, ZpBy virtue of Lemma 2.2 we have that the mapping of the arc in
question is a 1- I one . To find out that the mapping of the semiline in question
is also 1 - 1 we assume that it is not . This means that there are at least two
distinct points of it that have the same image . Let these points be Sl = p i e2$o

and b2 = p2 e'eo . Equating the expressions for their images, via (2.6), we have
that

(2.13) (

	

/q - P
i1q) ip1g0o

P2 - P1= w-1)(P,2

	

e



Ib:	q __
P - 9
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W-1)7)P

(w 1) TIP
IIa:I<((il-1) 1IP

1) 11P <

/~

P - 4\

P=1<
p- q \

/'
/.l-

<1<
P - 9

/~

IIe: (w-I)TIP<

	

q
P - 9

1

P-9

1<(w-

(~-1)

(w-0~

Figure 2.1 : Hypocycloidal arcs in all possible cases .

If p 1 zA P2, in (2.13), then we will have equality between a real and a complex
number unless 80 = P in which case the two members of (2 .13) will be real of

opposite signs. Hence (2.13) holds iff p 1 = P2 implying that the mapping is 1-1 .
We have then proved that the image of the point (o is the unique intersection
point zo of the images of the two lines considered . Since this holds for any point
(o E So the mapping is 1 - 1. Moreover, it is readily checked that Ro is the left-
hand-side part of the complex plane wrt the direction of the arrows, as shown
in Figure 2 .1, and the proof is complete .

	

11

It is also immediately seen, using induction, that the conclusions of Theorem
2.3 hold also for all sectors Sk, k = 0(1)p - 1, in (2.7) . This is because for the

mappings Rk := z(S~), k = 0(1)p - 1, there holds Rk = Rk- 1 e-22P~,

	

k =
1(1)p - 1, or

2kq,r

(2.14)

	

Rk = Roe
Z	

p ,

	

k = l(1)p - 1 .

From the analysis so far it is also clear that since the disk D0"1', I(k <_ rl 4 lp,
is the union of the sectors Sk, k = 0(1)p - 1, it will be mapped through (2.6)

P-1

	

p-1

	

p-1
into U Rk . Consequently, all the points belonging to (URk) = n Rk will

k=0

	

k=0

	

k=0
be images only of points belonging to the exterior of the disk D0g 1p .
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Based on the analysis so far the theorem below can be stated and proved .

THEOREM 2 .4 . Let the Jacobi matrix B associated with the linear system
(2.1) be block weakly cyclic of index p generated by the cyclic permutation a =

191,0`21 • -,up} with IbL I = p - q . Then for the spectral radius of the corre-

sponding SOR iteration matrix there holds p(GW ) < iff 7(B) C nk=o Rk, with

Rk being defined in (2.14), Ro = z(So ), and z and So in (2.6) and (2.7), re-

spectively. Moreover, p(G,,,) _

	

iff at least one element of a(B) lies on the
17

boundary of npk=o k-1 R'

PROOF: If all the eigenvalues of B belong to the region defined above then
from the successive transformations (2.1), (2 .5), (2 .6) and the analysis done
so far it follows that all the eigenvalues of G, belong to the closed disk D 1 1 ',

with radius -11 . Conversely, if there exists an eigenvalue µ E o,(B) such that
77

µ E Uk=o Rk, then there will exist i E {0,1, 2, . . . ,p - 1} such that p E R, and
from the previous transformations there exists A E a(1. ) such that JAI > and
the proof is complete .

REMARK : We simply remark that in view of Theorem 2 .4 and the various
cases illustrated in Figure 2 .1 the region of convergence p-1 R' is the emptynk=o k
set 0 in the cases la, Ib, Ic, Id, Ma and IIb. So, the cases to be studied in the
sequel are the remaining ones of Figure 2.1 or, equivalently, the ones where

(2 .15)

	

rt<~=
1

(w - 1)P

The regions of convergence for the cases (p, q) = ( 5, 2) and (5, 3) are illustrated
in Figures 2 .2 and 2.3, respectively.

Before we close this section we mention that in the case where w E (0, 1) we
begin with the transformation (2.6) and follow an analysis analogous to the one
in [29], the corresponding regions of convergence can be determined from those
obtained for w E (1,2) by a rotation about the origin through an angle 9 7r .
Analogous conclusions to the ones obtained so far can be drawn which are not
presented here .

3 Domains of convergence in the (p(B), w)-plane.

From the previous analysis it has become obvious that the region of conver-
gence remains the same by a rotation about the origin through an angle it orp
2P 7r, k = 0(1)p - 1 . Since g.c.d.(p,q) = 1, the endpoints of the arcs defining the
region of convergence will be p distinct points of a circle separating the circle into
p equal consecutive arcs . Hence, rotation of the region of convergence through
an angle 2p", k = 0(1)p - 1, about the origin will give the same region .

In what follows we study the behavior of the length r of the polar radius from
the origin to a point of the boundary of the region of convergence as a function
of the polar angle 0 . Thus, from the parametric equations (2 .10) we have
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(b)

Figure 2 .2 : Region of convergence for the case (p, q) = ( 5, 2) .

(3.1)r := lz(()l =
wr7pI9

[1 + (1 - w) 2 T, 2 - 2(1 -W) ,7 cos p9]I/2, w E (1, 2) .

Obviously, r as a function of 0 is a decreasing one in [0, P7r] and an increasing
q 2qone in [Pir,

p
7r] . So, the smallest value of r, rmi,,,, is assumed for 0 =

P and is
given by

(3.2)

	

rmim =
W77 PIg [1 + (1

- w)r7] .

Because of the cyclic nature of the boundary (curve) of the region of convergence

Figure 2.3 : Regions of convergence for the case (p, q) = ( 5, 3) .
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all points of the boundary that have polar angles 0 = (2kP 1)g Kr, k = O(1)p- 1,
will have polar radii equal to These arcs correspond to one of the sets
of arcs { Zp", k = 0(1)p - 1} or { 2kP 1 7r, k = 0(1)p - 1}. To the other one there
will correspond the points of the region's boundary with the maximum absolute
value, let it be rn,, ar . To find this value we have to find the point of intersection
of the boundary curve with the real axis . rmin will be the polar radius of the
intersection point with the positive semiaxis iff the difference 0 - gir/p is an
integral multiple of 2n/p, or, equivalently, if q is even otherwise the polar radius
on the positive semiaxis will be r,nay . Similarly, rn,in will correspond to the
intersection of the boundary curve with the negative semiaxis if it - P is an

integral multiple of ~ or if p - q is even. Otherwise the intersection with the
negative semiaxis will have polar radius rmax We distinguish then three cases :

i) p even q odd. On both semiaxes the corresponding polar radii will be equal
to r,nax for w > 1 and equal to r,,, tn for w < 1 .

ii) p odd q even. To the positive semiaxis will correspond a polar radius equal
to r,,,i n and to the negative one r,nax

)iii) p and q odd. To the positive semiaxis will correspond r,aax and to the
negative one rmin for w > 1 while for w < 1 the situation is reversed .

To conclude the analysis regarding the region of convergence, rmax must be
determined. For this we begin with (2 .10), where in order to find the points of
intersection with the real axis we put y = 0 to obtain

(3.3)

	

sin 8 + (1 - w)r7 sin
(p

	 q8) = 0, 0 E (0, 21r)
p

or, equivalently,

(3.4)

	

Uq_1(t) + (1 - w)pUP-q-1(t) = 0,

with t = cos 2 and UU (t) being the Chebyshev polynomial of the second kind of

degree s [25] . The intersection points are found from the first equation of (2 .10)
using the expressions

(3.5)

	

xi = w
I

	 [Tq (ti) - (1 - w),1TP_q(ti)], i=0(1)p-2

with ti being the zeros of (3 .4) and T, (t) the Chebyshev polynomial of the first
kind of degree s. Then r,,,, ax will be the smallest value of xi in cases (i) and
(iii) and/or the absolute value of the maximum values of the negative xi's in
cases (i) and (ii) . Apparently, in the general case, this value can only be given
numerically.

Here we simply note that in case rma, does not belong to the real axis then
we rotate the right hand side of (2 .6) about the origin through an angle equal
to P and work in a similar way as in the one we described above .
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1

f

Figure 3.1 : Convergence domain in the (p(B), w)-plane .

In the remaining part of this section we examine in some detail the two cases
of a(BP) being nonnegative and nonpositive .

The first statements that can be proved are the following ones :

THEOREM 3 .1 . Let a(BP) be nonnegative and the block Jacobi matrix B be
generated by the cyclic permutation c = 0717 cr 2 , . . . , 0'p) with I (L = p - q. Then
the domain of convergence of the corresponding SOR method in the (p(B), w) -
plane is

(3 .6)

	

521={(/3,w) :/3E[0,1), 0<w<w1(L3)= 1 2

for q even and

(3.7)

	

522 = {(/3,w) : /3 E [0, 1), 0 < w < w2(/3)}

for q odd, where w 2(0) is a curve in the (/3,w)-plane is the upper
bound of the domain of convergence, and can be given from the relationships
(3.4) and (3.5) numerically .

PROOF : For q even we necessarily have p odd. So, we are in case (ii) in which
we have p(BP) = rm,in or p(B) = rmin . For w > 1 the value of rmjn, corresponds
to an angle B = p • P7r = q7r for g = 1 and is given from the first equation of
(2.10). Hence /3 = (2 - w)/w or

(3.8)

	

w = 2/(1 + j3) = : w l (/3) .

For w < 1, rmi ,, = 1 and B = 0, therefore from the first equation of (2.10) we
have that

,C3 = 1 .

From (3.8), (3 .9) and the analysis done we obtain that the convergence domain
is the one defined in (3.6) and illustrated in Figure 3.1 . For q odd we are in
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either case (i) or (iii) . In both of these cases we have p(B) = rmax for w > 1 .
The value rmax can be given from (3.4) and (3 .5) as has already been mentioned .
For w < 1, r,a 2n = 1 and we also have /3 = 1 . For each w E (0, 2) we obtain a
unique value /3 . Obviously, all the pairs (/3, w) give the boundary curve w2 (/3) . 0

We note that the domains S2 1 and 522 do not coincide and neither of them is
a subset of the other .

THEOREM 3.2 . Under the assumptions of Theorem 3 .1, with the only exception
being that a(BP) is nonpositive, the corresponding domains of convergence are

for q odd. /3 1 (w) is a curve in the (/3,w)-plane (/3 = rmax) which constitutes
the upper bound of 523 and can be found from (3.4) and (3.5) numerically . The
curve 32 (w) is given by 0 = 2Ww for w > 1 and can be given from (3.4) and
(3.5) for w < 1 . Moreover, limy,-o+ 131(w) = lim o,-o+ 32 (w) = 1/ cos P .

PROOF : For q even we have p(BP) = rmax for both cases w > 1 and w < 1,
as in Theorem 3 .1, and the domain of convergence is Q 3 given in (3 .10) . For q
odd, we are in cases (i) and (iii) . Since c(BP) is nonpositive, the boundary of
this spectrum must be given from the smallest, in absolute value, polar radius
of the boundary curve corresponding to the semiaxis with polar angle . It is
clear that this polar radius is rmax if rmin corresponds to the positive semiaxis
and vice versa. So, from the cases (i) and (iii) it becomes clear that the polar
radius in question is rmkn for w > 1 and rmax for w < 1 . In other words,
/32(w) = 2~w for w > 1 (or equivalently for /3 < 1) and 02(w) is found from (3.4)
and (3.5) otherwise. It is an immediate conclusion that /31(2) = /32 (2) = 0 and
/31 (1) = /32(1) = 1 . To find the point of intersection of either of the two curves
/3 1 (w) and /32(w) with the axis w = 0 we have to follow an analysis analogous
to the one in the application of stretched hypocycloids in [22] . For w - 0+ the
right boundary of the region of convergence tends to that of a regular polygon
as in [22] . Therefore /3,,,_ O+ (w) _ /3L,-o+(w) -* l/cosE which completes the
proof. 0
The domains 52 3 and S24 for (p, q) _ (5, 2) and (5, 3), respectively, are illus-

trated in Figures 3.2a and 3.2b .

4 Special cases and numerical examples .

4.1 Special cases.

The special cases (p, q) = (3,1), (4, 1) and (5, 1) as well as (p, q) = ( 3, 2),
(4,3) and (5,4) have been studied by many researchers as was mentioned in
the introductory Section 1 . In the present section we study the special cases
(p, q) _ ( 5, 2) and (5, 3) .

(3.10)

for q even, and

ft = {(/3, w) : w E (0, 2), 0 < /3 < i31 (w)}

(3.11) 524 = {(/3,w) : w E (0, 2), 0 < /3 < /32 (w)}
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(a)

Figure 3 .2 : Convergence domains S2 3 and 04-

(i) (p, q) = ( 5, 2) : In this case equation (3 .5) becomes

(4.1)

	

U1 (t) + (1 - w)r?U2(t) = 0

or

(4 .2)

	

4(1 - W)1#2 + 2t - (1 - w)r7 = 0 .

The roots of (4 .2) are

-1 + /1 + 4(1 - w)2,772
(4 .3)

	

t+,- =

	

4(1 - w),q

In view of (4 .3), relationship (3.5) becomes

X+,- = w,75/2 (T2(t+,-) - (1 - w)77T3(t+,-)) ,

or

(4 .5)

	

x+ ,_ =
,

77

5/2 (2t+ _ - 1 - (1 - w)17(4t+ - 3t+,-)) ,

or
(1 - (1- W)2 71 2)(I + V1 + 4(1 - w)2,g2)

(4 .6)

	

x+ _ =	
2w(1 - x )2,7 12/5

The smallest in absolute value of x + and x_ gives the value of rmax . It is obvious
from (4 .6) that x+ < 0, hence rmax = Ix+1 . The value of rmgn is given from (3.2) .

(b)
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Therefore
1+(1

(4.7)

	

rmin =

	

W775 /2

Obviously the general theory developed in the previous sections is confirmed
in this specific case, where, in addition, we have an analytical expression for

rmax •

So, if a(B5 ) is nonnegative, by substituting 1 for q we obtain the convergence
domain S2 1 as this is given in Theorem 3 .1. On the other hand, if c(B5 ) is
nonpositive we obtain the convergence domain S23 from Theorem 3 .2. In the
present case 01(w) is given by

(4 .8)

	

i331(w) = Irmaxl =

	

2(2 W)

1-I ~/l+4(1-

Differentiating /31 (w) wrt w it is readily proved that , 31 (w) is a strictly increasing
function in (0,13] and a strictly decreasing one in [13,1) U{1} U(1, 2). So,

max01 (w) = ~ ( 3 ) = 4 .

For w tending to zero we have from (4.8) that

4 _ 1
(4 .9)

	

Wli
o

0 1 (w) = X1(0) = 1
+ v /5- cos s

which confirms the corresponding part of Theorem 3 .2 .

(ii) (p, q) = (5, 3) : Equation (3 .5) becomes now

(4.10)

	

U2(t) + (1 - w)iiU1 (t) = 0

or

(4J1)

	

4t2 + 2(1 - W)?It - 1 = 0

with roots

(4.12)

	

-(1-w)-q± \/4+(1-W)2,g2
t+ _ _

4

As in the previous case, relation (3.5) gives

(4 .13)

	

[1 - (1- w)2 77 2 1 [(1-W)9q T 1/4 + (1- W) 2n2 ]
X+,- _

2wii3/ 5

The value of r,,, ax this time becomes

f
Ix+I, if W < 1

IX-1 if W>1
(4 .14)

	

rnax _

while

(4.15)
1+(1-W)9]

rmin -

	

X5/3W
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For the nonnegative case the convergence domain 52 2 is obtained from Theorem
3.1 . The boundary curve W2(0) is then given by

(4.16)

	

/3(w) = Irmaxl = 2 (2 - w)(1 - w + V4 + (1 - W )2) .

For the nonpositive case the convergence domain is now SZ 4 given in Theorem
3.2, and /32(w) is given by the function

2(2-w)(w-1+/4+(1-w)2), if w<1
(4.17)

	

/32(W) _
2-W

	

if w>1.WI

	

-

It is readily proved that the functions in (4.16), (4 .17) are strictly decreasing
ones. Also it is obtained that

1
(4.18)

	

lim 02(w) = /32 (0) = V5- - 1 =W- o+

	

cos 5 '

confirming the corresponding part of the theory .

4.2 Numerical examples.

For the verification of the theoretical findings of previous works as well as of
the present one we do not consider nonsingular cyclic linear systems since the
theory then can be trivially verified. Instead we work out a number of numerical
examples from Markov chain analysis . Although the cyclic SOR theory for sin-
gular systems is at the early stages of its development we consider it a challenge
to work out these examples in order to investigate whether and when the theory
of the cyclic SOR for nonsingular systems carries over to singular ones . Suppose
then that

(4.19)

	

x = Bx
is the singular matrix equation that gives the stationary (probability) distribu-
tion vector x E IRIS , llxll i = 1, with B E IR'5,'5 (and index(I - B) = 1) the
stochastic transition probability matrix . Suppose also that B = B„ j = 1(1)4,
is 5 x 5 block weakly cyclic of index 5 generated, in turn, by the cyclic permu-
tations or(I) = (5, 4, 3, 2, 1), r 2) = (5, 3 . 1, 4, 2), U(3) = (5, 2, 4, 1, 3), a( 4) =
(5, 1, 2, 3, 4), corresponding to the pairs (p, q) = (5,1), (5, 2), (5, 3), (5, 4), re-
spectively. In all the cases below we take the nonidentically zero blocks of B to
be equal to

0.90 0.05 0 .05_
B = 0.05 0 .90 0 .05

0.05 0 .05 0.90
For example

0 0 0 B 0
0 0 0 0 B

B=B2= B 0 0 0 0
0 B 0 0 0
0 0 B 0 0
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Table 4.1 : Numerical results

The eigenvalues of h are readily found to be 1, 0.85, 0.85 and therefore those
of Bs = B~, j = 1(1)4, are the numbers 1 of multiplicity five and 0 .85 s of
multiplicity ten . So the eigenvalues of B are the numbers e 225k , k = 0(1)4,
of multiplicity one and 0 .85eZ 25& , k = 0(1)4, of multiplicity two each, hence
index(I - B) = 1 . Also it can be proved in a way analogous to that in Theorem
3.1 of [9] that index(I - 4) = 1, b w E (V\{0, ppq } . Therefore by virtue of the

theory in [2] [9], [14], [13] one can use a(B)\ {ez 25~, k = 0(1)4} in the place
of a(B) and derive the optimal SOR parameters using the results known from
the nonsingular case . So, instead of considering (4 .19) and therefore the block
Jacobi iterative scheme

(4.20)

	

x('+1) = Bx(m'), m = 0, 1, 2, . . .,

where x (°) E R"', I jx( ° ) I II,= 1, is the initial stationary (probability) distribution
vector, we consider

(4.21)

	

x(m+1) = L,Jx(m) , m = 0, 1, 2, . . .,

with the same initial vector x( ° ) .
Since the spectra a(B~), j = 1(1)4, are nonnegative the corresponding optimal

SOR parameter, for both the nonsingular and singular consistently ordered cases,
will be given as the unique real root in (1, 4) of the equation

s
(4.22)

	

(0.85w 1 ) 5 -
44

(w 1 - 1) = 0

which is wl = 1.045379, (see, e.g ., [26, 27, 31, 9, 14]), while for the nonsingular
inconsistently ordered cases it will be wj = 1, j = 2, 3, 4 (see, e .g ., [28], [31]) .
Regions of convergence for the corresponding nonsingular cases have been stud-
ied and determined in [10] for (p, q) = (5, 1), in [11] for (p, q) = (5, 4) and in the
present work for the other two cases .
In the numerical examples below we investigate experimentally whether the

theoretical results that hold in the various nonsingular cases can hold in the
corresponding singular ones. More specifically:

(p, q) w Number of (p, q) w Number of
Iterations Iterations

wl - 0.05 21 .95 42
D1 13 (5 2 w2 = 1 37

D1 + 0.05 16 1.05 93
0 .95 58 0.95 73

(5,3) i23 = 1 53 (5,4) w4 = 1 70
1.05 96 1.05 165
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i) The optimal SOR parameter w of the nonsingular case is it also the optimal
one for the corresponding singular case? (This was already proved to hold true
in the case of a consistently ordered matrix B, in our case for (p, q) _ (5, 1), in

[9] . )
ii) An w close to the optimal one and chosen from the region of convergence

that has been determined for the nonsingular case does it also belong to the
convergence region of the singular case? (Continuity arguments can certainly
apply to values of w very close to the optimal one and guarantee convergence in
the singular case too .)

iii) Is it overestimation or underestimation of the optimal parameter that gives
better results in the singular case? (This question has been extensively studied
theoretically for nonnegative and nonpositive spectra and for both the nonsin-
gular and singular cases but only for p = 2 (see, e.g ., [27], [13]) .)

In our experiments for the four cases considered we have chosen various values
of w around the optimal one . In the self-explained accompanying Table 4.1 only
the results (number of iterations) obtained for

w = w3 - 0.05, wa, w, - 0.05, j = 1(1)4,

are illustrated . In these examples we have taken x (o) = [ YT,
,
YT' .

' • , ys]T' where
y~ _ [0.2, 0, 0], j = 1(1)5, and as a criterion to stop the iterations

I lx(m) - x(m-1), I . <
0.5 x 10_

6
HT(r)H-

while all the calculations have been carried out in double precision arithmetic .
The results, as shown in Table 1, seem to agree almost completely with the
ones that the theory known for the nonsingular and singular cases predicts .
Specifically : In all the cases considered the optimal w's chosen are also optimal
for the corresponding singular cases . Also, for the consistently ordered case one
obtains the best optimal results which become worse and worse as the basic
matrix B moves away from the consistently ordered case, something which was
expected. Finally, in the consistently ordered case an overestimation of w gives
better results than an underestimation of it and this is in agreement with what
is known for the case p = 2_ In all the other (inconsistently ordered) cases
examined it seems that an underestimation of w gives better results than an
overestimation of it . This observation is in agreement with what is known for
the consistently ordered nonpositive case where w < 1 rather than with that of
the nonnegative one . A possible explanation for this may be the following . The
fact that the modulus of the second largest eigenvalue of B is relatively large
has as a consequence that the value of the chosen w that is greater than one is
very close to the upper boundary curve of the SOR convergence region (e.g ., for
(p, q) _ (5, 2) the upper bound of w in the nonsingular case is I+o 85 = 1.081081) .
As a result of this the convergence of the (singular) SOR method becomes very
slow .
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