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ABSTRACT 

Assume that the matrix coefficient of the nonsingular linear system Ax = b belongs 

to the class of the generalized consistently ordered ( p - 9, 9) matrices, where p and 9 

are relatively prime. It is well known that under the additional assumption that the pth 

powers of the eigenvalues of the Jacobi matrix T associated with A are nonnegative 

(nonpositive), the problem of determining the optimum relaxation factor that maximizes 

the asymptotic convergence rate of the successive overrelaxation method for the 

solution of Ax = b has been solved in many cases. Thus, in the works by Young, by 

Varga, and by Nichols and Fox, the problem has been solved in the nonnegative case for 

any ( p, 9). In the nonpositive case, in view of the work by Kredell, by Niethammer, de 

Pillis, and Varga, by Galanis, Hadjidimos, and Noutsos, and by Wild and Niethammer, 

the corresponding problem seems to be more difficult; it has been solved only for 

9 = p - 1. The present work is a contribution towards the solution of the problem in 

the latter case. In particular, we study the case 9 = 1, p > 3, with detailed results for 

p = 3,4. 

1. INTRODUCTION AND PRELIMINARIES 

Consider the nonsingular linear system 

Ax = (D - L - U)x = b, (1.1) 
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where A is partitioned into an n x n block form with Aii, i = l(l)n, square 
and nonsingular, and D, L, and U are respectively block diagonal, block 
strictly lower triangular, and block strictly upper triangular relative to the 
partitioning considered. Suppose that the eigenvalues of the matrix 

D-'( crL + c+U), @=-.z- 
P-q’ 

a! # 0, (1.2) 

where p and 4 ( p > q > 0) are relatively prime integers, are fixed no matter 
what value for (Y # 0 is chosen. When 0 = 1, i.e., p = 2, 4 = 1, the matrix A 
has been defined by Young [ll, 121 to be consistently ordered. More generally, 
when 9 = p - 1, we have the p-cyclic consistently ordered matrices defined 
by Varga [7, 81. Verner and Bernal [9] (see also [4]) considered cases which 
were more general, with 4 not necessarily equal to p - 1. So we have the 
generalized consistently ordered ( p - q, q) matrices [or ( p - q, q) GCO matri- 
ces]. In this paper, in particular, we study the case 4 = 1, p 2 3, with detailed 
results for p = 3,4. 

Let A in (1.1) be a ( p - q, q) GCO matrix. Then the eigenvalues of the 
successive overrelaxation (SOR) matrix Pm and of the Jacobi matrix T 
associated with A, 

and 

PU := (D - wL)-‘[(l - o)D + cdl] (1.3) 

T:= D-‘(L + U) 

respectively, are connected through the relationship 

(1.4) 

( x + w - 1)” = PPWW, (1.5) 

where h~a( yU), pejEa(T), j = O(l)p - 1, and ~9 = ezTi’P (see [9] or [4]), 
with a( *) denoting the spectrum of a matrix. The relationship (1.5) is due to 
Verner and Bernal [9] and generalizes the famous equations of Young [ll], 

( p, q) = (2, l), and of Varga [7], ( p, 9) = ( p, p - I), P 2 3. 
The determination of the optimum relaxation factor o(woPt) so that the 

asymptotic convergence rate of the SOR method for the solution of (1.1) is 
maximized [or equivalently p( PU) is minimized, where p(e) denotes the 
spectral radius of a matrix] has attracted the interest of many researchers. So, 
in several cases of practical and theoretical interest woPt has been determined. 
In particular, for a(TP) nonnegative, w,+,~ was determined by Young [ll], 
(p, q) = (2,l); by Varga [7], (p, q) = ( p, p - l), p 2 3; and by Nichols and 
Fox [4], ( p, q), p 2 3, 4 < p - 2. For u(Z’P) nonpositive the very first u,,nt 
was determined by Kredell [3], ( p, q) = (2,l). Rather recently Niethammer, 
de Pillis, and Varga [5], motivated by a least-squares problem [l, 61, deter- 
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mined coopt for ( p, 4) = (3,2), and very recently Galanis, Hadjidimos, and 
Noutsos [Z] and independently Wild and Niethammer [lo] determined it for 
( p, 9) = ( p, p - l), p > 4. To the best of our knowledge nothing has been 
done in the case of a(Tn) nonpositive for p > 3, 9 < p - 2 analogous to the 
work Nichols and Fox [4] did in the nonnegative case. 

To start a discussion and contribute towards the solution of the problem 
arising in the latter case, we have begun a study of the case 9 = 1, p > 3, 
which constitutes, in a sense, the complement of the 9 = p - 1 one. As the 
reader will find out, matters do not appear to be as straightforward as one 
would expect them to be, having in mind the analysis in the general case of 
u(Tr) nonnegative [4]. For example: In Section 2 it is shown that if there exist 
values of w for which the SOR method converges, then wept E (0, I]. This is 
something which would be expected. However, if woPt # 1 (contrary to what 
is known for the corresponding nonnegative case, where ~,ar = 1 [4])-and 
this is indeed the case at least for p = 3 and also for a major subcase of p = 4, 
as is shown in Section 3-then r(wopt) in (I .5) does not correspond to a 
double real zero as it does in the cases of nonnegative and nonpositive u(Tr) 
for 9 = p - 1. It corresponds to a pair of complex conjugate zeros. We would 
also like to point out that some of the results of Section 2 hold more generally 
than for the 9 = 1 case treated there, but it is not known as yet if they can 
cover the entire class of pairs ( p, 9) p 2 3, 9 ,< p - 2. Finally, the main 
theorem, which is proved in Section 3 and covers the cases p = 3,4, is stated 
as follows: 

THEOREM 1, Let A be partitioned in blocks Aii, i, j = l(l)n, where A,+ 

i = l(l)n, are square and nonsingular. Let D = diag( A,,, . . . , A,,,,), and A be 
written as in (1.1). Assume that, relative to its partitioning, A is 

(I) (2,l) GCO or 

(II) (3,l) GCO, 

and let PW in (1.3) and T in (1.4) denote the block SOR and block Jacobi 
matrices associated with A respectively, and /3 := p(T). Then: 

In case (I), $ u(T3) is nonpositive, then: 

(i) For /3 < 2 there exists a value woPt for w, the unique positive real root of 
the equation 

(1 + w)2/33 - 8(1 - w) = 0, 

viz. 

wept = 
- (4 + p”) + 4(1 + Pa)1’2 

P3 

(1.6a) 

(1.6b) 
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in (0, l), such that jbr all w # aopt, 

p( YU) > rn? p( Pm) = (1 - w&t)l”. (1.7) 

(ii) For /3 2 2 there holds 

P(Q21. (1.8) 

In case (II), ij a(T4) is nonpositiue, then: 

(i) For 0 < /3 < l/$% 

and for all w # wept 

w0pt = 1, (1.9) 

p( Yu) 2 rn: p( =!Fu) = f1413. (1.10) 

(ii) Fur l/i%? < fl < V% there exists a value wept for w, the unique 
positive real root of the equation 

with 

w2r3p2 - [r” - (1 - w)]“[r2 + (1 - w)] = 0, 

r= 

i 

w + (16 - 8w - 7~~)~‘~ 

4 

in (0, l), such that fw all w # wept 

woPt + 16 - 8w,, - 70&t 
112 

P( =%) > mjn P( %) = 
4 

(1.11) 

(1.12) 

(1.13) 

(iii) For P 9 & there holds 
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NOTE. The trivial case p(T) = 0 is not considered in Theorem 1 or in the 

general case ( p, 9) = ( p, l), for in such a case it can readily be seen from (1.5) 

that oopt = 1 and p( y@#,,) = 0. 

2. ANALYSIS OF THE GENERAL CASE ( p, 9) = ( p, 1) 

We begin our analysis with Equation (1.5). Since PP < 0, where p is any 

eigenvalue of the Jacobi matrix T in (1.4), we set pp = - Y p, with Y E (0, /3 := 

P(T)] fixed, and extract pth roots (9 = 1) to obtain h + w - 1 = 

VWX”Pexp[i(2k + 1)x/p], where x’lp is any pth root of h and k is any 

integer. Putting ,z : = PIP exp[i(2 k + 1)x/p], we have the equivalent equation 

g( 2, 0) := 2 p + WV2 + 1 - w = 0. (2.1) 

Let zj:= zj(w), j = l(l)p, d enote the zeros of (2.1). Since our objective is to 
minimize p( yU) as a function of w and X = - z P, we try, equivalently, to 

minimize maxj 1 zj I, for a fixed Y E (0, 01, as a function of w E (0,2); for if 
w # (0,2) then p( _Q 2 1. Then we consider the largest possible value of the 
minimum in question over all v E (0, 01. (Note: The trivial case Y = 0 is not 
examined here or in Section 3, since it can be considered as a limiting case 

and can be covered by the analysis that follows by using continuity arguments.) 
First we prove that for a given Y the aforementioned minimum cannot take 

place for any w E (1,2). For this we have: 

PROPOSITION 1. For any w E (1,2) Equation (2.1) has always at least one 
zero with modulus strictly greater than maxj 1 ~~(1) 1 = v”(P-‘). 

Proof. By Descartes’s rule of signs it is readily checked that for p odd 

(2.1) has precisely one real zero, which is positive, while for p even it has 
precisely two real zeros, one negative and one positive. If we put y = zP, then 
from (2.1) we take 

y + WYZ + 1 - w = 0. (2.2) 

From (2.2) we see that if Re z & 0 then Re y > 0, while if Im z $ 0 then 
Im y 2 0. We follow Nichols and Fox [4] and differentiate (2.2) and y = ZP 
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with respect to w. After eliminating v by using (2.1) we obtain 

ay 
-= 

PY(1 + Y) 

au w[ ( p - 1) y + w - l] ’ (2.3) 

and from this 

Re $ 

P{qR+q[(P-1p+ 
(2.4) 

= 
co-l] +[(p-l)(R+l) -(cd-l)]P} 

D 

Irng = 
p[(p- 1pP+ (2R+ l)(o- 1) + (p- l)Z2]Z 

D 

where we have set 

R:= Re y, I:= Im y, D:= co{ [( p - l)R + (w - ‘)I2 + (p - 1)2Z2). 

(2.5) 

From (2.4)-(2.5) it is readily concluded that 

RaO implies Reg.0, 

R>O and Z%O implies Irng SO. (2.6) 

Obviously, at w = 1 and for p 2 4 (the proof for p = 3 will be given in 
Section 3) (2.1) has at least one zero z with Re z < 0, Im z > 0 and for 
which 1 z(1) ( = v 1’(p-1). This particular zero we are considering will have for 
all w~(1,2) th ei er Re z < 0 and Im z = 0 or Re z < 0 and Im z > 0. It is 
clear that in the first case we are referring to the real negative zero of,(2.1) for 
even p (2 4), and in the second case to one of the zeros in the second 
quadrant for odd p (> 5). It is also evident that in the latter case Re z cannot 
become 0 for any w E (1,2), because then z P will also be purely imaginary, 
leading to a contradiction, for from (2.1) o = 1. Moreover, Im z cannot 
become 0 for any w E (1,2), for then the zero in question and its complex 
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conjugate will become a double real negative zero for (2.1), which is not 
possible. Based on the previous analysis and on the conclusions (2.6), we have 
that the image of the corresponding y in the complex plane will have a strictly 
increasing real part (R > 0) and a nondecreasing imaginary part (I > 0) as w 
increases from 1 to 2. This implies that the modulus of y increases with 
respect to o and so does the modulus of z, which concludes the proof of the 
proposition. 8 

As a corollary to Proposition 1 we have that: 

PROPOSITION 2. The minimum of p( S$) will take place for some w E (0, 11. 

In analogy with what is known, the result just obtained would be expected. 
This is because for u(TP) nonpositioe, with ( p, q) = ( p, p - l), one has 

wept 
E P-2 

i 1 
-_,l 
P-l 

(see [3], [6], [2], and [lo]). Also, for nonnegative a(TP), with ( p, q) = ( p, 1)-a 
special case of that treated in [4]-one has wont = 1. However, what is stated 
and proved in the sequel, which applies at least in the cases p = 3 and 4 we 
are examining in the next section, is contrary to what is known from similar 
cases so far. 

PROPOSITION 3. Let wept # 1. Then maxj 1 zj( wept) ( , where zj are the 

zeros of (2.1) [or equivalently max ) r(wopt) ) of (1.5) with q = l] corresponds 

to a pair of complex conjugate zeros of (2.1) [or equivalently of (1.5)] and not to 

a double real zero. 

Proof. Applying Descartes’s rule of signs for w E (0, l), it can be seen that 
for p odd g( z, w) has precisely one real (negative) zero, while for p even it 
has either two real (negative) or no real zeros. For p odd let zp be the real 
(negative) zero of (2.1) and (zr, za), (z.,, z4), . . . , ( z~_~, z~_~) the pairs of 
complex conjugate zeros. At w = 1 one has 1 zj 1 > I zp I = 0, j = l(1) p - 1. 

So, if our assertion were not true, there would be an w E (0,l) at which 
I zp I > I zj I, j = l(1) p - 1. Recalling that njp,rzj = w - 1, the previous 
inequality would give -zp” 2 1 - w, or zp + 1 - w < 0. However, (2.1) 
implies that wyzp 2 0 or, equivalently, zp > 0, which contradicts the fact that 
zp is negative for w E (0,l). For p even we observe that g( z, 0) = zp + 1 has 
all its zeros complex while g( z, 1) = z p + vz has 0 and - v”(P-‘) as its two 
real zeros. Using again the substituting y = zp as in Proposition 1 for the two 
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real roots, we can find out from (2.3) that as w decreases from the value 1, the 
largest y > 0 strictly decreases while the smallest y > 0 strictly increases 
until they become equal for w = o, E (0,l). The value w, is the unique 
positive real zero in (0,l) of the equation 

f(O) := (WY)” - np( p - l)‘_“(l - +-1, (2.7) 
and the double value of y (or of Z) is given by (1 - wJ/( p - 1) (or by 
-[(l - wc)/( p - l)]‘iP). That at w = w, the double value of the zero 

z= - 
1 - w, lip 

i I P-1 

cannot lead to an optimum o is proved as follows. We have IIT= r( .zj) = 1 - w, 
at w = w,; therefore (max 1 zj(wc) I)P 2 1 - w,. Substituting in the left hand 
side the value for the double z found before, we have (1 - wc)/( p - 1) 2 

1 - w,. This leads to the contradiction 2 >/ p, which concludes the proof. n 

NOTE. Before we close this section we would like to clarify a point in 
connection with the value of wont in the proof of Proposition 3 in case p is 
even. For this, let wd E (0,l) be the value of w at which max 1 zj(w) ( , taken 
over all complex zj’s, is minimized, and let md be this minimum value. It is 
clear that if wd E (0, w,_], with w, being defined in the proof of Proposition 3, 
then w,nt = wd. However, if WOE (wC, l), we distinguish two cases. So, if 

1 zp-l(wd) I G mdp where z~_~(w) is the largest in modulus of the two real 
negative zeros zp_i and .zp of (2.1) for w E (wC, l), then wont = wd. If, on the 
other hand, ) z~_~(w~) I > m& let w, E (wC, ad) denote the smallest value of w 

at which 1 z~-~(w,) ( = maxj,l(l)p-2 I zj(we) I. As is obvious then, w,nt = w,. 

3. THE PROOF OF THEOREM 1. 

(I) p = 3: Let zr, za, and za be the three zeros of (2.I), and let the first 
two be the complex conjugate ones. We have 
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Eliminating z1 + z2 and z3 from (3.1), one obtains 

?-3 - WY? - (1 - w), = 0, (3.2) 

where we have set r = zlz2 = 1 ~~(0) 1 2. Differentiating (3.2) with respect to 
o, we take 

e _ r[r3- (1 - w")] 

aa - W[r3+2(1-w)2]’ 
(3.3) 

where Y was eliminated by using (3.2). Obviously for w E [l, 2) there is no 
value of r > 0 for which the derivative in (3.3) vanishes. In fact, we have 
always &-/a~ > 0, showing that 1 q(o) ( strictly increases with w in [l, 2). 
This observation completes the proof of Proposition 1. On the other hand 
for any w E (0, l), r of (3.2) assumes the minimum value (1 - 02)1’3 > 
(1 - w)~/~ > 1 z3(w) I 2. Substituting this value for r in (3.2), we obtain 

h(o) := (1 + w)‘Y” - 8(1 - o) = 0. (3.4) 

Requiring a solution w of (3.4) to be in (0, l), we must have h(O)h(l) < 0, from 
which the sufficient condition Y < 2 is produced. Since in addition ahlaw > 0, 
the value of w (= wept) obtained in this way is unique and is given by 

%pt = 
- (4 + V3) + 4(1 + Y3)1’2 

Y3 (3.5) 

The condition Y < 2 is also a necessary one for the SOR method to converge, 
for if Y > 2, the minimum value of r would be attained at w = 0, for which 
p( Y,,) = 1. One must bear in mind that the analysis in this section was made 
for any Y E (0, p] fixed. So, in order to determine the overall optimum, one 
should determine the largest possible value for the minimum r = (1 - w&$/~ 
just obtained. Evidently w,,~~ must be as small as possible. Differentiating then 
(3.4) with respect to Y, considering w as a function of Y, we get 

aw 
-=- 

3v2(1 + w), 

av 2 v3(1+w)+ 4 

< o 

* 
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This effectively shows that o decreases with v increasing in (0, 01. Conse- 
quently, the optimum results are obtained for v = p. This concludes the 
analysis for the particular case p = 3. 

(II) p = 4: Let zj := zj(w) be the four zeros of (2.1). Since at least two of 
them will be complex, let them be Z, and ~a. This time we will have 

(3.6) 

Eliminating zi + zs, zs + zq, and zszq from the equations of (3.6), setting 
r = ZlZZ = I %(a) I 2P and imposing the restriction 

r > (1 - 6Jy (3.7) 

to guarantee that at least when all zj’s, j = 1(1)4, are complex, zi and a2 
constitute the pair with the largest modulus, after some manipulation one 
obtains 

[?-a - (1 - cd)]‘[ r-2 + (1 - cd)] - 02r3v2 = 0. (3.8) 

Differentiating (3.8) with respect to o, solving for &-/au, and substituting 
into the resulting equation v2 from (3.8), we finally have 

ar r[2r4 - w-2 - 
-= (1 y a)(2 + WI1 

au w[3r" + 2(1 - u)r2 + 3(1 - o)~] ’ 
(3.9) 

It is readily seen from (3.9), having in mind the restriction (3.7), that r 
[ 2 (1 - co)1121 becomes a minimum if and only if 

r= 

i 

o + (16 - 80 - 7~~)“’ 1’2 

4 
! . 

(3.10) 

Since lim,,,- r = l/v”%, a continuity argument implies that even for w E 
(oc, 1) the pair zr, z2 corresponds to the product of the two complex conju- 
gate zeros of (2.1) and not to the corresponding product of the real zeros z3 
and z4, because z3(l)z4(l) = 0. To simplify matters we follow a slightly 
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different analysis from the one in case p = 3. For this, assume that o E (0, 11 is 
fixed and r varies, so that r 2 ([w + (16 - 8w - 7~~)‘~~]/4}‘~~, and r, w 

satisfy (3.8). In this way r becomes a function of Y E (0, /3]. Differentiating 
(3.8) with respect to Y, and using again (3.8) in the resulting equation to 
eliminate Y’, it is found that 

ar2 4w2vr5 

aY= [r4+3(I-w)2][r4-(1-W)2] ‘O’ (3’11’ 

This implies that max r or, in turn, max 1 zl(w) ) = max ) z2(o) 1 is achieved 
for v = 0 = p(T). So, putting 0 instead of v in (3.8), that is, considering 

[ r2 - (1 - w)]“[ r2 + (1 - w)] - u2r3p2 = 0, (3.8’) 

and repeating exactly the same argumentation as before, we end up with 
(3.10) again; the only difference now is that r refers to max ) zj(w, /?) 1, 
j = 1,2. Rewriting (3.8’) in the form 

h(w) := r3/3” - *’ - ‘,’ - Y)j2,r2 + (1 - w)] = 0, (3.12) 

and using (3.10), it is readily obtained that 

sign h(O) = sign( J$+ h( 0)) = sign( P2 - 2) 

(3.13) 

Since, on the other hand, it can be found from (3.10) that at-/au < 0 and 
from (3.12), after a modest amount of algebra, that ahlaw > 0 and that 
aw/afl < 0, it is concluded that r = max 1 zj(w, p)) 2 (< I), j = 1,2, in (3.10) 
is minimized: 

(1) for 0 < /3 < l/$‘% when w = wd = 1 (r = @I3 < l), 

(2) for I/$% < @ < & when w = wd. the unique real root of (3.12) or of 
(3.81 in (0,l) [r < 1 is given in (3.10)], and 

(3) for /3 > v’% when w = wd = 0 (in which case r = 1). 

It remains to be proven that if Wd E (wC, 1) then ( z3(w,) ( < I z~(w,.) ( = r’12, 

where z3 is the absolutely larger of the two real negative zeros z3 and z4 of 
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(2.1) or of (3.6). From (3.6) one obtains, for w = @d, that 

.$ + $ = (r’ + l - 41’2, 
&2 

1 - Wd 

Hence zs and z4 are the roots of the quadratic 

(r2 + 1 - wd)1'2 z + 1 = o z2 I 
r1/2 r 

(3.14) 

(3.15) 

The modulus of the absolutely largest root of (3.15) is given by 

r2 + 1 - ad pa + [r2 - 3P - @dP2 , I (3 16) 

where, obviously ,r2 > 3(I - wd), since zs and zq are real. A straightforward 

comparison shows that t-Ii2 = 1 z1 1 > 1 z3 I at w = Wd. Consequently w,,rt = 
ad, which concludes the proof in the present case p = 4 and therefore that of 

Theorem 1. ” 

The authors wish to thank the referee for his suggestions, which influenced 

and improved the presentation of the material of this paper. 
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