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Abstract

The Linear Complementarity Problem (LCP), with an H+−matrix coefficient, is solved by
using the new “(Projected) Matrix Analogue of the AOR (MAAOR)” iterative method; this
new method constitutes an extension of the “Generalized AOR (GAOR)” iterative method.
In this work two sets of convergence intervals of the parameters involved are determined by
the theories of “Perron-Frobenius” and of “Regular Splittings”. It is shown that the intervals
in question are better than any similar convergence intervals found so far by similar iterative
methods. A deeper analysis reveals that the “best” values of the parameters involved are those
of the (projected) scalar Gauss-Seidel iterative method. A theoretical comparison of the “best”
(projected) Gauss-Seidel and the “best” modulus-based splitting Gauss-Seidel method is in favor
of the former method. A number of numerical examples support most of our theoretical findings.
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1 Introduction

We begin with the definition of the Linear Complementarity Problem (LCP).
“Given A ∈ Rn×n and q ∈ Rn find two nonnegative vectors r, z ∈ Rn satisfying the relations

r = Az + q and rT z = 0.” (1.1)

The LCP has many applications in science, engineering, economics, etc. (see, e.g., [9, 13, 31]).
The matrix A in (1.1) is assumed to be irreducible. If A is reducible the LCP can be split into a

number of smaller LCPs which can be solved with much less computational cost. (For more details
see the Appendix.)

As is known the LCP possesses a unique solution if and only if A ∈ Rn×n is a P−matrix, namely,
a matrix whose all its principal submatrices have positive determinants (see, e.g, [9, 13, 31]). In
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the present work we consider A to be an H+−matrix, a notation introduced by Bai in [4], that is
a real H−matrix with positive diagonal.

In general, there are three main classes of iterative methods for the solution of the LCP:
a) The “projected methods”, the seed of which goes back to Christopherson’s work [12] for the
solution of the free-boundary problem for journal bearings (see also [36, 20]). His work was studied
deeper by Cryer in [14, 15]. Then, other works followed based on the iterative solution of large
sparse linear systems (see, e.g., [42, 43]). We mention those by Mangasarian [29], Ahn [1], Pang
[34], Pantazopoulos [35], and Koulisianis and Papatheodorou [26], as well as three of the most
recent ones by Li and Dai [27], Saberi Najafi and Edalatpanah [37] and Hadjidimos and Tzoumas
[24].
b) The “modulus algorithm” introduced by van Bokhoven [41] and extended by Kappel and Watson
[25] to “block modulus algorithm”. In these works “extrapolation” was introduced to accelerate the
convergence (see [23] and [22]). and
c) The “modulus-based matrix splitting iterative methods”, particularly the “modulus-based splitting
accelerated overrelaxation (MBSAOR) iterative method”, introduced by Bai [5]. Bai’s work ex-
ploited van Bokhoven’s modulus algorithm [41] in two ways: i) A “diagonal extrapolation matrix”
was introduced to accelerated the convergence and ii) The main matrix was split into the difference
of two others making possible extensions of the classical iterative methods to be employed. His work
[5] was the starting point for many others that followed (see, e.g., [18, 44, 22, 28, 17, 16, 49, 50]).

Since the mid 90s researchers have started using parallel methods based on multisplittings [32]
(see, e.g., [3, 4, 6] and the most recent ones based mainly on (c) above [7, 8, 47, 45, 17, 46, 48]).

The outline of the rest of this work follows. In section 2, the “matrix analogue of the AOR
(MAAOR)”, introduced recently in [21], for the solution of the LCP by the “projected methods”
is presented. In section 3, its convergence is analyzed and studied. In section 4, the theories of
“Perron-Frobenius” and of “Regular Splittings” (see, e.g., [42]) provide sets of sufficient convergence
intervals; the parameters involved are determined and the “best” of these parameters are found in
the sense explained there. In section 5, numerical examples in support of our theory are worked
out. Finally, in section 6, a number of remarks and a further discussion on some issues conclude
our work.

2 The MAAOR method for the solution of the LCP

For the study of the projected methods the following definition is needed.

Definition 2.1. Given any vector x ∈ Rn, x+ denotes the vector with components

(x+)i = max{xi, 0} ∀ i ∈ N := {1, 2, · · · , n}.

Definition 2.1 yields the following properties for any x, y ∈ Rn (see, e.g., [29, 1])

i) (x+ y)+ ≤ x+ + y+, ii) x+ − y+ ≤ (x− y)+,
iii) |x| = x+ + (−x)+, iv) x ≤ y ⇒ x+ ≤ y+.

(2.1)

Using Definition 2.1, (1.1) is transformed into the equivalent form (see, e.g., [31])

z =
(
z −D−1(Az + q)

)
+
⇔ z =

(
z −

(
(I − L̃− Ũ)z + q̃

))
+
. (2.2)
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In (2.2), A := D − L − U , where D, −L, −U are the diagonal, the strictly lower and the strictly
upper triangular parts of A, respectively. Also, every entity (·) in (1.1) and in the first equation in
(2.2) has been transformed into ( ·̃ ) := D−1(·), with I being the identity matrix. Let Ω be a positive
diagonal matrix and R be a diagonal matrix. Then, multiplying the original LCP by ΩD−1, (1.1)
is transformed into the equivalent form

Ωr̃ =
(

(I −RL̃)−
(

(I − Ω) + (Ω−R)L̃+ ΩŨ
))

z + Ωq̃ and (Ωr̃)T z = 0. (2.3)

The way equations (2.2) were obtained from (1.1), similarly from (2.3) it is obtained that

z =
(
z −

(
−RL̃z + Ω(I − L̃− Ũ)z +RL̃z + Ωq̃

))
+
. (2.4)

Note that if in (2.3) R = αΩ, α ∈ R, the GAOR method applied to (1.1) is obtained (see [24]).

3 Convergence of the Projected MAAOR method

For the solution of the fixed-point equation (2.4) the following Projected MAAOR iterative method
is suggested

z(k+1) =
(
z(k) −

(
−RL̃z(k+1) + Ω(I − L̃− Ũ)z(k) +RL̃z(k) + Ωq̃

))
+
. (3.1)

If the iterative method (3.1) converges, then

z∗ =
(
z∗ −

(
−RL̃z∗ + Ω(I − L̃− Ũ)z∗ +RL̃z∗ + Ωq̃

))
+
, (3.2)

where z∗ is the exact solution of (1.1). Based on (3.1) and (3.2) the statement below can be proved.

Theorem 3.1. Any two consecutive error vectors of iterative scheme (3.1) are connected via

|z(k+1) − z∗| ≤ G|z(k) − z∗|, (3.3)

where

G ≡ GR,Ω :=
(
I −

∣∣R∣∣∣∣L̃∣∣)−1 (∣∣I − Ω
∣∣+
∣∣Ω−R∣∣∣∣L̃∣∣+

∣∣Ω∣∣∣∣Ũ ∣∣) ≥ 0 (3.4)

and a sufficient condition for the Projected MAAOR iterative method to converge is ρ(G) < 1,
where ρ(·) denotes spectral radius.

Proof: Using properties (2.1), then from (3.1) and (3.2), we successively obtain 1

z(k+1) − z∗ =
(
z(k) −

(
−RL̃z(k+1) + Ω(I − L̃− Ũ)z(k) +RL̃z(k) + Ωq̃

))
+

−
(
z∗ −

(
−RL̃z∗ + Ω(I − L̃− Ũ)z∗ +RL̃z∗ + Ωq̃

))
+

(ii)

≤(
(z(k) − z∗)−

(
−RL̃(z(k+1) − z∗) + (Ω− (Ω−R)L̃− ΩŨ)(z(k) − z∗)

))
+
.

1A lower case Latin numeral over a relational operator, as, e.g., “
(ii)

≤ ”, refers to the application and/or implication
of the corresponding property of (2.1).
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Hence

(z(k+1) − z∗)+ ≤
(
RL̃(z(k+1) − z∗) +

(
I − Ω + (Ω−R)L̃+ ΩŨ

)
(z(k) − z∗)

)
+

(i)

≤(
RL̃(z(k+1) − z∗)

)
+

+
((
I − Ω + (Ω−R)L̃+ ΩŨ

)
(z(k) − z∗)

)
+
.

(3.5)

Similarly, we can obtain

(z∗ − z(k+1))+

(i)

≤
(
RL̃(z∗ − z(k+1))

)
+

+
((
I − Ω + (Ω−R)L̃+ ΩŨ

)
(z∗ − z(k))

)
+
. (3.6)

Then, from (3.5) and (3.6) we get∣∣z(k+1) − z∗
∣∣ (iii)

= (z(k+1) − z∗)+ + (z∗ − z(k+1))+ ≤(
RL̃(z(k+1) − z∗)

)
+

+
((
I − Ω + (Ω−R)L̃+ ΩŨ

)
(z(k) − z∗)

)
+

+(
RL̃(z∗ − z(k+1))

)
+

+
((
I − Ω + (Ω−R)L̃+ ΩŨ

)
(z∗ − z(k))

)
+

(iii)

≤∣∣RL̃(z(k+1) − z∗)
∣∣+
∣∣∣ (I − Ω + (Ω−R)L̃+ ΩŨ

)
(z(k) − z∗)

∣∣∣ ≤∣∣R∣∣∣∣L̃∣∣∣∣z(k+1) − z∗
∣∣+
(∣∣I − Ω

∣∣+
∣∣(Ω−R)

∣∣∣∣L̃∣∣+
∣∣Ω∣∣∣∣Ũ ∣∣) ∣∣z(k) − z∗

∣∣.
(3.7)

From the leftmost and rightmost expressions of (3.7) we take(
I −

∣∣R∣∣∣∣L̃∣∣) ∣∣z(k+1) − z∗
∣∣ ≤ (∣∣I − Ω

∣∣+
∣∣(Ω−R)

∣∣∣∣L̃∣∣+
∣∣Ω∣∣∣∣Ũ ∣∣) ∣∣z(k) − z∗

∣∣. (3.8)

Since ρ(|R||L̃|) = 0, the matrix I −
∣∣R∣∣∣∣L̃∣∣ is invertible and possesses a nonnegative Neumann

expansion. Therefore,∣∣z(k+1) − z∗
∣∣ ≤ (I − ∣∣R∣∣∣∣L̃∣∣)−1 (∣∣I − Ω

∣∣+
∣∣(Ω−R)

∣∣∣∣L̃∣∣+
∣∣Ω∣∣∣∣Ũ ∣∣) ∣∣z(k) − z∗

∣∣, (3.9)

and relation (3.3) is obtained showing that a sufficient condition for the Projected MAAOR iterative
method to converge is ρ(G) < 1. 2

From Theorem 3.1 and especially relation (3.3) the following corollary is obtained which was
proved very useful in Theorem 3.1 of [27] and Theorem 3.1 of [24].

Corollary 3.1. Under the notation and assumptions of Theorem 3.1, from relation (3.3) the fol-
lowing inequality is readily obtained

‖z(k+1) − z∗‖∞ ≤ ‖G‖∞‖z(k) − z∗‖∞. (3.10)

An alternative theorem to Theorem 3.1 that gives equivalent results follows.

Theorem 3.2. Let z(k+1), z(k), z(k−1), k = 1, 2, 3 · · · , be three successive approximations to the
exact solution z∗ of (3.2). Then, there holds

|z(k+1) − z(k)| ≤ G|z(k) − z(k−1)|, k = 1, 2, 3, · · · . (3.11)
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Proof: Using equation (3.1) at the previous step, that is

z(k) =
(
z(k−1) −

(
−RL̃z(k) + Ω(I − L̃− Ũ)z(k−1) +RL̃z(k−1) + Ωq̃

))
+
, (3.12)

subtract it from (3.1), and follow step by step the proof of Theorem 3.1, (3.11) is obtained. 2

Theorem 3.3. Under the assumption that the matrix G of (3.4) satisfies ρ(G) < 1 (G ≥ 0), then
by the “Contraction Mapping Theorem” (see, e.g., Ortega and Rheinboldt [33]), (3.3) and (3.11)
imply ∣∣z(k) − z∗

∣∣ ≤ (I −G)−1Gk
∣∣z(1) − z(0)

∣∣. (3.13)

Proof: Beginning with
∣∣z(k) − z∗

∣∣ and using relation (3.3) we successively have∣∣z(k) − z∗
∣∣ ≤ G∣∣z(k−1) − z∗

∣∣ = G
(∣∣z(k−1) − z(k) + z(k) − z∗

∣∣) ≤ G∣∣z(k−1) − z(k)
∣∣+G

∣∣z(k) − z∗
∣∣,

from which we take
(I −G)

∣∣z(k) − z∗
∣∣ ≤ G∣∣z(k) − z(k−1)

∣∣. (3.14)

Since G is nonnegative and convergent, (I −G)−1 ≥ 0. So, multiplying both members of (3.14) by
(I −G)−1, using (3.11), and then induction, (3.13) is obtained. 2

Corollary 3.2. Under the assumptions of Theorem 3.3, the spectral radius of the matrix coefficient
in relation (3.13) is

ρ
(

(I −G)−1Gk
)

=
ρk(G)

1− ρ(G)
. (3.15)

Proof: First we prove that ρ
(
(I −G)−1G

)
= ρ(G)

1−ρ(G) and then our proof follows step by step the

analysis in the bottom half of page 95 and the end part of the proof of Theorem 3.29 of Varga [42].
To avoid unnecessary repetitions we simply say that from the relation just proved, the expression
in (3.15) readily follows. 2

4 Convergence intervals of the parameters involved

4.1 Strictly diagonally dominant H+−matrices

We observe that the matrix G in (3.4) and the matrix G in (4.1) of [21] are identical. So, if our
matrix A is “strictly diagonally dominant (SDD) by rows” with positive diagonal, then sufficient
conditions for G to converge are those of Theorem 4.1 of [21] depicted in Table 1.

Case ωi ri

(I) (0, 1]
(
−ωi(1−l̃i−ũi)

2l̃i
, ωi(1+l̃i−ũi)

2l̃i

)
(II)

[
1, 2

1+l̃i+ũi

) (
−2−ωi(1+l̃i+ũi)

2l̃i
, 2−ωi(1−l̃i+ũi)

2l̃i

)
Table 1: Sufficient convergence intervals for ωi, i ∈ N, and ri, i ∈ N\{1}
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Some issues in connection with Table 1 should be made clear.
i) l̃i, ũi, ∀ i ∈ N, are the row sums of the matrices L̃ and Ũ , respectively. Specifically,

l̃i =

i−1∑
j=1

|l̃ij | ∀ i ∈ N\{1} and ũi =

n∑
j=i+1

|ũij | ∀ i ∈ N\{n} with l̃1 = ũn = 0. (4.1)

Whenever l̃i = 0 appears as a denominator, we may assume that l̃i → 0+, and the corresponding
fraction tends to −∞ or +∞ depending on the sign of the numerator.
ii) A is irreducible and so is Ã. Therefore, in Case II all ωi’s but at least one can assume the right
end values of the corresponding open intervals. Similarly, in Cases I and II for all ri’s, i ∈ N\{1},
but one can assume either the left or the right end value of the interval.
iii) In the expression for the matrix G in (3.4), the matrix R multiplies the matrix |L̃| from the
left. Since l̃1 = 0, G is independent of r1 which can be any real number. and
iv) If A is an H+−matrix but not an SDD one, then it can be transformed into an SSD matrix by
using the Algorithm in [2] for A irreducible or the Algorithm in [11] for A irreducible or reducible.

4.2 H+−matrices

4.2.1 Introduction

In this section, we assume that A is an H+−matrix not necessarily an SDD one and we find sufficient
conditions for an upper bound of the spectral radius ρ(G) of the nonnegative matrix G in (3.3)-(3.4)
to be strictly less that unity. Then, the convergence of the MAAOR method for the solution of
the LCP will be guaranteed. The main tools in our analysis are the theory of Perron-Frobenius
together with that of regular splittings [42], nonnegative splittings [10], and M−splittings [38]. The
definitions for the three splittins are given below.

Definition 4.1. Let A,M,N ∈ Rn×n and A and M be nonsingular. Then A = M −N is:

1. A regular splitting of the matrix A if M−1 ≥ 0 and N ≥ 0. (For a regular splitting there holds
ρ(M−1N) < 1.)

2. A nonnegative splitting of the matrix A if M−1N ≥ 0. (A nonnegative splitting does not
always imply convergence of M−1N .)

3. An M−splitting if A and M are M−matrices and N ≥ 0. (For an M−splitting there holds
ρ(M−1N) < 1 since it is a particular case of a regular splitting.)

Now, observe that the matrix G in (3.4) comes from the splitting

Â = (I − |R||L̃|)− (|I − Ω|+ |Ω−R||L̃|+ Ω|Ũ |). (4.2)

The diagonal and the off-diagonal parts of I−|R||L̃| are positive and nonpositive, respectively. Since
ρ(|R||L̃|) = 0 < 1 the matrix I−|R||L̃| is an M−matrix. In addition, |I−Ω|+|Ω−R||L̃|+|Ω||Ũ | ≥ 0
. Therefore, the splitting of Â will be an M−splitting if Â is a nonsingular M−matrix. Writing Â
in (4.2) as

Â = (I − |I − Ω|)−
(

(|R|+ |Ω−R|) |L̃|+ Ω|Ũ |
)
, (4.3)
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Â has its off-diagonal part nonpositive so the matrix Â will be an M−matrix and the splitting in
(4.3) will be an M−splitting if and only if

diag (I − |I − Ω|) > 0 ⇔ ωi ∈ (0, 2)∀ i ∈ N and

ρ
(

(I − |I − Ω|)−1
(

(|R|+ |Ω−R|) |L̃|+ Ω|Ũ |
))

< 1.
(4.4)

To go on with our analysis we must get rid of the moduli in the diagonal matrices of the spectral
radius in (4.4) and so we have to consider the signs of ri, ωi − ri, 1− ωi, noting that for ri we will
always assume that i ∈ N\{1}. Hence, we distinguish the following six cases:

i) ri ≤ 0 < ωi ≤ 1, ii) ri ≤ 0, 1 ≤ ωi < 2, iii) 0 ≤ ri ≤ ωi ≤ 1,
iv) 0 ≤ ri ≤ ωi, 1 ≤ ωi < 2, v) ωi ≤ ri, 0 < ωi ≤ 1 vi) ωi ≤ ri, 1 ≤ ωi < 2,

(4.5)

which will be investigated further in the next section in order to find sufficient condition intervals
of the parameters ωi, ri for an upper bound (“majorizer”) of the matrix G in (3.4) to converge.

4.2.2 Sufficient convergence conditions

Under the conditions in (4.4), Â in (4.3) is an M−matrix and can also be written as

Â = (I − |I − Ω|)
(
I −

(
Ω−1 − |Ω−1 − I|

)−1
((

Ω−1|R|+ |I − Ω−1R|
)
|L̃|+ Ũ |

))
. (4.6)

Observe that the second factor above is an M−matrix and note that

Ω−1|R|+ |I − Ω−1R| ≥ Ω−1|R|+ I − Ω−1|R| = I ≥ 0.

Then, by the Perron-Frobenius theory, Â will still be an M−matrix if instead of conditions (4.4)
we consider the sufficient ones

ωi ∈ (0, 2)∀ i ∈ N and ρ
((

Ω−1 − |Ω−1 − I|
)−1 (

Ω−1|R|+ |I − Ω−1R|
) (
|L̃|+ Ũ |

))
< 1. (4.7)

Clearly, under the conditions (4.7) we have that

G ≤
(
Ω−1 − |Ω−1 − I|

)−1 (
Ω−1|R|+ |I − Ω−1R|

) (
|L̃|+ Ũ |

)
(4.8)

and appealing once again to the Perron-Frobenius theory we obtain that

ρ(G) ≤ ρ
((

Ω−1 − |Ω−1 − I|
)−1 (

Ω−1|R|+ |I − Ω−1R|
) (
|L̃|+ Ũ |

))
< 1. (4.9)

From (4.6)-(4.7) we can readily obtain the statement below.

Theorem 4.1. Sufficient conditions for convergence of the MAAOR method for the solution of the
LCP, with an irreducible H+−matrix, are the following

maxi∈N

|ri|
ωi

+
∣∣1− ri

ωi

∣∣
1
ωi
−
∣∣ 1
ωi
−1
∣∣ = maxi

|ri|+|ωi−ri|
1−|1−ωi| ≤

1

ρ(|B̃|)
∀ωi ∈ (0, 2), (4.10)

with strict inequality for at least one i. Also, the matrix on the right side of (4.8) is an M−matrix.
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Let us assume that all six cases in (4.5) are present in (4.10). Below we analyze only Case (i).
All other cases are analyzed in a similar way and the results obtained are summarized in Table 2.

i) If ri ≤ 0 < ωi ≤ 1, then

ωi − 2ri
ωi

≤ 1

ρ(|B̃|)
⇐⇒

ωi

(
ρ(|B̃|)− 1

)
2ρ(|B̃|)

≤ ri ≤ 0 < ωi ≤ 1.

Case Sufficient convergence intervals

(i)
ωi(ρ(|B̃|)−1)

2ρ(|B̃|)
≤ ri ≤ 0 < ωi ≤ 1

(ii)
ωi2(1+ρ(|B̃|))−2

2ρ(|B̃|)
≤ ri ≤ 0 and 1 ≤ ωi ≤ 2

1+ρ(|B̃|)

(iii) 0 ≤ ri ≤ ωi ≤ 1 <
(

1

ρ(|B̃|)

)
(iv) 0 ≤ ri ≤ ωi and 1 ≤ ωi ≤ 2

1+ρ(|B̃|)

(v) 0 < ωi ≤ ri ≤
ωi(1+ρ(|B̃|))

2ρ(|B̃|)
and ωi ≤ 1

(vi) 1 ≤ ωi ≤ ri ≤
2−ωi(1−ρ(|B̃|))

2ρ(|B̃|)
and ωi ≤ 2

1+ρ(|B̃|)

Table 2: Sufficient convergence intervals for ωi ∀ i ∈ N and ri ∀ i ∈ N\{1}
Note: In a certain case at least one of the inequalities coming from relations (4.10) must be strict

4.2.3 “Best” MAAOR iterative method

In this section we find the “best” MAAOR iterative method for the solution of the LCP in the
sense that we make the majorizer of the matrix G in (4.8), and hence its spectral radius in the
middle of relations (4.9), be as small as possible. For this we assume that the diagonal elements of
R and Ω satisfy the sufficient convergence conditions of all six Cases of Table 2. Let then

R = diag
(
diag(R(i)),diag(R(ii)), diag(R(iii)),diag(R(iv)),diag(R(v)), diag(R(vi))

)
,

Ω = diag
(
diag(Ω(i)), diag(Ω(ii)), diag(Ω(iii)), diag(Ω(iv)),diag(Ω(v)), diag(Ω(vi))

)
,

(4.11)

where
Rj ,Ωj ∈ Rcard(j)×card(j) ∀ j ∈ {(i), (ii), · · · , (vi)},

with
∑(vi)

j=(i) card(j) = n, have elements satisfying all the sufficient convergence conditions of Cases

(i) − (vi) of Table (2), respectively. Note that if the diagonal elements of R and Ω are not in the
above sequence then a similarity permutation of the original LCP can make them be.

First, the “best” case out of Cases (i) and (ii) is determined.
a) Let the M−splitting of the matrix G = M −N leading to

M−1 = I + |R||L̃|+ (|R||L̃|)2 + · · ·+ (|R||L̃|)n−1 ≥ 0, N = |I − Ω|+ |Ω−R||L̃|+ Ω|Ũ | ≥ 0

and let below the auxiliary nonnegative splitting corresponding to R(i) = 0 and R(ii) = 0, namely

M−1
R(i)=0,R(ii)=0 =

I + |R|R(i)=0,R(ii)=0|L̃|+ (|R|R(i)=0,R(ii)=0|L̃|)2 + · · ·+ (|R|R(i)=0,R(ii)=0|L̃|)n−1 ≥ 0,

NR(i)=0,R(ii)=0 = |I − Ω|+ |Ω−R|R(i)=0,R(ii)=0|L̃|+ Ω|Ũ | ≥ 0.
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Clearly,
0 ≤M−1

R(i)=0,R(ii)=0 ≤M
−1 and 0 ≤ NR(i)=0,R(ii)=0 ≤ N

leading, by the Perron-Frobenius theory, to

ρ
(
M−1
R(i)=0,R(ii)=0NR(i)=0,R(ii)=0

)
≤ ρ

(
M−1N

)
< 1.

Hence, the particular case R(i) = 0, R(ii) = 0, corresponding to two extreme cases of Cases (i)
and (ii), gives a better spectral radius than the general Cases (i) and (ii) do. This suggests to
incorporate the “best” Cases (i) and (ii) into the Cases (iii) and Case (iv), respectively. This
incorporation can be accomplished by a similarity permutation.

Next, the “best” case out of the “new” Cases (iii)− (vi) is determined.
b) Consider Cases (v) and (vi) and assume that Cases (i) and (ii) have already been incorporated

into Cases (iii) and (iv), respectively, with R(i) = 0, R(ii) = 0. So, the “new” Cases (iii′) = (i)∪(iii)

and (iv′) = (ii) ∪ (iv). Recall that the “best” splitting found so far is Â′ = M ′ −N ′, where

M ′ =

 Ij
I(v)

I(vi)

−
 Rj

R(v)

R(vi)

 |L̃|,

N ′ =

 |Ij − Ωj |
I(v) − Ω(v)

Ω(vi) − I(vi)

+

 Ωj −Rj
R(v) − Ω(v)

R(vi) − Ω(vi)

 |L̃|+ Ωj

Ω(v)

Ω(vi)

 |Ũ |.
Together with the above splitting we consider the auxiliary splitting Â′′ = M ′′ −N ′′, where

M ′′ =

 Ij
I(v)

I(vi)

−
 Rj

Ω(v)

Ω(vi)

 |L̃|,

N ′′ =

 |Ij − Ωj |
I(v) − Ω(v)

Ω(vi) − I(vi)

+

 Ωj −Rj
0(v)

0(vi)

 |L̃|+ Ωj

Ω(v)

Ω(vi)

 |Ũ |, j = (iii′) ∪ (iv′).

Since the two M−matrices M ′ and M ′′ satisfy M ′ ≤ M ′′ it is implied that 0 ≤ M ′′−1 ≤ M ′−1; it
is also 0 ≤ N ′′ ≤ N ′. These inequalities lead to

ρ
(
M ′′
−1
N ′′
)
≤ ρ

(
M ′
−1
N ′
)
< 1.

Hence, the “best” splitting of the two splittins considered is the latter one Â′′ = M ′′ −N ′′.
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c) Then, together with the above “best” splitting Â′′(R,Ω) = M ′′(R,Ω)−N ′′(R,Ω) we consider
the splitting Â′′(Ω,Ω) = M ′′(Ω,Ω)−N ′′(Ω,Ω), where Rj is replaced by Ωj . It is seen that

M ′′−1(Ω,Ω) ≥M ′′−1(R,Ω) ≥ 0, 0 ≤ N ′′(Ω,Ω) ≤ N ′′(R,Ω), (4.12)

because the M−matrices M ′′(Ω,Ω) and M ′′(R,Ω) satisfy M ′′(Ω,Ω) ≤ M ′′(R,Ω). Therefore, a
direct comparison of the spectral radii as in the previous cases (a) and (b) can not be made.
However, we observe that in both cases the difference of the relevant M ’s and N ’s produce the
same M−matrix

Â′′(R,Ω) = Â′′(Ω,Ω) = (I − |I − Ω|)− Ω|B̃| =
(I − |I − Ω|)

(
I − (Ω−1 − |Ω−1 − I|)−1|B̃|

)
.

(4.13)

In view of the relation N ′′(Ω,Ω) ≤ N ′′(R,Ω) above we will obtain

ρ
(
Â′′
−1

(Ω,Ω)N ′′(Ω,Ω)
)
≤ ρ

(
Â′′
−1

(R,Ω)N ′′(R,Ω)
)
, (4.14)

consequently, by Theorem 3.29 of Varga [42] the following two sets of relations are obtained

ρ
(
M ′′
−1

(Ω,Ω)N ′′(Ω,Ω)
)

=
ρ
(
Â′′
−1

(Ω,Ω)N ′′(Ω,Ω)
)

1 + ρ
(
Â′′
−1

(Ω,Ω)N ′′(Ω,Ω)
) < 1, (4.15)

ρ
(
M ′′
−1

(R,Ω)N ′′(R,Ω)
)

=
ρ
(
Â′′
−1

(R,Ω)N ′′(R,Ω)
)

1 + ρ
(
Â′′
−1

(R,Ω)N ′′(R,Ω)
) < 1. (4.16)

From relations (4.12)-(4.16) it is concluded that

0 ≤ ρ
(
M ′′
−1

(Ω,Ω)N ′′(Ω,Ω)
)
≤ ρ

(
M ′′
−1

(R,Ω)N ′′(R,Ω)
)
< 1. (4.17)

Now, since the two matrices in (4.13) are M−matrices sufficient and necessary convergence condi-
tions are

0 < ωi ≤
2

1 + ρ(|B̃|)
and 0 ≤ ri ≤ ωi ∀ i ∈ (iii′) ∪ (iv′), (4.18)

with strict inequality in the first set of relations for at least one i. As a by-product of the analysis
so far we have that

Theorem 4.2. Conditions (4.18) constitute sufficient conditions for the MAAOR method for the
solution of the LCP, with an irreducible H+−matrix, to converge.

d) By a new similarity permutation we bring Cases (iii′′) = (iii′) ∪ (v) as they have been
modified to the first three block positions and Cases (iv′′) = (iv′) ∪ (vi) to the last three. Hence,
under conditions (4.18), the matrices of the “best” splitting so far can be written as

M ′′′ =

[
Ij

Ik

]
−
[

Ωj

Ωk

]
|L̃|, N ′′′ =

[
Ij − Ωj

Ωk − Ik

]
+

[
Ωj

Ωk

]
|Ũ |,
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where j = (iii′′) and k = (iv′′). Let Â′′′ = M ′′′ −N ′′′ be written as

Â′′′ =

[
Ωj

2Ik − Ωk

](
I −

[
Ωj

2Ik − Ωk

]−1 [
Ωj

Ωk

]
(|L̃|+ |Ũ |)

)
=

[
Ωj

2Ik − Ωk

](
I −

[
Ij

(2Ω−1
k − Ik)

−1

]
|B̃|
)
.

From the above expression, Â′′′ is an M−matrix if max

{
ρ(|B̃|),maxk

(
1

2
ωk
−1

)
ρ(|B̃|)

}
≤ 1 or,

equivalently, max
{

1, maxωk
2−maxωk

}
≤ 1

ρ(|B̃|)
implying, eventually, that 0 < ωj ≤ 1 and 1 ≤ ωk ≤

2

1+ρ(|B̃|)
, with at least one strict inequality on the right in the second set of relations in case k = N .

Remark 4.1. As a by-product of the analysis and the results just found we have that for H+−ma-
trices A and for R = Ω sufficient conditions for the “Modified SOR (MSOR)” iterative method for
the solution of the LCP to converge are that conditions (4.18) become

0 < ωi ≤
2

1 + ρ(|B̃|)
∀ i ∈ N, (4.19)

with strict inequality for at least one i (see also Song [39]).

e) Now, consider the new auxiliary splitting

M ′′′1 =

[
Ωj

Ωk

]
−
[

Ωj

Ωk

]
|L̃|, N ′′′1 =

[
Ωj

Ωk

]
|Ũ |. (4.20)

and let
Â′′′1 = M ′′′1 −N ′′′1 , Â′′′2 ≡ Â′′′ = M ′′′ −N ′′′ ≡M ′′′2 −N ′′′2 .

Clearly, both splittings are nonnegative splittings since M ′′′i
−1N ′′′i ≥ 0, i = 1, 2. Also,

Â′′′1
−1

= (I − |B̃|)−1

[
Ωj

Ωk

]−1

,

Â′′′2
−1

=

(
I −

[
Ij

(2Ω−1
k − Ik)

−1

]
|B̃|
)−1 [

Ωj

2Ik − Ωk

]−1

.

(4.21)

It is 1

ρ(|B̃|)
Ik ≥ diag

(
(2Ω−1

k − Ik)
−1
)
≥ diag(Ik) and diag

(
(2Ik − Ωk)

−1
)
≥ diag

(
Ω−1
k

)
. These

relations imply that each matrix I − |B̃| and I −
[
Ij

(2Ω−1
k − Ik)

−1

]
|B̃| is an M−matrix and

the splittings considered are regular splittings of M−matrices and so they are convergent. Since

each factor of Â′′′2
−1

is nonnegative and greater than or equal to the corresponding nonnegative

factor of Â′′′1
−1

we obtain that

Â′′′2
−1
≥ Â′′′1

−1
≥ 0.

If we denote by xi, i = 1, 2, the Perron vectors of the nonnegative convergent matricesM ′′′i
−1N ′′′i , i =

1, 2, respectively, we have that N ′′′2 x1 ≥ N ′′′1 x1 ≥ 0, with N ′′′i ≥ 0, i = 1, 2, then all the assumptions
of Theorem 3.13 by Marek and Szyld [30] hold and, therefore,

ρ
(
M ′′′1

−1
N ′′′1

)
≤ ρ

(
M ′′′2

−1
N ′′′2

)
< 1. (4.22)

Consequently, we have just proved that
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Theorem 4.3. By relations (4.22) the splitting Â′′′1 = M ′′′1 −N ′′′1 (4.20) is the “best” of all possible
convergent splittings for the solution of the LCP and is nothing but the Projected Gauss-Seidel
splitting of the matrix Â, namely

M ′′′1 −N ′′′1 = (I − |L̃|)− |Ũ |.

Corollary 4.1. Since the matrix A of LCP in (1.1) is irreducible, so is the matrix |B̃|, meaning

that Â′′′2
−1

> 0. Then, if at least one diagonal element of either Ωj or Ωk in (4.21) is different
from 1, then N1 6= N2 and, by Theorem 3.13 by Marek and Szyld [30], the inequality in (4.22) is
strict.

4.2.4 MAAOR versus MBSAOR

In this section we make a theoretical comparison of the “majorizers” of the present method and of
the well-known “Modulus-Based Splitting Accelerated Overrelaxation (MBSAOR)” iterative method
for the solution of the LCP [5] when the matrix coefficient A is an H+−matrix. In a series of
papers [44, 22, 17, 16], the original convergence intervals for the parameters α, β, used in [5], were
successively widened. In only two of these works [22, 16], the “best” MBSAOR, in the sense of
minimizing the corresponding majorizer, was found and it was the same Gauss-Seidel (MBSGS)
method, despite some minor differences in these two works. Their “best” iteration matrix was given
by

T̂1 = (2I − |L̃|)−1(|L̃|+ 2|Ũ |). (4.23)

In the present work it has been found that the “best” Projected MAAOR iterative method is again
the Projected Gauss-Seidel (MAGS) iterative method. Its “best” iteration matrix is

T̂2 = (I − |L̃|)−1|Ũ |. (4.24)

However, it should be reminded that from (3.3)-(3.4) and (4.8) the operator G and, therefore, T2

is a majorizer of an unknown operator T ′2 satisfying |z(k+1) − z∗| = T ′2|z(k) − z∗|. Specifically,

0 ≤ T ′2 ≤ G ≤
(
Ω−1 − |Ω−1 − I|

)−1 (
Ω−1|R|+ |I − Ω−1R|

) (
|L̃|+ Ũ |

)
=: T2.

Similarly, the operator T1 is a majorizer of the operator L̂Ω (see [5], relations (9)-(10)), which in
turn, is a majorizer of an unknown operator T ′1 such that |x(k+1) − x∗| = T ′1|x(k) − x∗|, according
to the notation in [5].

Consequently, in this section only a theoretical comparison of the majorizers associated with
the two methods is made and so only in this sense the comparison is meant.

Note that the nonnegative matrices T̂1 and T̂2 come from the splittings of the M−matrices Ã1

and Ã2, respectively,

Ã1 = (2I − |L̃|)︸ ︷︷ ︸
M1

− (|L̃|+ 2|Ũ |)︸ ︷︷ ︸
N1

, Ã2 = (I − |L̃|)︸ ︷︷ ︸
M2

− |Ũ |︸︷︷︸
N2

. (4.25)

The splittings in (4.25) are M−splittings because the matrices M1,M2 are M−matrices and
N1, N2 ≥ 0. Observe that

Ã−1
1 N1 =

1

2
(I − |B̃|)−1(|L̃|+ 2|Ũ |) = (I − |B̃|)−1(

1

2
|L̃|+ |Ũ |) ≥ (I − |B̃|)−1|Ũ | = Ã−1

2 N2 ≥ 0.
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Then, by Theorem 3.29 of Varga [42] there holds

ρ(T̂2) ≤ ρ(T̂1) < 1. (4.26)

Since the matrix A, and Ã, is irreducible the inequality in (4.26) is strict. Consequently, the
following statement holds.

Theorem 4.4. The “best” of the two “best” iterative methods, the MBSGS and the Projected
MAGS, is the latter one.

Remark 4.2. It should be pointed out once again that both “best” operators (majorizers) T̂1 and
T̂2 constitute upper bounds of the actual operators in the corresponding methods. This is due to
the nature of the analyses in [5] and in the present work since the actual operators can not be
determined. So, Theorem 4.4 is of relative value although it is the only way one can use to make a
theoretical comparison of the performance of the two methods.

5 Numerical examples

Many numerical examples were run on a computer to verify: a) The successive improvement of
ρ(G) as the analysis of section 4.2.3 suggests. and b) The theoretical result of section 4.2.4 that
the “best” Projected MAAOR (MAGS) is better than the “best” MBSAOR (MBSGS) method.

Example 5.1: Without loss of generality consider the following irreducible M−matrix (not
SDD) with diagonal elements equal to one, so it is an H+−matrix with the spectral radius of its
Jacobi iteration matrix being ρ(|B̃|) = 0.9085.

A =



1 −0.2 −0.2 0 −0.2 −0.2 −0.2
−0.3 1 0 −0.2 −0.1 −0.1 −0.2

0 −0.3 1 −0.2 −0.2 −0.1 0
−0.3 −0.1 −0.3 1 0 −0.3 −0.1
−0.2 −0.3 −0.2 −0.2 1 0 −0.1

0 −0.3 −0.3 −0.1 0 1 −0.2
−0.1 −0.1 −0.2 −0.1 −0.1 −0.1 1


∈ R7×7. (5.1)

In Table 3, the successive improvement of the spectral radius ρ(G) as the analysis of section 4.2.3
suggests is seen, despite the fact that some of the ri’s and ωi’s where chosen to lie outside the
convergence intervals of Table 2 (see also Theorem 4.2 and Remark 4.1) in order to show the
sufficiency of the determined intervals. Note that we always take r1 = ω1 = 1.

Example(s) 5.2: A number of examples, based on the main Examples 5.1 and 5.2 of [5], were
implemented in MATLAB R2009b and ran on a PC with a 3.50 GHz 64 bit processor and 4GB
memory. The specifics of the LCP problems are of the general form

A = Ã+ µIn ∈ Rn×n, Ã = Im ⊗ S + S ⊗ Im ∈ Rn,×n, S = tridiag(α, 2, β) ∈ Rm×m,
n = m2, (α, β) = (±1,±1), (±1.5,±0.5), (±0.5,±1.5), µ = 0, 2, 4,

with their solutions always being z∗ = [1 2 1 2 · · · ]T ∈ Rn×n and r∗ = 0 ∈ Rn×n.
(5.2)

In all the examples q = r∗ − Az∗, z(0) = 0 ∈ Rn×n, the stopping criterion was ||z(k) − z∗||∞ ≤
0.5 × 10−15 and m = 10, 20, 30, 40, 50, 60 (n = 100, 400, 900, 1600, 2500, 3600). If after 5000
iterations there was no convergence this is denoted with a “−”.
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Case diag(Ω) diag(R) ρ(G)

[1, 0.8, 0.8, 1, 0.9, 0.9, 1.1] [1, −0.1, 0, 0.3, 0.4, 1, 1.2] 0.9783

(a) same as above [1, 0, 0, 0.3, 0.4, 1, 1.2] 0.9610

(b) same as above [1, 0.8, 0.8, 1, 0.9, 1, 1.2] 0.9468

(c) same as above [1, 0.8, 0.8, 1, 0.9, 0.9, 1.1] 0.8848

(d) [1, 1, 1, 1, 1, 1, 1.1] [1, 1, 1, 1, 1, 1, 1.1] 0.8583

(e) [1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1] 0.8160

Table 3: Successive improvement of ρ(G) as this was proved in section 4.2.3.

In Table 4 the results for the Examples 5.1 and 5.2 of [5] are illustrated. Note that MBSGS
denotes the methods of [22] (relations (3.1), (3.3), (3.6), with Ω = D) and [16] (relations (2.1),
(2.3), (3.1), with Ω = D), while “iter” and “CPU” denote the number of iterations needed to
satisfy the convergence criterion and the CPU time in seconds, respectively.

It should be reported that we ran all the examples for the pairs (α, β) and for the µ’s in (5.2).
From their CPU times it can be concluded that in almost all of the experiments the theoretical
result of section 4.2.4 was verified, that is the MAGS method is better than the MBSGS one.

The MBSGS method was better than the MAGS method in the following few cases: In Example
5.2.1 of Table 4 and in those for µ = 0, 2, all n and (α, β) = (−1, 1) and for µ = 0, all n and
(α, β) = (1,−1). Also, in Example 5.2.2 of Table 4 and in those for µ = 0, all n and (α, β) =
(−1.5, 0.5), (1.5,−0.5), (−0.5, 1.5). It should be said that in most of the cases and for small values
of m ≈ 10, MBSGS was better than MAGS. It is also observed that in some cases, as in Example
5.2.1 of Table 4 for µ = 0, there was no convergence after 5000 iterations.

6 Concluding remarks and discussion

In this work the solution of the LCP when its matrix is an irreducible H+−matix by the Projected
MAAOR method was studied. As was proven, the convergence intervals for both matrix-parameters
R and Ω extend those of the Generalized AOR (GAOR) iterative method where R = αΩ.

Sufficient convergence intervals were found for A being an SDD H+−matrix (Table 1) and an
(irreducible) H+−matrix (Table 2). Use of the Perron-Frobenius theory for nonnegative matrices
and also that of regular splittings and their extensions was make that enabled us to prove that the
“best” of all Projected MAAOR methods, in the sense that has already been explained, for the
solution of the LCP, with an H+−matrix, is the Projected Gauss-Seidel method.

Since the matrix G connecting the moduli of the error vectors in the MAAOR iterative method
for the solution of a (complex) linear system of [21] and the relevant matrix G of the Projected
MAAOR method for the solution of the LCP with an H+−matrix are identical, it leads us to the
following observation. Let a linear system with an H−matrix coefficient,

A1x = b, A1 ∈ Cn×n, b ∈ Cn,

which is solved by the MAAOR method, and an LCP with an H+−matrix,

r = A2z + q, A2 ∈ Rn×n, q ∈ Rn, rT z = 0,
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Example 5.2.1 Example 5.2.2

(α, β) = (−1,−1) (α, β) = (−1.5,−0.5)

µ = 0 µ = 0

MAGS MBSGS MAGS MBSGS

m iter CPU iter CPU m iter CPU iter CPU

10 424 0.4688 607 0.4063 10 104 0.1875 158 0.0938

20 1522 10.4844 2141 19.1719 20 138 0.9219 219 2.0313

30 3352 87.7969 4578 224.7969 30 163 4.1250 269 13.1250

40 − − − − 40 183 12.5938 308 47.7500

50 − − − − 50 204 31.9844 350 132.9375

60 − − − − 60 221 67.9844 403 329.1094

µ = 2 µ = 2

MAGS MBSGS MAGS MBSGS

m iter CPU iter CPU m iter CPU iter CPU

10 47 0.0469 64 0.0313 10 32 0.0313 52 0.0313

20 52 0.3594 69 0.6563 20 34 0.2344 59 0.5469

30 53 1.3750 70 3.5156 30 35 0.8906 61 3.0469

40 53 3.6563 71 11.4219 40 35 2.4063 61 9.7188

50 53 8.3750 71 27.9531 50 35 5.4688 61 23.8281

60 53 16.3750 71 58.8125 60 35 10.8281 61 50.3594

µ = 4 µ = 4

MAGS MBSGS MAGS MBSGS

m iter CPU iter CPU m iter CPU iter CPU

10 31 0.0313 41 0.0156 10 23 0.0156 36 0.0156

20 34 0.2344 43 0.3906 20 24 0.1875 38 0.3438

30 34 0.9219 43 2.1250 30 24 0.6250 39 1.9375

40 34 2.3906 43 6.7500 40 24 1.6250 39 6.0625

50 34 5.3750 43 16.5781 50 24 3.7813 39 14.8594

60 34 10.5469 43 34.7656 60 24 7.3750 39 31.1875

Table 4: Examples 5.2.1 and 5.2.2

solved by the Projected MAAOR method and let the two matrices have identical moduli of their
associated Jacobi matrices. Then, all the sufficient convergence conditions illustrated in Tables 1
and 2 and the “best” MAAOR iterative method for both problems are exactly the same.

Illustrative numerical examples verify our theoretical findings in almost all possible cases con-
sidered. Specifically: Example 5.1 verifies the improvement of ρ(G) as one follows step by step the
analysis of section 4.2.3 even if the matrix-parameters R and Ω are not taken from the intervals
the sufficient convergence conditions suggest (see Tables 2 and 3).

Finally, the theory of section 4.2.4 was verified in most of the numerical examples run on a
computer as was explained in detail for Example(s) 5.2. However, we should add once more that,
the reader having in mind the detailed analysis of section 4.2.4, much more theoretical work is
needed in order to obtain stricter upper bound operators (majorizers) for the present method and
the method in [5] before we decide which of the two methods is the best to be employed in a
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particular case. Otherwise the comparison between the two methods has to be justified by many
more characteristic examples coming from real life problems. In both these directions we have been
working.

Acknowledgment: The authors are grateful to the two anonymous referees for their sugges-
tions which significantly improved the presentation of this work.

Appendix

A The reducible case

If the matrix A in (1.1) is reducible then a suitable similarity permutation can put A into its
Frobenius normal form (see the articles by Tarjan [40], Duff and Reid [19], and Bru Garcia et
al [11]). Assuming that P ∈ Rn×n is the similarity permutation matrix, the LCP in (1.1) is
transformed as follows

(Pr) = (PAP T )(Pz) + (Pq) and (Pr)T (Pz) = 0. (A.1)

If we relabel the entities Pr, Pz, PAP T , P q as r, A, z, q, respectively, we will have that

r1

r2
...
ri
...

rp−1

rp


=



A11 A12 · · · A1i · · · A1,p−1 A1p

A22 · · · A2i · · · A2,p−1 A2p

. . .
...

...
...

Aii · · · Ai,p−1 Aip
. . .

...
...

Ap−1,p−1 Ap−1,p

App





z1

z2
...
zi
...

zp−1

zp


+



q1

q2
...
qi
...

qp−1

qp


and

∑p
i=1 r

T
i zi = 0,

(A.2)

where the diagonal matrices Aii are ni×ni blocks, with
∑p

i=1 ni = n, and each of the sub-vectors ri,
zi, qi has ni, i ∈ {1, 2, · · · , p}, components. Clearly, the relabeled matrix A is an H+−matrix and so
are all the diagonal blocks Aii, i ∈ {1, 2, · · · , p}. Hence, the LCP problem in (A.2) is equivalent to
the following p LCP subproblems which can be solved by a back substitution type process. Namely,

rp = Appzp + qp, ri = Aiizi +

 p∑
j=i+1

(Aijzj) + qi

 , i = p− 1, p− 2, · · · , 2, 1,

where the vector
∑p

j=i+1 (Aijzj) + qi plays the role of the known vector.
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