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Mathematics  as a Laboratory Science 
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Abstract 

The aim of this paper is to analyze the role of physics laboratory in teaching mathematics. 
In order to clarify the relation between mathematics and physics, theoretical arguments and 
existing literature are reviewed. Physics can contribute to mathematics teaching in two 
aspects: as real life problems describing a physical situation demanding the appropriate 
mathematical model (before the teaching of the correspondent math concept or algorithm) 
or as an imitation of the real situation in the context of the laboratory. The latter is 
investigated in our work. Working in the laboratory, secondary school students used 
science and engineering practices, such as asking questions and defining problems, 
developed and used models, and carried out investigations. The intersecting concepts of 
cause-effect and function were discussed initially at an intuitive level, and in a more 
abstract one after the laboratory session.  
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The role of Physics in Mathematics teaching  

Until the 19th century the disciplines of mathematics and physics were not 
separate; major figures such as Galileo, Kepler, Leibniz, Newton cannot be 
considered as either physicists or mathematicians, rather they were Natural 
Philosophers. Poincaré, preoccupied by many aspects of mathematics, 
physics and philosophy, is often described as the last universalist in 
mathematics. The real divide between Mathematics and Physics began to 
open up in the 19th century. Morris Kline (1980) has written about “the 
disastrous divorce” of the mathematics profession from physics, which 
began in the latter part of the nineteenth century. He estimated that, by 
1980, eighty per cent of active mathematicians were ignorant of science and 
perfectly happy to remain that way. In the tertiary level, mathematics 
courses have become increasingly irrelevant to physics, so physics 
departments offer their own courses in “methods of mathematical physics” 
at both graduate and undergraduate levels. Nevertheless, Mathematics has 
always been the language of Physics and Physical experiments. Physical 
Mathematics is defined as a process of knowledge creation with the 
intention to develop mathematical models of physical phenomena, and is 
[motivated] by them, in contrast with mathematical physics, which 
historically deals with concrete applications of mathematics to physics. 
According to Dirac (1939, p.3): “Mathematics and physics are becoming 
ever more closely connected, though their methods remain different. One 
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may describe the situation by saying that the mathematician plays a game in 
which he himself invents the rules while the physicist plays a game in which 
the rules are provided by Nature, but as time goes on it becomes 
increasingly evident that the rules which the mathematician finds interesting 
are the same as those which Nature has chosen. It is difficult to predict what 
the result of all this will be. Possibly, the two subjects will ultimately unify, 
every branch of pure mathematics then having its physical application, its 
importance in physics being proportional to its interest in mathematics”. 
According to Moore (2014), physical mathematics is sometimes viewed 
with suspicion by both physicists and mathematicians. On one hand, 
mathematicians regard it as deficient, for lack of mathematical rigor, on the 
other hand, its relative lack of reliance on laboratory experiments is viewed 
- with some justification - as dangerous by many physicists.  In the field of 
education in particular, the role of mathematics in physics teaching and 
learning, is well-established. It is well-known that when it comes to solving 
physics problems, mathematics can be of major assistance, as mathematical 
models are often used to describe physical events in the real world. The 
opposite, is less evident. Sometimes reflecting on physical principles, or 
imagined physical set-ups, can lead to the discovery of mathematical truths. 
In the classroom, the role of physics in mathematics is restricted to some 
problems introduced only after the students have been taught about the 
mathematical concept, though physics can be a fertile ground for new 
mathematical ideas and creative mathematical reasoning. In spite of efforts 
to restructure mathematics and science curricula, conventional uses of the 
textbook, and methods of delivery have remained unchanged. Only rarely 
are mathematics and science in real interdisciplinary contexts combined in 
textbooks and teaching materials, carving a divide between formal 
mathematics -an island- and real world experience and applications -the 
mainland- in a so-called “island problem”. This is especially evident in 
upper secondary education, where decontextualized theories and specialized 
algebraic techniques are simply memorized by students and discarded from 
memory after exams. More than a century ago Fehr (1963, p.395) had 
written that: “no subject can contribute more than physics to the teaching of 
mathematics[...] to the extent that mathematics consists of abstractions from 
the physical world and physics makes use of mathematical terms and 
relations to describe aspects of physical situations, the subjects are 
identical.” This contribution can manifest as either a real life problem to be 
addressed, described before the teaching of the correspondent math concept 
or algorithm (a physical situation requiring an applicable mathematical 
model), or as a simulation of the real situation in the context of laboratory. 
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In this study we address the latter. The laboratory environment we have 
adopted was a kind of interactive-engagement lab (Hake, 1997) i.e. inquiry-
driven, but the students are guided in their inquiry by carefully designed 
instructions, technology, and teacher support. The theoretical construct 
guiding the instruments used (: different kinds of bottles), was variation 
theory, developed by Marton and his collaborators (2004). According this 
theory, people discern certain aspects of their environment by experiencing 
variation. When one aspect of a phenomenon or an event varies, while one 
or more aspects remain the same, the one that changes will be discerned. 
 

Mathematics and Physics: Different styles of thinking? 
Is it possible to achieve a mathematics and physics integration, given some 
epistemological constrains: differences in terminology, notational systems, 
and styles of thinking? For example, to students, a graph in mathematics 
constitutes the representation of a function. In applied mathematics and 
science, the graph comes to represent a relationship between at least two 
quantities each with its own variable. Crombie (Crombie, 1981, p. 284; 
quoted in Hacking, 2002, p. 161) describes six styles -not mutually 
exclusive- of scientific thinking distinguished by their objects and their 
methods of reasoning. The first three of these methods are: (a) The simple 
method of postulation, (b) Experimental measurement, and exploration of 
more complex observable relations. (c) Hypothetical construction of 
analogical models. Style (a) refers to the Greek search for first principles, 
while (b) and (c) correspond to the contemporary distinction between 
experimenter/empirical [empiricist?] and theoretician. In addition, Hacking 
(2002) postulates a combination of (b) and (c) in a new style, which he calls  
“the laboratory style of thinking and doing”. It encompasses the creation of 
a class of phenomena, which provide empirical constraints for hypothetical 
models, and need to be explained, or accounted for, by suitable models 
(p.658). 

 
Can a laboratory style of thinking be fostered in the mathematics 
classroom? 
Put in a more provocative manner: Can we say that mathematics is a 
laboratory science? This is rather a philosophical question beyond the scope 
of this paper, though near equivalent reformulations could be: Are school-
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mathematics a laboratory science? Is the physics laboratory the place where 
physics and mathematics can meet each other?  
Can physics and mathematics be a “happy family” in which theory and 
experiment coming from different directions meet? (1983, p. 159). Given 
that cognitive processes for understanding math and physics are intimately 
linked and fundamentally the same (Hestenes, 2010, p.14), we could answer 
affirmatively to these questions. According to Hacking (2007), there is no 
incompatibility between the laboratory style of thought and action, and 
mathematics teaching and learning: “In the case of mathematics, we are 
familiar on the one hand with a distinction between mathematical and other 
methods of reasoning, and on the other, with a distinction between the 
abstract objects of mathematics, and the objects of everyday life.”  
Furthermore, in mathematics and physics, problems are the source of new 
knowledge constructed through modeling processes. Knowledge of 
mathematics and physics (at least until the beginning of university) involves 
relations between two worlds: theory-model and object-event worlds. 
During the laboratory work, students are expected to link observed data to 
either theoretical models, or to the ‘real problem’ that they are investigating. 
The basic problem of mathematical modeling in a laboratory context is that  
non-abstract constructs (apparatus, instruments…) are, by virtue of being 
non-abstract, essentially different from abstract mathematical objects. So, in 
the process of abstraction the content of the mathematical result can never 
be the same as the content of its interpretation in terms of non-abstract 
constructs. Therefore, informal personal decisions and social negotiations 
are required about whether and to what extent the interpretation can be 
accepted. Measurement, itself be seen as an instance of contradiction 
between the observational data and the abstract construct.  As Hennig (2010, 
p.25) comments, since mathematical and non abstract constructs do not 
belong to the same domain of reality, they cannot be identified with each 
other […] Mathematical modeling can support agreement about the modeled 
reality, as long as the model and its interpretation can be accepted by 
everyone involved […] Communication is also required about measurement 
procedures.  The consequence of these statements is that the designed 
laboratory activities require carefully chosen experiments, in order to lead 
the students to construct the demanded relationships.  A crucial element in 
the laboratory experiments is the artifice used. 
Teaching mathematics in the classroom is totally different than teaching in 
the physics laboratory. The first has the teacher as the protagonist. The 
second, the “laboratory style” teaching, place on the scene “A new actor: 
not a person but a piece of apparatus” (Hacking 2007, p.8).  This apparatus, 
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the “artifice” is not merely a mechanical device, but creates new 
phenomena. In the laboratory, instruments generally start out as objects of 
investigation before they can be trusted as tools to produce new phenomena, 
not bound to the original research. Under this line of reasoning several 
questions concerning the teaching of mathematics arise: How can we trace 
the way from laboratory apparatus to mathematical objects/abstractions? 
What work has to be done to make experimental phenomena travel to 
locations away from where they were constructed? Golinski (2008, p.33) 
labels this "the problem of construction": “In a sense, this is the same 
problem that traditional philosophy of science has tackled under the 
heading, "the problem of induction," with the assumption that the question 
is one of legitimating the form of argument that moves from a particular 
instance of a phenomenon to a general law”. Fleck (1979) provided two 
answers to this question. One concerns the mechanisms of communication 
(discursive level): “The same process occurs in the course of translation 
from reports in scientific journals to textbook science. In textbooks, facts are 
consolidated, simplified, and stripped of reference to the particular 
circumstances of their origins; they thereby become more certain as 
knowledge”. The other concerns the transfer of the sustaining culture of 
thought collectives to new sites “Phenomena are then reproduced outside 
the laboratory by transferring the conditions prevailing in the "microworlds" 
to other settings” (p.34). Both questions were subsequently integrated and 
developed within constructivist studies. Rouse (1987) refers to the processes 
of “standardization". This, does not means that " scientific knowledge has 
no universality, but rather that what universality it has is an achievement 
always rooted in local know-how within the specially constructed laboratory 
setting" (p. 119). Put in the context of laboratory science, mathematics 
becomes an investigation of interesting phenomena, and the student enters 
the shoes of the scientist: observing, recording, manipulating, predicting, 
conjecturing and testing, and developing theories as explanations for the 
phenomena. Laboratory mathematics differ from experimental mathematics. 
“Experimental mathematics” is a name that has been loosely given to a new 
mode of doing mathematical research where the computer is used as a 
“laboratory,” and the “data” are the results of mathematical computation. 
Using this methodology, we can “see” results long before we can rigorously 
prove them, and in fact, the experimental results may point the direction of 
formal proofs”(Bailey and Borwein 2009, p.13)  
 
Interdisciplinary teaching: Looking for …concepts 
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The title of the World Mathematical Yearbook 2000 of the American 
Mathematical Society was “Frontiers and Perspectives”. In the books’ 
preface Michael Atiyah pondering over mathematics in the 21st century, 
concludes that the close symbiotic relationship between mathematics and 
physics will rise to new heights in the 21st century. To the late Russian 
mathematician Vladimir Arnold (1998), mathematics constitutes the part of 
physics where experiments are cheap. He marks the catastrophic 
repercussions of attempts to separate physics and mathematics, and warns 
that such attempts result in teaching ugly scholastic pseudo-mathematics to 
schoolchildren, where the scheme used in physics (observation, model, 
investigation of the model, conclusion, testing by observations) is replaced 
by the scheme definition, theorem, and proof. It is often highlighted in 
science education that the best description of many phenomena and their 
patterns of interaction is achieved through the language of mathematics, 
which consequently bridges the scientific meaning we seek to express with 
the students' verbal language (Osborne 2002). According Fehr (1963, 
p.395), “secondary school mathematics and physics, scarcely reach the 
levels of abstractions which make them separate, independent bodies of 
knowledge. Hence we are concerned here with single descriptions of matter, 
space, time and motion, so far as these notions may be expressed 
mathematically and in an intuitive manner. Our point of view is expressed in 
the word intuition by which we mean that we are concerned in physics with 
that which we can “look at”, “feel, or “hear, and with the mathematical 
concepts involved in this kind of physics. We select those physical concepts 
that are so intuitively simple that we do not need to tech physics in our 
mathematics classes. We select those physical properties which are 
explicitly described by the mathematics we intend our students to study”. In 
order to comprehend and be involved with phenomena from across 
disciplines, students need to acquire new concepts, new mental tools, which 
will assist them in deepening their understanding of the disciplinary core 
ideas and develop a coherent and scientifically based view of the world. 
These are referred to as “crosscutting concepts” in the literature. 
“Crosscutting concepts have value because they provide students with 
connections and intellectual tools that are related across the differing areas 
of disciplinary content and can enrich their application of practices and their 
understanding of core ideas”. Some crosscutting concepts are as follows:  
Patterns, Cause and Effect, Scale-proportion and quantity, system and 
systems models, structure and function, stability and change. It is necessary 
for teachers to incorporate a small number of crosscutting concepts into 
each yearly curriculum, instead of attempting to teach all of them 
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simultaneously.  Function is an essential crosscutting concept, which has 
become one of the fundamental ideas of modern mathematics and other 
disciplines. According to Selden & Selden (1992), one of the most common 
uses of functions is modeling the real-world to help organize the physical 
world is one of the most common uses of functions. Sierpinska (1992) 
suggests that functions should first appear as an appropriate tool for 
mathematizing relationships between physical (and other) magnitudes. “The 
use of the concepts of instantaneous velocity and acceleration of non linear 
motion in introducing the first ideas of continuity and the derivative in the 
calculus is well known. It must be remembered that the purpose is not to 
teach physics, but to use physics as the first step towards the learning of 
differential and integral calculus”. 

 
Putting the theory in practice: Teaching the “rate of change” in the 
laboratory 
Our team consisting of 5 school-teachers, 2 counselors and one researcher, 
developed a “laboratory course“ following the Lesson Study model. The 
object of our course was the concept of “rate of change”. It is a crosscutting 
concept appearing in the curricula of other disciplines (such as physics, 
chemistry, biology), very often used in modeling of real life situations, and 
crucial for the understanding of functions (Carlson, 1998; Carlson, Jacobs, 
Coe, Larsen & Hsu, 2002).  The phenomenon of filling bottles in the 
physics laboratory was used as an initial activity. Students had to imagine 
bottles of different shapes, being filled with water at a constant rate (Carlson 
et al, 2002). The two covariating quantities were the volume and the level of 
the water in the bottle. Students had to conduct precise measurements, 
organizing them in a table of values and plotting them on a Cartesian 
system.  Research has shown that, since students primarily study ratios and 
linear functions, they tend to utilise linear relationships even when they are 
not applicable. This phenomenon is called “predominance of linearity” 
(Dooren et al., 2008, p. 311). If this tendency is combined with the drawing 
of an incomplete graph, it can severly affect the gauging of the situation. 
And that is because students do not regard it as a “approximate image” of 
the relationships, rather than as a faithful depictionof the situation. The 
concept of experimental error does not exist, a fact which deteriorates the 
modeling process.Students are used to working with “false-real” problems, 
where measurements are riven and oftentimes interger, or with precise 
measurements on a computer. Through communication among team 
members, the measurement results were doubted. The passage from 
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(dubious) empirical data to the (even intuitive) perception of the rate of 
change of the height relative to the shape of the container, allows us to 
formulate the hypothesis about the positive role of the experiment in 
approaching certain abstract mathematical concept. Granted, further 
research is required.  
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