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Abstract 4

There have been a couple of papers for the solution of the nonsingular symmet- 5

ric saddle-point problem using three-parameter iterative methods. In most of them, 6

regions of convergence for the parameters are found, while in three of them, opti- 7

mal parameters are determined, and in one of the latter, many more cases, than in all 8

the others, are distinguished, analyzed, and studied. It turns out that two of the opti- 9

mal parameters coincide making the optimal three-parameter methods be equivalent 10

to the optimal two-parameter known ones. Our aim in this work is manifold: (i) to 11

show that the iterative methods we present are equivalent, (ii) to slightly change some 12

statements in one of the main papers, (iii) to complete the analysis in another one, 13

(iv) to explain how the transition from any of the methods to the others is made, (v) to 14

extend the iterative method to cover the singular symmetric case, and (vi) to present 15

a number of numerical examples in support of our theory. It would be an omission 16

not to mention that the main material which all researchers in the area have inspired 17

from and used is based on the one of the most cited papers by Bai et al. (Numer. 18

Math. 102:1–38, 2005). 19
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1 Introduction23

Let the nonsingular symmetric saddle-point problem be defined by the linear system24

A
[

x

y

]
:=
[

A B

−BT 0

] [
x

y

]
=
[

p

−q

]
, (1.1)

where A ∈ R
m×m is symmetric positive definite, B ∈ R

m×n, m > n, is of full rank25

(rank(B) = n), (·)T denotes transpose, and x, p ∈ R
m, y, q ∈ R

n.26

Linear system (1.1) arises in various scientific and engineering applications as,27

e.g., in weighted least-squares problems, finite element discretization of the Navier-28

Stokes equation, constrained optimization, computer graphics, electronic networks,29

etc.; for an account of these applications as well as for related references, see, e.g.,30

[32]. Solutions for special cases of the linear system (1.1) have been proposed by31

many researchers. We mention some of the main works based on extensions and32

generalizations of the classical iterative methods like SOR, SSOR, and MSOR (see,33

e.g, Varga [26] or Young [31]). The first work in the twenty-first century is the one34

by Golub et al. [10], where the SOR-like method was introduced. Here, we simply35

mention some of the main works in the area in the last eighteen years: Golub et al.36

[10], Bai et al. [2], Darvishi and Hessari [8], Bai and Wang [4], Wu et al. [27], Zheng37

et al. [32], Zhang and Wei [36], Zhang et al. [33], Zhang and Shen [35], Zhou and38

Zhang [38], Cao et al. [6], Louka and Missirlis [20], Njeru and Guo [25], Hadjidimos39

[14, 15], Huang and Wang [18], Feng et al. [9], Guo and Hadjidimos [11], etc. We40

mention that in the work by Golub et al. [10], an excellent account of the works prior41

to 2001 can be found and also an account of the works until 2009 can be found in42

Zheng et al. [32].43

In Section 2, we present four methods. In Section 3, we show the equivalence of44

the four methods presented in the previous section by briefly exhibiting a one-to-one45

correspondence of the last three methods to the first one. In Section 4, we move on46

to the solution of the singular analogue to (1.1). In Section 5, a number of examples47

are presented in support of the theory developed. Finally, in Section 6, we make a48

number of concluding remarks.49

2 Three-parameter iterative methods for the solution of (1.1)50

In their monumental work [2], Bai, Parlett, and Wang introduced in Section 7, what51

they called generalized inexact accelerated overrelaxation (GIAOR) iterative method52

for the solution of the problem (1.1). This method contained two real matrix param-53

eters P ≈ A and Q ≈ BT A−1B and three real parameters ω, τ , and γ . In the same54

Section 7 of [2], a “simplified” version of it for P = A was considered, renamed55

later by Bai and Wang accelerated parameterized inexact Uzawa (APIU) iterative56

method. So, what we are to consider in the next subsections is the iterative solution of57

the nonsingular symmetric saddle-point problem by the APIU iterative method using58

three parameters, instead of the usual two, ω and τ , the main seed of which regarding59

their intervals of convergence can be found in the aforementioned Section 7 of [2].60
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Following up the APIU iterative method, another three iterative methods are 61

considered (maybe more have appeared in the literature). We make a number of 62

comments on each of them, we point out what their strong points are and make 63

modifications and improvements to the last two methods, respectively. 64

First, we present (i) the APIU method by Bai et al. [2]; (ii) each of the two methods 65

by Louka and Missirlis [20] (see also [19]); (iii) the technique for APIU iterative 66

method by Huang and Wang [18], where many extensions in various directions are 67

distinguished, analyzed, and studied by the authors (see next paragraph and Remarks 68

in the beginning of Section 2.3), and some statements in it are slightly modified; and 69

(iv) finally, the iterative method by Feng et al. [9] which will be completed. Secondly, 70

it is indirectly shown that all the four methods are equivalent and so the parameters of 71

each one of the last four can be expressed in terms of those in [2]. Note that optimal 72

parameters have been determined only in the works by Louka and Missirlis [20] 73

(see also [19]) in the classical case of [2], while by Huang and Wang [18] optimal 74

values were obtained in two distinct cases. Hence, these optimal values can be carried 75

over to the other two works. We point out that the main characteristic of the optimal 76

parameters is that two of them coincide and so the optimal three-parameter iterative 77

methods for the solution of problem (1.1) make these optimal problems be identical 78

with all the equivalent optimal two-parameter ones that were analyzed and studied in 79

Hadjidimos [15]. 80

It would be an omission on our part if we did not explicitly mention what the work 81

by Huang and Wang [18] contributed to the APIU iterative method: (i) The “optimal 82

parameters” were determined using pure analysis. (ii) The authors determined “opti- 83

mal parameters” also for m = n a case “overlooked” by previous researchers. (iii) 84

They determined “regions of convergence” and “optimal parameters” for m ≥ n not 85

only when the iteration matrix involved has a positive spectrum but also when the 86

corresponding spectrum is negative. (iv) Finally, they presented in Table 1 the “Pos- 87

sible optimum point(s) for Uzawa-like methods discussed in (their) Theorem 6.1” 88

which gives the idea of equivalence of relevant methods. 89

2.1 Bai-Parlett-Wang’s three-parameter iterative method [2] 90

The accelerated parameterized inexact Uzawa (APIU) iterative method can be 91

constructed as follows. First, the splitting 92

A :=
[

A B

−BT 0

]
= D − L − U (2.1)

is considered, where 93

D =
[

A 0
0 Q

]
, L =

[
0 0

BT 0

]
, U =

[
0 −B

0 Q

]
(2.2)

and Q ∈ R
n×n is a symmetric positive definite matrix and an approximation to 94

the Schur complement BT A−1B of the matrix A. Next, two diagonal matrices are 95



AUTHOR'S PROOF! JrnlID 11075 ArtID 00938 Proof#1 - 28/04/2020

UNCORRECTED
PROOF

Numerical Algorithms

considered containing three nonzero real parameters96

� =
[

ωIm 0
0 τIn

]
, R =

[
0 0
0 γ In

]
(2.3)

and the block AOR-type iterative method (see [13]) given below is proposed97 [
x(k+1)

y(k+1)

]
= (D − RL)−1[(Im+n − �)D + (� − R)L + �U ]

[
x(k)

y(k)

]
+(D − RL)−1�

[
p

−q

]
(2.4)

or, equivalently,98 [
x(k+1)

y(k+1)

]
= T (ω, τ, γ )

[
x(k)

y(k)

]
+ F−1(ω, τ, γ )

[
p

−q

]
, (2.5)

where99

T (ω, τ, γ ) := (D − RL)−1[(Im+n − �)D + (� − R)L + �U ]
=

[
(1 − ω)Im −ωA−1B

(τ − ωγ )Q−1BT In − ωγQ−1BT A−1B

]
(2.6)

and100

F(ω, τ, γ ) := �−1(D − RL) =
[ 1

ω
A 0

− γ
τ
BT 1

τ
Q

]
,

F−1(ω, τ, γ ) =
[

ωA−1 0
ωγQ−1BT A−1 τQ−1

]
. (2.7)

Hence, the APIU method (2.4), using (2.5)–(2.7), can be written as101 {
x(k+1) = (1 − ω)x(k) + ωA−1(p − By(k)),

y(k+1) = y(k) + τQ−1(BT x(k) − q) + γQ−1BT (x(k+1) − x(k)),
(2.8)

with any
[
x(0)T y(0)T

]T ∈ R
m+n and k = 0, 1, 2, · · · .102

The remark below makes clear a crucial point of the main statement that follows it.103

Remark 2.1 Let λ be an eigenvalue of the iteration matrix T (ω, τ, γ ) in (2.6) and104

z :=
[
x′T y′T

]T ∈ R
m+n be its associated eigenvector. From T (ω, τ, γ )z = λz, we105

obtain106

(λ + ω − 1)x′ + ωA−1By′ = 0,

(ωγ − τ)Q−1BT x′ + (
(λ − 1)In + ωγQ−1BT A−1B

)
y′ = 0.

(2.9)

Then, if λ = 1 − ω from the first relation in (2.9), in view of B being of full rank,107

implies that y′ = 0 and from the second relation we will have, for ωγ �= τ , x ′ ∈108

N (BT ), where N (·) denotes nullspace. Hence, the eigenvalue λ = 1−ω will have as109

associated eigenvector z = [x′T , 0T
m−n]T , with x′ ∈ N (BT ). If τ = ωγ , then x′ may110

be any vector in R
m\{0} and the three-parameter method becomes a two-parameter111

one.112
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Below we present in a very condensed form a statement that contains the results 113

of Theorems 7.1 and 7.2(i) of [2]. 114

Theorem 2.1 (Theorems 7.1 and 7.2(i) of [2]) Under the notations and assump- 115

tions so far, let μ be an eigenvalue of J = Q−1BT A−1B (μ ∈ σ (J )). Then, 116

λ ∈ σ (T (ω, τ, γ )) implies that either λ = 1 − ω or λ is a root of the quadratic 117

equation 118

λ2 − (2 − ω − ωγμ)λ + (1 − ω) + ω(τ − γ )μ = 0 (2.10)

and the APIU iterative method (2.8) converges if and only if 119

ω ∈ (0, 2) , τ ∈
(

0,
4

ωμmax

)
, γ ∈

(
τ − 1

μmax
,

τ

2
+ 2 − ω

ωμmax

)
, (2.11)

where μmin and μmax are the smallest and the largest eigenvalues of the matrix J = 120

Q−1BT A−1B. 121

It should be noted that the conditions under which all the zeros of a complex poly- 122

nomial are within the unit circle can be determined by the Schur-Cohn algorithm (see, 123

e.g., Vol. 1, p. 493 of Henrici [16]). This has been used by many authors before, e.g., 124

by J.H.H. Miller [24] for the location of the zeros of certain classes of polynomials, 125

etc. We would also like to note that the roots of complex quadratic polynomials were 126

described in the proof of Theorem 4.3 in Bai et al. [2] and the roots of complex cubic 127

polynomial equation were described in a recent work by Z.-Z. Bai and M. Tao (see 128

Lemma 3.2 in [3]). 129

However, in order to find the conditions (2.11) under which the roots λ ∈ σ(J ) 130

of the monic real quadratic (2.10) are strictly less than 1 in modulus, one may use 131

Lemma 2.1, pp. 171–172 of Young [31] presented in the sequel. 132

Lemma 2.1 If b and c are real, then both roots of the quadratic equation 133

x2 − bx + c = 0 (2.12)

are less than one in modulus if and only if 134

|c| < 1, |b| < 1 + c. (2.13)

2.2 Louka-Missirlis’s three-parameter iterative methods [20] 135

Louka and Missirlis [20] (see also [19]) were the first researchers who determined 136

the optimal parameters of the three-parameter optimal APIU iterative method intro- 137

duced by Bai et al. in [2] and presented in Section 2.1 before. In fact, they proposed 138

two iterative methods called generalized modified extrapolated SOR (GMESOR) and 139

generalized modified preconditioned simultaneous displacement (GMPSD) which 140

are presented in the following two subsections. It is interesting to note that the opti- 141

mal solution was found by an ingenious combination of an algebraic and a geometric 142

method the latter of which was inspired by that given on pp. 123–125 of Varga’s book 143

[26] for the determination of the optimal overrelaxation parameter of a two-cyclic 144

SOR method when the associated Jacobi iteration matrix is weakly-cyclic of index 2 145
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and the squares of its eigenvalues are nonnegative and strictly less than one. In the146

sequel, the two methods are presented in “simplified” versions and the various enti-147

ties, except the parameters involved, are denoted by the same symbols as those of148

Section 2.1.149

2.2.1 The generalized modified extrapolated SOR (GMESOR) method150

First, the splitting (2.1) is considered but the components of A are a little different151

from the previous ones since one nonzero real parameter a is introduced as is shown152

below153

D =
[

A 0
0 Q

]
, L =

[
0 0

BT aQ

]
, U =

[
0 −B

0 (1 − a)Q

]
, (2.14)

where Q is the matrix considered in (2.2). To be consistent with the notation in154

Section 2.1, we introduce nonzero diagonal matrices155

� =
[

τ1Im 0
0 τ2In

]
, R =

[
ω1Im 0

0 ω2In

]
. (2.15)

It seems that from this point onwards the authors follow exactly the same process as156

in Section 2.1 except that two of the three parts D, L, U of A are different. Hence,157

they end up with the algorithm for their GMESOR method given in an analogous158

way to that in (2.8). Specifically,159 {
x(k+1) = (1 − τ1)x

(k) + τ1A
−1(p − By(k)),

y(k+1) = y(k) + τ2
1−aω2

Q−1(BT x(k) − q) + ω2
1−aω2

Q−1BT (x(k+1) − x(k)).
(2.16)

From (2.16), it is observed that the parameter ω1 of the matrix R in (2.15) is not160

needed. Also, despite the presence of four parameters in (2.16), only three are practi-161

cally used since the fractions τ2
1−aω2

and ω2
1−aω2

play the roles of τ and γ , respectively.162

So the parameter a becomes a “free” parameter. Evidently, the GMESOR method is163

identical with the APIU method of Bai et al. [2] with coincidence of their relevant164

parameters as follows:165

τ1 = ω, τ2 = τ(1 − aω2), ω2 = γ (1 − aω2) ⇔ ω2 = γ

1 + aγ
. (2.17)

Remark 2.2 If one wishes to use the nonzero parameter a as the authors of [20] did,166

one may use all the coordinate pairs (ω2, a) of the (ω2, a)-plane except those lying on167

the axes and on the hyperbola aω2 = 1 and those that do not guarantee convergence168

of the GMESOR iterative method (see (2.17) and (2.11)). It should be pointed out169

that some of these observations were also made by the authors of [20]. In addition, it170

is noted that ω, τ , and γ are found in terms of τ1, τ2, ω2, a; however, when a = 0,171

the parameters of Bai et al. [2] coincide with those of Louka and Missirlis’s [20].172

A statement that gives the analogous to (2.10) functional equation for the173

eigenvalues of the iteration matrix is presented below.174
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Theorem 2.2 (Theorem 2.1 of [20]) Under the notation, assumptions, and restric- 175

tions so far, let μ be an eigenvalue of J = Q−1BT A−1B (μ ∈ σ (J )). Then, 176

λ ∈ σ (T (τ1, τ2, ω2, a)) implies that either λ = 1 − τ1 or λ is a root of the quadratic 177

equation 178

λ2 −
(

2 − τ1 − τ1ω2

1 − aω2
μ

)
λ + (1 − τ1) + τ1(τ2 − ω2)

1 − aω2
μ = 0. (2.18)

Below we present Theorem 2.3 of [20] where the optimal parameters of the GME- 179

SOR iterative method are determined by a combination of an algebraic and geometric 180

analysis as has already been mentioned. The end result is that the optimal param- 181

eters τ1opt = ω2opt and the optimal three-parameter iterative method GMESOR or, 182

equivalently, the APIU method reduces to the optimal two-parameter APIU method, 183

namely the optimal “generalized successive overrelaxation (GSOR)” method of Bai 184

et al.’s [2]. More specifically: 185

Theorem 2.3 (Theorem 2.3 of [20]) Under the assumptions so far and the main 186

assumptions of Theorem 2.1, the optimal three-parameter method GMESOR has 187

τ2opt = ω2opt and so it coincides with the optimal two-parameter APIU method of 188

Bai et al. [2]. Hence, the optimal parameters of GMESOR are 189

ω2opt = τ2opt = 1
a+√

μmaxμmin
, τ1opt = 4

√
μmaxμmin

(
√

μmax+√
μmin)

2 ,

ρ
(
T (τ1opt , τ2opt , ω2opt , a)

) =
√

μmax−√
μmin√

μmax+√
μmin

.
(2.19)

Furthermore, if one sets the “free” parameter a = 0, then the GMESOR method 190

reduces to the APIU method whose optimal parameters are 191

τopt = γopt = 1√
μmaxμmin

, ωopt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 ,

ρ
(
T (ωopt, τopt, γopt)

) =
√

μmax−√
μmin√

μmax+√
μmin

.
(2.20)

Remark 2.3 If μminμmax is sufficiently small, the parameter a can be used as a reg- 192

ularization parameter to make the computation of the optimal parameters ω2opt and 193

τ2opt be more stable if, of course, they are computable. Although the optimal spectral 194

radius of the GMESOR method is identical with that of the optimal APIU method in 195

the former method the “free” parameter a was introduced in the hope to accelerate 196

the Krylov subspace methods. For example, as a preconditioning matrix of A in (1.1) 197

for the GMRES method, one may take (D − RL)−1 �, where D, R, L, and � are 198

given in (2.14)–(2.15) with ω1, ω2 = τ2 their optimal values from (2.19) for various 199

a ∈ (0, 1) close to 0. 200

2.2.2 The generalized modified simultaneous displacement (GMPSD) method 201

The method in the title, which the authors of [20] (see also [19]) considered and 202

studied in detail, is much more complicated and much lengthier than their GME- 203

SOR method. In the present authors’ opinion, the GMPSD method was studied and 204

analyzed in the hope that a better optimal method than the previous one would be 205
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obtained. So in what follows, we are to give only some of the main parts and results206

of it and for the rest the reader is referred to [20]. As in the two previous cases, we207

give the main splitting of A into its three parts (diagonal, strictly lower triangular,208

strictly upper triangular) and the diagonal matrices � and R are the same as before209

and are given in (2.14) and (2.15), respectively. The main difference is that the pre-210

conditioning matrix is now T −1(D − �L)D−1(D − �U) instead of T −1(D − �L)211

used before.212

So, after the construction of the iterative method one ends up with the GMPSD213

algorithm which is as follows:214 ⎧⎨⎩
y(k+1) = y(k) + 1

(1−aω2)[1−(1−a)ω2]Q
−1
{
BT

[
(τ2 − τ1ω2)x

(k)

+ τ1ω2A
−1(p − By(k))

]− τ2q
}
,

x(k+1) = (1 − τ1)x
(k) + A−1{B[(ω1 − τ1)y

(k) − ω1y
(k+1)] + τ1p}.

(2.21)

The eigenvalues of the iteration matrix T (ω1, ω2, τ1, τ2, a) are λ = 1 − τ1 and215

the rest of them are given by the roots of the functional equation216

λ2 −
(

2 − τ1 − τ1ω2+τ2ω1−τ1ω1ω2
(1−aω2)[1−(1−a)ω2]μ

)
λ + (1 − τ1) + τ1τ2+τ2ω1−τ1ω1ω2−τ1ω2

(1−aω2)[1−(1−a)ω2] μ = 0.

(2.22)
Finally, the optimal parameters found in [20] are given by the expressions below.217

Theorem 2.4 (Theorem 3.3 of [20]) Under the notation, assumptions, and restric-218

tions so far and the additional restriction ω2 �= τ2opt

τ1opt
, the optimal parameters of the219

GMPSD method are as follows220

τ1opt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 , τ2opt = (1−aω2)[1−(1−a)ω2]√
μmaxμmin

,

ω1opt = τ1opt (τ2opt −ω2)

τ2opt −τ1opt ω2
,

ρ
(
T (τ1opt , τ2opt , ω1opt , a, ω2)

) =
√

μmax−√
μmin√

μmax+√
μmin

.

(2.23)

Remark 2.4 The optimal spectral radius of the GMPSD method is identical with that221

of the optimal APIU method. However, in the former, there are two “free” parameters222

a and ω2 which may be useful in accelerating the Krylov subspace methods. Observe223

that for ω2 = 0 and any a, the optimal GMPSD method becomes the optimal APIU224

method.225

2.3 Huang-Wang’s APIU iterative method [18]226

To the best of our knowledge, the only other researchers who have determined not227

only the regions of convergence of the three parameters involved in the class of meth-228

ods we are studying but also their optimal parameters by purely analytical methods229

are Huang and Wang [18]. Their convergence regions and the optimal parameters are230

the same as those of the GMESOR method with a = 0. The authors followed and231

extended the analysis of Theorems 7.1 and 7.2(i) of Bai et al. [2] by keeping the same232

notation, succeeded in extending it in various directions, and solved completely the233

problem of the determination of the optimal parameters.234



AUTHOR'S PROOF! JrnlID 11075 ArtID 00938 Proof#1 - 28/04/2020

UNCORRECTED
PROOF

Numerical Algorithms

For the solution of the original problem in (1.1), it is natural to know something 235

about the entities involved in it and especially the matrix A. All other authors who 236

we are talking about in this paper considered A to be real symmetric positive definite 237

and so is the parameter matrix Q implying that the matrix J := Q−1BT A−1B has 238

real positive eigenvalues. (Note that at the same time for A and Q real symmetric 239

negative definite the corresponding (1.1) problem has precisely the same intervals 240

of convergence and the same optimal parameters.) For A real symmetric negative 241

definite and Q real symmetric positive definite (or the other way around) leading to 242

the corresponding matrix J having real negative eigenvalues nobody had dealt with 243

so far. 244

It is worth pointing out that Huang and Wang [18], besides the issue described in 245

the previous paragraph, dealt with one more which led them to distinguish, analyze, 246

and study many more cases, which are presented very briefly in the following two 247

remarks: 248

Remark 2.5 They considered separately the case of positive eigenvalues for J = 249

Q−1BT A−1B (σ(J ) ⊂ [μmin, μmax] ⊂ (0, +∞)) and that of negative eigenval- 250

ues for J (σ(J ) ⊂ [−μmax, −μmin] ⊂ (−∞, 0)) and ended up with two sets of 251

convergence regions for the three parameters as well as for the optimal ones (see 252

relations (4) and Sections 5 and 6 of [18] to which the interested reader is strongly 253

recommended). 254

Remark 2.6 To the best of the present authors’ knowledge, all the researchers had 255

treated the case m ≥ n (or have ignored the equality sign), with B of full rank, as 256

being one case and ended up with a set of regions of convergence. However, when 257

the two cases m > n and m = n are studied separately, as Huang and Wang did in 258

[18] (see relations (5), (6), etc.), they ended up with two sets of different results. It 259

seems that it was the first time where such a distinction had been made. It should 260

also be pointed out that although the optimal parameters for m > n and m = n were 261

found to be the same, the regions of convergence were not only much wider in the 262

latter case but also there were two different sets of them. This is because, as Huang 263

and Wang shown, for m > n, the restriction |ω − 1| < 1 constitutes among others 264

one of the necessary conditions for convergence, while for m = n such a restriction 265

does not exist! 266

In the sequel, we present a statement that finds the exact regions of convergence 267

of Theorem 1 of Huang and Wang [18], where some slight modifications have been 268

made. Below and without loss of generality, we take the case A real symmetric 269

positive definite and Q of the same or of the opposite definiteness. 270

Theorem 2.5 (Slightly modified version of Huang and Wang’s Theorem 1 [18]) Let 271

A, Q, BT A−1B be nonsingular and real symmetric and the eigenvalues μ ∈ σ(J ) = 272

σ(Q−1BT A−1B) be all of the same sign, with μmax and μmin denoting the largest 273

and the smallest eigenvalues in modulus. Then, the APIU iterative method coincides 274

with (2.16) for a = 0, where the parameters involved ω, τ , γ are those in (2.17), and 275
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converges to the unique solution of (1.1) for any initial choice of
[
x(0)T y(0)T

]T ∈276

R
m+n if and only if its parameters satisfy:277

For m > n278 ⎧⎨⎩ ω ∈ (0, 2), τ > 0, γ ∈
(
τ − 1

μmax
, τ

2 + 2−ω
ωμmax

)
, [μmin, μmax] ⊂ (0, +∞),

ω ∈ (0, 2) , τ < 0, γ ∈
(

τ
2 − 2−ω

ωμmax
, τ + 1

μmax

)
, [−μmax, −μmin] ⊂ (−∞, 0).

(2.24)
For m = n279 ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[μmin, μmax] ⊂ (0, +∞),

ω > 0, τ > 0, γ ∈
⎛⎜⎝τ − 1

μmax
,

⎧⎪⎨⎪⎩
τ
2 + 2−ω

ωμmax
for ω ∈ (0, 2)

τ
2 for ω = 2
τ
2 + 2−ω

ωμmin
for ω > 2

⎫⎪⎬⎪⎭
⎞⎟⎠ ,

ω < 0, τ < 0, γ ∈
(

τ
2 + 2−ω

ωμmax
, τ − 1

μmin

)
,

(2.25)

280 ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[−μmax, −μmin] ⊂ (−∞, 0),

ω > 0, τ < 0, γ ∈
⎛⎜⎝
⎧⎪⎨⎪⎩

τ
2 − 2−ω

ωμmax
for ω ∈ (0, 2)

τ
2 for ω = 2
τ
2 − 2−ω

ωμmin
for ω > 2

⎫⎪⎬⎪⎭ , τ + 1
μmax

⎞⎟⎠ ,

ω < 0, τ > 0, γ ∈
(
τ + 1

μmin
, τ

2 − 2−ω
ωμmax

)
.

(2.26)

Proof For m > n281

The first case in (2.24) is nothing but the one where the intervals for the three282

parameters are given in (2.11). Now, to see how easy it is to find the regions of283

convergence for Q negative definite from the ones for Q positive definite consider284

the iteration matrix T (ω, τ, γ ) in (2.6) and write it as285

T (ω, τ, γ ) := (D − RL)−1[(Im+n − �)D + (� − R)L + �U ]
=
[

(1 − ω)Im −ωA−1B

((−τ) − ω(−γ ))(−Q)−1BT In − ω(−γ )(−Q)−1BT A−1B

]
.

(2.27)
Observe now that changing the signs of the parameters τ and γ and the matrix286

Q in the last row of the matrix in (2.6) produces the identical matrix T (ω, τ, γ ) in287

(2.27). But since −Q is positive definite, and J := Q−1BT A−1B, the spectrum288

of −J is also positive definite and satisfies σ(−J ) ⊂ [μmin, μmax] ⊂ (0, +∞)289

implying σ(J ) ⊂ [−μmax, −μmin] ⊂ (−∞, 0). Note also that the aforementioned290

change of signs does not change the algorithm (2.5).291

Therefore, the intervals of convergence of the parameters involved in (2.11) are as292

follows:293

ω ∈ (0, 2) , −τ ∈
(

0,
4

ωμmax

)
, −γ ∈

(
−τ − 1

μmax
,

−τ

2
+ 2 − ω

ωμmax

)
.

(2.28)
Changing the signs in the last two inclusions, we end up with the second relations of294

(2.24).295
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For m = n 296

In this case, the eigenvalues of the iteration matrix T (ω, τ, γ ) come entirely from 297

the functional (2.10) employing Lemma 2.1; the restriction ω ∈ (0, 2) does not apply 298

any more because there are no eigenvalues equal to 1 − ω unless τ = ωγ in which 299

case the three-parameter iterative method becomes a two-parameter one. However, 300

a more detailed analysis is needed regarding relations (5) and (6) of [18] because ω 301

and τ cannot change independently of each other in their intervals of convergence as 302

is shown below. 303

Take for example the first relation in (5) of [18]. This comes from the relations of 304

Lemma 2.1 considering that μ ∈ σ(J ) ⊂ [μmin, μmax] ⊂ (0, +∞). Using (2.10) 305

and Lemma 2.1 and getting rid of the absolute values of relations (2.13), we end up 306

with the following four new relations: 307

−1 < (1 − ω) + ω(τ − γ )μ < 1,

−1 − (1 − ω) − ω(τ − γ )μ < 2 − ω − ωγμ < 1 + (1 − ω) + ω(τ − γ )μ.
(2.29)

The very last relation gives ωτ > 0 and so we distinguish two cases. Hence, for 308

ω > 0 and τ > 0, the rightmost inequality of the first two in (2.29) and the leftmost 309

inequality of the last two lead to 310

τ − 1

μ
< γ <

τ

2
+ 2 − ω

ωμ
. (2.30)

However, for the leftmost expression to be strictly less than the rightmost one, there 311

must hold 312

τ − 1

μ
<

τ

2
+ 2 − ω

ωμ
⇐⇒ τ <

4

ωμ
=⇒ τ ∈

(
0,

4

ωμmax

)
. (2.31)

The results in (2.30)–(2.31) and the fact that the parameter ω can be ω ∈ (0, 2), ω = 313

2, ω ∈ (2, +∞), lead one to obtain the first set of intervals of convergence for the 314

triad (ω, τ, γ ) in (2.25). 315

Similarly, if ω < 0 and τ < 0, we can find the second set of the intervals for the 316

same parameters in (2.25). 317

Now, consider the case where μ ∈ σ(J ) ⊂ [−μmax, −μmin] ⊂ (−∞, 0), with 318

μmax > 0, and employ again Lemma 2.1. From the same relation, i.e., the very last 319

inequality of (2.29), it turns out that the two parameters ω and τ satisfy ωτ < 0. 320

Hence, we distinguish again the two cases ω > 0, τ < 0 and ω < 0, τ > 0. The 321

aforementioned two cases are examined separately and, eventually, end up with the 322

intervals for the triads of the parameters involved presented in (2.26). 323

The intervals in (2.25)–(2.26) give the complete list of relations of the four cases 324

presented in (5)–(6) of [18] for m = n. 325

Remark 2.7 (i) All the optimal results found in [18] are the same for m > n and 326

m = n. 327

(ii) When the eigenvalues μ of J are in [μmin, μmax] ⊂ (0, +∞), the optimal 328

results of [18] are identical to those that had been obtained before by Louka 329

and Missirlis [20] (see also [19]) for the GMESOR iterative method for a = 0. 330

Huang and Wang [18] found by purely analytical methods the optimal results 331
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for both cases μ ∈ [μmin, μmax] ⊂ (0, +∞) and μ ∈ [−μmax, −μmin] ⊂332

(−∞, 0) and presented them in their Lemma 11 and Theorem 2 and in a unified333

form in their Theorem 3.334

(iii) When the eigenvalues μ of J are in [−μmax, −μmin] ⊂ (−∞, 0), the optimal335

results can be found directly by the technique used to go from (2.11) to (2.28)336

and then to (2.24).337

Referring to items (ii) and (iii) of Remark 2.7, we may point out that it is not nec-338

essary to go through two different but similar analyses to find separately the optimal339

values for Q real symmetric positive definite and for Q real symmetric negative def-340

inite provided we use the technique mentioned before. Specifically, we may give the341

following statement.342

Theorem 2.6 Having found the optimal results for Q real symmetric positive defi-343

nite in [20] presented in (2.20), we may find directly the optimal results for Q real344

symmetric negative definite.345

Proof For μ ∈ [μmin, μmax] ⊂ (0, +∞), then from (2.20), we have that346

ωopt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 , τopt = γopt = 1√
μmaxμmin

,

ρ
(
T (ωopt , τopt , γopt )

) =
√

μmax−√
μmin√

μmax+√
μmin

.
(2.32)

Using now the technique mentioned before, we have for the optimal results in the347

negative case the following. For μ ∈ [−μmax, −μmin] ⊂ (−∞, 0), then348

ωopt = 4
√

μmaxμmin(√
μmax + √

μmin
)2 , τopt = γopt = − 1√

μmaxμmin
,

ρ
(
T (ωopt , τopt , γopt )

) = (
1 − ωopt

) 1
2 =

√
μmax − √

μmin√
μmax + √

μmin
. (2.33)

Combining the optimal results in (2.32) and (2.33), we can give in both cases, as349

Huang and Wang [18] did in their Theorem 3, a unique form for the corresponding350

optimal values as this is repeated below:351

ωopt = 4
√

μmaxμmin(√
μmax + √

μmin
)2 , τopt = γopt = sgn(μ)√

μmaxμmin
,

ρ
(
T (ωopt , τopt , γopt )

) =
√

μmax − √
μmin√

μmax + √
μmin

, (2.34)

where μ ∈ σ(J ).352

2.4 Feng-Guo-Chen’s three-parameter iterative method [9]353

The last method we have known in the same area has been proposed by Feng, Guo,354

and Chen [9] very recently. It is called modified accelerated successive overrelax-355

ation (MASOR) iterative method and constitutes an extension of the ASOR method356
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introduced by Njeru and Guo [25]. The splitting of the matrix A into the three 357

components D, L, U is based on 358

D =
[

αA 0
0 Q

]
, L =

[−A 0
BT 1

2Q

]
, U =

[
αA −B

0 1
2Q

]
, (2.35)

with Q ∈ R
n×n symmetric positive definite, and α > 0, ω �= 0 real parameters. (Note 359

that in the present work we do not stick to the restriction for α but we let α ∈ R\{0}.) 360

The preconditioning matrix to be used is then 1
ω
(D−γL) =

[ α+γ
ω

A 0
− γ

ω
BT 2−γ

2ω
Q

]
, with 361

γ as a real parameter such that (α + γ )(2 − γ ) �= 0. 362

Using the above preconditioner, we can find 363[
x(k+1)

y(k+1)

]
= (D−γL)−1[(1−ω)D+(ω−γ )L+ωU ]

[
x(k)

y(k)

]
+ω(D−γL)−1

[
p

−q

]
,

(2.36)
which is nothing but a classical AOR-type method [12]. From (2.36), the iteration 364

matrix of the MASOR iterative method, given in relations (3.1) of [9], is written as 365

follows: 366

T (α, ω, γ ) =
[

(1 − ω
α+γ

)Im − ω
α+γ

A−1B
2αω

(α+γ )(2−γ )
Q−1BT In − 2ωγ

(α+γ )(2−γ )
Q−1BT A−1B

]
. (2.37)

Also, from (2.36), we can very easily construct the relevant algorithm of the MASOR 367

iterative method which is 368{
x(k+1) = (1 − ω

α+γ
)x(k) + ω

α+γ
A−1(p − By(k)).

y(k+1) = y(k) + 2ω
2−γ

Q−1(BT x(k) − q) + 2γ
2−γ

Q−1BT (x(k+1) − x(k)).
(2.38)

However, as we may see, (2.38) is identical with that of Bai et al.’s [2] as is given in 369

(2.8) provided that the roles of the parameters ω, τ , γ in (2.8) are played by ω
α+γ

, 370

2ω
2−γ

, 2γ
2−γ

in (2.38), respectively. Hence, if we put accents to the three parameter 371

s of the present MASOR method to distinguish them from those of Bai et al.’s [2], 372

then from (2.38) and (2.8)–(2.11), we will have 373

ω′

α′ + γ ′ ∈ (0, 2) ,
2ω′

2 − γ ′ ∈
(

0,
4

ωμmax

)
,

2γ ′

2 − γ ′ ∈
(

τ − 1

μmax
,
τ

2
+ 2 − ω

ωμmax

)
.

(2.39)
Finally, to find the optimal parameters, we set from (2.20) τopt = γopt = 374

1√
μmaxμmin

, ωopt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 and from the correspondence between the 375

parameters in (2.39) and (2.20) we have 376

2ω′
opt

2 − γ ′
opt

= 2γ ′
opt

2 − γ ′
opt

= 1√
μmaxμmin

,
ω′

opt

α′
opt + γ ′

opt

= 4
√

μmaxμmin(√
μmax + √

μmin
)2 .

(2.40)
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from which we obtain377

ω′
opt = γ ′

opt = 2

1 + 2
√

μmaxμmin
, α′

opt =
(√

μmax − √
μmin

)2
2
√

μmaxμmin
(
1 + 2

√
μmaxμmin

) .

(2.41)

Remark 2.8 It is noted that the expressions for the optimal parameters ω′
opt and α′

opt378

in (2.41) for the analogous optimal two-parameter iterative method were found in379

[11].380

Finally, based on all of the above, we can obtain from Theorems 1, 2, and 3 of [9]381

in a condense form after some simple operations.382

Theorem 2.7 (Condensed form of extension of Theorems 1,2,3 of [9]) Under the383

notation, assumptions, and restrictions so far, if μ is an eigenvalue of J =384

Q−1BT A−1B (μ ∈ σ(J ), then λ ∈ σ
(
T (α′, ω′, γ ′)

)
then either λ = 1 − ω′

α′+γ
or λ385

is a root of the quadratic equation386

λ2−
(

2 − ω′

α′+γ ′ − 2ω′γ ′

(α′+γ ′)(2−γ ′)
μ

)
λ+(1− ω′

α′+γ ′ )+
2ω′(ω′ − γ ′)

(α′ + γ ′)(2 − γ ′)
μ = 0.

(2.42)
In view of (2.39)–(2.42) and the second part of Theorem 2.3, the optimal spectral387

radius of the MASOR iterative method is given by388

ρ
(
T (α′

opt , ω
′
opt , γ

′
opt )

)
=

√
μmax − √

μmin√
μmax + √

μmin
. (2.43)

3 Equivalence of nonsingular symmetric three-parameter iterative389

methods390

In this section, we will summarize the results of all the four methods of Section 2,391

2.1, 2.2, and 2.4 and the technique for the APIU iterative method so that the equiv-392

alence among the parameters involved, their intervals of convergence, their optimal393

parameters, and the coincidence of the optimal spectral radii of the iteration matri-394

ces of the methods will become much clearer. It should be pointed out that to make395

things simpler we will restrict to the case σ(J ) ⊂ [μmin, μmax] ⊂ (0, +∞), m > n,396

ω ∈ (0, 2), τ > 0, and γ ∈
(
τ − 1

μmax
, τ

2 + 2−ω
ωμmax

)
only. Then, the equivalence of397

the aforementioned four iterative methods will be established.398

(Note that it is understood that the more general case would be that we should take399

the technique for APIU iterative method by Huang and Wang [18], extend all the400

other four aforementioned methods, and prove their equivalence but this would make401

the paper too long and is, in our opinion, straightforward by using Theorems 2.5 and402

2.6.)403

In the above four methods, some of the expressions may be slightly modified so404

that the aforementioned equivalence to the basic APIU iterative method by Bai et405
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al. [2] will be brought to a one-to-one correspondence; in addition, some of their 406

parameters will be primed because they may define different quantities from the ones 407

of the basic APIU of the previously mentioned methods. 408

The equivalence of the four methods will be easily shown based on the technique 409

of APIU by Huang and Wang [18] and Theorem 2.5. This is omitted for the reasons 410

explained above. 411

General considerations . 412

Problem (1.1) with its associated entities and their properties. 413

Q ≈ BT A−1B symmetric positive definite, 414

J := Q−1BT A−1B, μ ∈ σ(J ) ⊂ [μmin, μmax] ⊂ (0, +∞).

APIU iterative method by Bai, Z.-Z.-Parlett, B.N.-Wang Z.-Q. [2]: Iterative parameters: 415

ω τ , γ . 416

General form of iterative algorithm (2.8): 417{
x(k+1) = (1 − ω)x(k) + ωA−1(p − By(k)),

y(k+1) = y(k) + τQ−1(BT x(k) − q) + γQ−1BT (x(k+1) − x(k)).

The eigenvalues of the iteration matrix T of algorithm (2.8) are λ = 1 − ω, and all 418

others are given by the roots of the functional (2.10): 419

λ2 − (2 − ω − ωγμ)λ + (1 − ω) + ω(τ − γ )μ = 0.

Intervals of convergence for the parameters involved (2.11): 420

ω ∈ (0, 2) , τ ∈
(

0,
4

ωμmax

)
, γ ∈

(
τ − 1

μmax
,

τ

2
+ 2 − ω

ωμmax

)
.

Optimal parameters (2.20): ωopt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 , τopt = γopt = 1√
μmaxμmin

. 421

Optimal spectral radius of (2.8): ρ
(
T (ωopt , τopt , γopt

) =
√

μmax−√
μmin√

μmax+√
μmin

. 422

GMESOR iterative method by Louka, M.A.-Missirlis, N.M. [20] (Louka, M. [19]): Itera- 423

tive parameters: τ1 τ2, a, ω2. 424

General form of iterative algorithm (2.16): 425{
x(k+1) = (1 − τ1)x

(k) + τ1A
−1(p − By(k)),

y(k+1) = y(k) + τ2
1−aω2

Q−1(BT x(k) − q) + ω2
1−aω2

Q−1BT (x(k+1) − x(k)).

The eigenvalues of the iteration matrix T of algorithm (2.16) are λ = 1 − τ1, and all 426

the others are the roots of the functional (2.18): 427

λ2 − (2 − τ1 − τ1
ω2

1 − aω2
μ)λ + (1 − τ1) + τ1

(
τ2

1 − aω2
− ω2

1 − aω2

)
μ = 0.

A one-to-one correspondence of the parameters of the GMESOR and APIU iterative 428

methods: 429

τ1 = ω,
ω2

1 − aω2
= γ,

τ2

1 − aω2
= τ .
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Note: As is seen, γ and τ of APIU were given as functions of two parameters one of430

which (a �= 1
ω2

) is redundant. For a = 0, GMESOR ≡ APIU.431

Optimal parameters and optimal spectral radius in terms of a (2.19):432

ω2opt = τ2opt = 1
a+√

μmaxμmin
, a �= −√

μmaxμmin, τ1opt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 ,

ρ
(
T (τ1opt , τ2opt , ω2opt , a)

) =
√

μmax−√
μmin√

μmax+√
μmin

.

GMPSD iterative method by Louka, M.A.-Missirlis, N.M. [20] (Louka, M. [19]): Iterative433

parameters: τ1 τ2, a, ω1, ω2.434

General form of iterative algorithm (2.21):435 ⎧⎨⎩
y(k+1) = y(k) + 1

(1−aω2)[1−(1−a)ω2]Q
−1
{
BT

[
(τ2 − τ1ω2)x

(k)

+ τ1ω2A
−1(p − By(k))

]− τ2q
}
,

x(k+1) = (1 − τ1)x
(k) + A−1{B[(ω1 − τ1)y

(k) − ω1y
(k+1)] + τ1p}.

The eigenvalues of the iteration matrix T of algorithm (2.21) are λ = 1 − τ1, and all436

the others are the roots of the functional (2.22):437

λ2 − (2 − τ1 − τ1

(
ω2 + τ2

τ1
ω1 − ω1ω2

)
(1 − aω2)[1 − (1 − a)ω2]μ)λ + (1 − τ1)

+τ1

(
τ2

(1 − aω2)[1 − (1 − a)ω2] − ω2 + τ2
τ1

ω1 − ω1ω2

(1 − aω2)[1 − (1 − a)ω2]

)
μ = 0.

A one-to-one correspondence of the parameters of the GMPSD and APIU iterative438

methods:439

τ1 = ω,
ω2 + τ2

τ1
ω1 − ω1ω2

(1 − aω2)[1 − (1 − a)ω2] = γ,
τ2

(1 − aω2)[1 − (1 − a)ω2] = τ .

Note: As is seen, γ and τ in APIU were given as functions of three parameters two440

of which (a and ω2) are redundant. For ω2 = 0, GMPSD ≡ APIU.441

Optimal parameters and optimal spectral radius in terms of a and ω2 (2.23):442

τ1opt = 4
√

μmaxμmin

(
√

μmax+√
μmin)

2 , τ2opt = (1−aω2)[1−(1−a)ω2]√
μmaxμmin

,

ω1opt = τ1opt (τ2opt −ω2)

τ2opt −τ1opt ω2
,

ρ
(
T (τ1opt , τ2opt , ω1opt , a, ω2)

) =
√

μmax−√
μmin√

μmax+√
μmin

.

MASOR iterative method by Feng, T.-T.-Guo, X.-P.-Chen, G.-L. [9]: Iterative parame-443

ters: ω′ α′, γ ′.444

General form of iterative algorithm (2.38):445 {
x(k+1) = (1 − ω′

α′+γ ′ )x(k) + ω′
α′+γ ′ A−1(p − By(k)).

y(k+1) = y(k) + 2ω′
2−γ ′ Q−1(BT x(k) − q) + 2γ ′

2−γ ′ Q−1BT (x(k+1) − x(k)).
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The eigenvalues of the iteration matrix T of algorithm (2.38) are λ = 1 − ω′
α′+γ ′ , and 446

all the others are given by the roots of the functional (2.42): 447

λ2 −
(

2 − ω′

α′ + γ ′ − ω′

α′ + γ ′
2γ ′

2 − γ ′ μ
)

λ

+
(

1 − ω′

α′ + γ ′

)
+ ω′

α′ + γ ′

(
2ω′

2 − γ ′ − 2γ ′

2 − γ ′

)
μ = 0.

A one-to-one correspondence of the parameters of the MASOR and APIU iterative 448

methods from (2.39): 449

ω′

α′ + γ ′ = ω,
2ω′

2 − γ ′ = τ,
2γ ′

2 − γ ′ = γ .

Optimal parameters from (2.41): 450

ω′
opt = γ ′

opt = 2

1 + 2
√

μmaxμmin
, α′

opt =
(√

μmax − √
μmin

)2
2
√

μmaxμmin
(
1 + 2

√
μmaxμmin

)
Optimal spectral radius from (2.43): 451

ρ
(
T (α′

opt , ω
′
opt , γ

′
opt )

)
=

√
μmax − √

μmin√
μmax + √

μmin
.

4 Singular symmetric three-parameter iterative methods 452

In the previous section, it was proved that all five three-parameter iterative methods 453

(it is reminded that there were two of them by Louka and Missirlis [20]) proposed for 454

the solution of the nonsingular symmetric saddle-point problem (1.1) are equivalent. 455

(Note that for the time being we are leaving out the additional issues of Remarks 2.5 456

and 2.6 of Huang and Wang’s APIU method.) 457

In this section, we show the equivalence of the above five methods by considering 458

as their representative the Bai et al.’s APIU iterative method when the singular sym- 459

metric saddle-point problem has the same form as in (1.1) except that m ≥ n, the 460

matrix B is rank deficient with rank(B) = r < n and the system is consistent, i.e., 461

[pT − qT ]T ∈ range(A). 462

Let the matrix B have the following singular value decomposition (SVD) form 463

(see Horn and Johnson [17]) 464

UT BV =
[


r 0r,n−r

0m−r,r 0m−r,n−r

]
=: S, ST = V T BT U =

[

r 0r,m−r

0n−r,r 0n−r,m−r ,

]
,

(4.1)
where U ∈ IRm×m and V ∈ IRn×n are orthogonal matrices, and 
r = 465

diag(σ1, σ2, · · · , σr ), with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 being the singular values of B. 466
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In this case, the iteration matrix T (ω, τ, γ ) in (2.6) becomes similar to467

T̂ = diag(UT , V T )T (ω, τ, γ )diag(U, V )

=
[

(1 − ω)Im −ωUT A−1BV

(τ − ωγ )V T Q−1BT U In − ωγV T Q−1BT A−1BV

]
=
[

(1 − ω)Im −ωUT A−1UUT BV

(τ − ωγ )V T Q−1V V T BT U In − ωγV T Q−1V V T BT UUT A−1UUT BV

]
=
[

(1 − ω)Im −ωÂ−1S

(τ − ωγ )Q̂−1ST In − ωγ Q̂−1ST Â−1S

]
, (4.2)

where Â−1 = UT A−1U , Q̂−1 = V T QV and Â, Q̂ are orthogonally similar to468

A, Q, respectively.469

Before we prove the main theorem of this section, which applies to all five three-470

parameter iterative methods, we present a number of statements.471

Lemma 4.1 (Definition (4.8) and Exercise (4.9) on p. 152 of Berman and Plemmons472

[5]): Let T ∈ R
s×s . Then, T is semi-convergent if and only if each of the following473

conditions holds:474

1. ρ(T ) ≤ 1.475

2. If ρ(T ) = 1 then index(Is − T ) = 1476 (
index(Is − T ) = 1 ⇔ rank

(
(Is − T )2

) = rank(Is − T )
)
.477

3. If ρ(T ) = 1 then λ ∈ σ(T ) with |λ| = 1 implies λ = 1.478

A lemma equivalent to Lemma 4.1 is the following.479

Lemma 4.2 (Lemma 2.2 of [32]) Let H ∈ C
l×l and Is−l ∈ C

(s−l)×(s−l) be the480

identity matrix, then the block partitioned matrix481

T =
[
H 0l,s−l

L Is−l

]
(4.3)

is semi-convergent if and only if either L = 0 and H is semi-convergent or ρ(H) < 1.482

Definition 4.1 If T of Lemmas 4.1 and 4.2 is semi-convergent, then the quantity483

γ (T ) = max{|λ|∣∣λ ∈ σ(T ), λ �= 1} (4.4)

is called “semi-convergence factor” and plays the role of the spectral radius of a484

convergent T .485

Lemma 4.3 Let T ∈ R
s×s be semi-convergent. Then, the iterative scheme z(k+1) =486

T ‡(k) + c, k = 0, 1, 2, · · · , z(0) ∈ R
s , semi-converges, namely487

lim
k→∞ z(k) = (Is − T )Dc + (Is − E)z(0), E = (Is − T )(Is − T )D, (4.5)

(see Berman and Plemmons [5], formula (6.14) on p. 199, where (·)D denotes Drazin488

inverse (see same reference Definition 4.10 on p. 118)).489
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Theorem 4.1 Let the singular symmetric saddle-point problem (1.1) where 490

rank(B) = r < n ≤ m and [pT − qT ]T ∈ range(A). Then, for any z(0) = 491[
x(0)T y(0)T

]T ∈ R
m+n the APIU iterative method (2.5) semi-converges to a solu- 492

tion of the singular system (1.1) for any triad (ω, τ, γ ) satisfying the conditions in 493

(2.11), where μmax is the largest eigenvalue of J = Q−1BT A−1B, with Q ∈ R
n×n 494

being symmetric positive definite and μmin the smallest positive eigenvalue of J . The 495

same holds true for all other three-parameter 496

iterative methods presented in Section 2 provided their parameters are interpreted 497

the right way. 498

Proof We follow a way of proof based on Lemma 4.2 and not the one based on 499

Lemma 4.1 as this was done in [11]. First, we partition U , V , A−1, and Q−1 into 500

four blocks each so that their (1, 1) blocks are r × r matrices. Hence, we have that 501

Â−1 =
[

UT
1 (A−1)11U1 UT

1 (A−1)12U1

UT
2 (A−1)21U1 UT

2 (A−1)22U2

]
=
[

(Â−1)11 (Â−1)12

(Â−1)21 (Â−1)22

]
,

502

Q̂−1 =
[

V T
1 (Q−1)11V1 V T

1 (Q−1)12V1

V T
2 (Q−1)21V1 V T

2 (Q−1)22V2

]
=
[

(Q̂−1)11 (Q̂−1)12

(Q̂−1)21 (Q̂−1)22

]
.

Then, T̂ in (4.2) becomes 503

T̂ =

⎡⎢⎢⎣
(1 − ω)Ir 0r,m−r −ω(Â−1)11
 0r,n−r

0m−r,r (1−ω)Im−r −ω(Â−1)21
 0m−r,n−r

(τ − ωγ )(Q̂−1)11
 0r,m−r Ir − ωγ (Q̂−1)11
(Â−1)11
 0r,n−r

(τ − ωγ )(Q̂−1)21
 0n−r,m−r −ωτ(Q̂−1)21
(Â−1)21
 In−r

⎤⎥⎥⎦ .

Obviously, T̂ has the form 504

T̂ =
[
Ĥ 0m+r,n−r

L̂ In−r

]
, (4.6)

where ρ(Ĥ) < 1, with the values of the parameters of Ĥ being used in (2.10) are 505

in the intervals defined in (2.11) and the optimal parameters are given by the expres- 506

sions in (2.20). Note that μmin and μmax are the smallest and the largest positive 507

eigenvalues of Ĥ and the optimal semi-convergence factor of the matrix T is given 508

by 509

γ (Tωopt ,τopt ,γopt ) = γ (T̂ωopt ,τopt ,γopt ) = ρ(Ĥωopt ,τopt ,γopt ) =
√

μmax − √
μmin√

μmax + √
μmin

< 1.

(4.7)
This effectively proves that the matrix T̂ and its similar T are semi-convergent and 510

so are the other four equivalent to them three-parameter iterative methods presented 511

in Section 2. 512

5 Numerical examples 513

To the best of our knowledge, the authors Zheng-Bai-Yang were the first to theo- 514

retically work out the singular symmetric saddle-point problem and presented two 515
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numerical examples 5.1 and 5.2 in [32]. Example 5.1, restricted to its nonsingular516

symmetric part A and B, with rank(B) = n, is Example 5.1 of [2] taken, in turn,517

from [1]. The same nonsingular symmetric example was also used in [8, 14, 25, 27,518

33] and in many others. Technical modifications of B to make A singular were first519

appeared in [32], as in Examples 5.1, 5.2, subsequently in [7, 15, 21–23, 29, 30, 34,520

35, 37, 38] and maybe in others. The authors of [32] kept the matrix A of Example521

5.1 of [2] and artificially constructed the matrices B to make A singular. We pre-522

ferred to use Example 5.2 rather than 5.1 since in the former much more information523

was given than the latter in [32] and so we can use it for comparison purposes.524

The matrix blocks A and B of A of (1.1) are as follows:525

A =
[

Il ⊗ T + T ⊗ Il 0
0 Il ⊗ T + T ⊗ Il

]
∈ R

2l2×2l2 , l even,

T = 1
h2 tridiag(−1, 2, −1) ∈ R

l×l , F = 1
h

tridiag(−1, 1, 0) ∈ R
l×l , h = 1

l+1 ,

B = B̂B̃ ∈ R
2l2×l2 , B̂ =

[
Il ⊗ F

F ⊗ Il

]
∈ R

2l2×l2 , B̃ = I ⊗
[

1 −1
−1 1

]
∈ R

l2×l2 ,

(5.1)
where h is the discretization mesh size. Obviously, m = 2l2 and n = l2. Hence, the526

total number of components of the vectors involved is m + n = 3l2.527

Four expressions for the preconditioning matrix Q, as an approximation to the528

matrix BT A−1B, were chosen as is indicated in Table 1. These expressions were529

previously used in the parameterized Uzawa (PU) method [32].530

All numerical experiments were implemented in MATLAB (version 8.2.0.701531

(R2013b), on a personal computer with machine precision 10−16, 3.50 GHz central532

processing unit (Intel(R) Core(TM)i3), 4G memory and Windows 10 operating sys-533

tem. For the APIU method, all numerical examples were started with an initial vector534 [
x(0)T y(0)T

]T
and terminated when the current iteration satisfied ERR ≤ ε, where535

ε is a small positive number, or when a prescribed maximum iteration number was536

exceeded. ERR denotes the ratio of the norm of the residual of the iteration vector at537

hand RES over that of the initial vector. Both ERR and RES are defined by538

ERR :=
√

‖p − Ax(k) − By(k)‖2
2 + ‖q − BT x(k)‖2

2√
‖p − Ax(0) − By(0)‖2

2 + ‖q − BT x(0)‖2
2

≤ ε. (5.2)

Table 1 Choices of the matrix Q
Case Matrix Q Description

I B̂T Â−1B̂ Â = tridiag(A)

II B̂T Â−1B̂ Â = diag(A)

III tridiag(B̂T Â−1B̂) Â = tridiag(A)

IV tridiag(B̂T Â−1B̂) Â = A
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Note that if and only if the initial vector
[
x(0)T y(0)T

]T
is the zero vector then the 539

relation for the ERR is simplified to 540

ERR :=
√

‖p − Ax(k) − By(k)‖2
2 + ‖q − BT x(k)‖2

2√
‖p‖2

2 + ‖q‖2
2

≤ ε. ) (5.3)

The norm of the residual vector RES is given by 541

RES =
√

||p − x(k) − By(k)||22 + ||q − BT x(k)||22. (5.4)

In the examples, we ran ε = 10−6 was taken. 542

The right hand side vector
[
pT − qT

]T ∈ Rm+n was chosen such that the exact 543

solution of the augmented linear system (1.1) is
[
xT∗ yT∗

]T = [1 1 · · · 1]T ∈ Rm+n. 544

Note that the vector
[
xT∗∗ yT∗∗

]T ∈ R
m+n, with sub-vectors x∗∗ = [1 1 · · · 1]T ∈ 545

R
m, y∗∗ = [0 0 · · · 0]T ∈ R

n, constitutes also an obvious solution. 546

In Table 2 and for the Case I only, we present μmin and μmax as well as the optimal 547

values ωopt and τopt = γopt for selected values of l (m = 2l2, n = l2) which were 548

considered in [32]. The optimal values ωopt , τopt = γopt for the cases II–IV and for 549

the same values of l will be given in Tables 4, 5, and6. 550

In the following four Tables 3, 4, 5, and 6, the results obtained are depicted when 551

Example 5.1 was worked out with the indicated sizes for m and n for all four choices 552

of the matrix Q of Table 1 (cases I–IV) and with three different initial vectors. The 553

sizes m and n, the two optimal parameters ωopt and τopt (= γopt ), the iteration num- 554

bers (IT), the CPU times in seconds (CPU), and the residuals (RES) of the APIU 555

iterative method can be seen in them. (Note that it should be said that (i) μmin and 556

μmax had also been found for the last three choices of Q but we thought it was not 557

necessary to give them here and (ii) all μmin and μmax in our experiments were found 558

using the corresponding MATLAB function with a tolerance of 10−12 or less.) 559

If we look at the CPU times in all four Tables 3–6, we see that there are 560

small differences regarding them depending on the choice of the initial vectors 561

[x(0)T y(0)T ]T . 562

Besides the four Tables 3– 6 and the optimal results just presented using the APIU 563

iterative method, we also depict in Table 7 the corresponding results when using the 564

MINRES and the preconditioned MINRES (PMINRES) iterative methods; the latter 565

with the same choices for the matrix Q. Since by default the two Krylov subspace 566

methods use the zero vector as the starting vector the relevant comparisons should 567

Table 2 Case I. σ(Q)\{0} ⊂
[μmin, μmax] ⊂ (0,+∞) μmin μmax ωopt τopt = γopt

l = 8 2.7555 7.4933 0.9400 0.2201

l = 16 2.6918 7.8577 0.9316 0.2174

l = 24 2.6783 7.9352 0.9298 0.2169

l = 32 2.6734 7.9633 0.9291 0.2167
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Table 3 Case I

m = 128 m = 512 m = 1152 m = 2048

n = 64 n = 256 n = 576 n = 1024

ωopt 0.9400 0.9316 0.9298 0.9291

τopt = γopt 0.2201 0.2174 0.2169 0.2167

IT = 10 IT = 11 IT = 11 IT = 11

x(0) = [0 0 ... 0]T CPU = 0.0005 CPU = 0.0156 CPU = 0.0708 CPU = 0.2025

y(0) = [0 0 ... 0]T ERR = 8.7523e−07 ERR = 5.5615e−07 ERR = 7.1339e−07 ERR = 7.9475e−07

RES = 6.3488e−04 RES = 1.9295e−03 RES = 6.4316e−03 RES = 1.4275e−02

IT = 10 IT = 11 IT = 11 IT = 11

x(0) = [0 0 ... 0]T CPU = 0.0005 CPU = 0.0156 CPU = 0.0686 CPU = 0.2032

y(0) = [1 1 ... 1]T ERR = 8.7523e−07 ERR = 5.5615e−07 ERR = 7.1339e−07 ERR = 7.9475e−07

RES = 6.3488e−04 RES = 1.9295e−03 RES = 6.4316e−03 RES = 1.4275e−02

IT = 10 IT = 11 IT = 11 IT = 11

x(0) = [1 0 ... 1 0]T CPU = 0.0003 CPU = 0.0153 CPU = 0.0707 CPU = 0.2076

y(0) = [1 0 ... 1 0]T ERR = 4.6019e−07 ERR = 4.2020e−07 ERR = 5.8515e−07 ERR = 6.7923e−07

RES = 3.5854e−04 RES = 1.5180e−03 RES = 5.4266e−03 RES = 1.2468e−02

IT = 10 IT = 11 IT = 11 IT = 11

x(0) = [1 0 ... 1 0]T CPU = 0.0003 CPU = 0.0153 CPU = 0.0707 CPU = 0.2076

y(0) = [1 0 ... 1 0]T ERR = 4.6019e−07 ERR = 4.2020e−07 ERR = 5.8515e−07 ERR = 6.7923e−07

RES = 3.5854e−04 RES = 1.5180e−03 RES = 5.4266e−03 RES = 1.2468e−02

Table 4 Case II

m = 128 m = 512 m = 1152 m = 2048

n = 64 n = 256 n = 576 n = 1024

ωopt 0.9058 0.8938 0.8912 0.8902

τopt = γopt 0.2523 0.2504 0.2501 0.2501

IT = 12 IT = 13 IT = 14 IT = 14

x(0) = [0 0 ... 0]T RES = 7.1166e−04 CPU = 0.0196 CPU = 0.0868 CPU = 0.2578

y(0) = [0 0 ... 0]T ERR = 9.8109e−07 ERR = 7.7224e−07 ERR = 3.7683e−07 ERR = 4.5747e−07

RES = 7.1166e−04 RES = 2.6792e−03 RES = 3.3973e−03 RES = 8.2171e−03

IT = 12 IT = 13 IT = 14 IT = 14

x(0) = [0 0 ... 0]T CPU = 0.0004 CPU = 0.0202 CPU = 0.0890 CPU = 0.2622

y(0) = [1 1 ... 1]T ERR = 9.8109e−07 ERR = 7.7224e−07 ERR = 3.7683e−07 ERR = 4.5747e−07

RES = 7.1166e−04 RES = 2.6792e−03 RES = 3.3973e−03 RES = 8.2171e−03

IT = 12 IT = 13 IT = 13 r IT = 14

x(0) = [1 0 ... 1 0]T CPU = 0.0004 CPU = 0.0175 CPU = 0.0820 CPU = 0.2581

y(0) = [1 0 ... 1 0]T ERR = 6.8513e−07 ERR = 6.4961e−07 ERR = 9.7458e−07 ERR = 4.1522e−07

RES = 5.3379e−04 RES = 2.3468e−03 RES = 9.0381e−03 RES = 7.6219e−03
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Table 5 Case III

m = 128 m = 512 m = 1152 m = 2048

n = 64 n = 256 n = 576 n = 1024

ωopt 0.9977 0.9975 0.9975 0.9975

τopt = γopt 0.2400 0.2398 0.2397 0.2396

IT = 4 IT = 4 IT = 4 IT = 4

x(0) = [0 0 ... 0]T CPU = 0.0001 CPU = 0.0063 CPU = 0.0265 CPU = 0.0743

y(0) = [0 0 ... 0]T ERR = 6.2547e−08 ERR = 6.9404e−08 ERR = 7.0589e−08 ERR = 7.0921e−08

RES = 4.5370e−05 RES = 2.4079e−04 RES = 6.3640e−04 RES = 1.2739e−03

IT = 4 IT = 4 IT = 4 IT = 4

x(0) = [0 0 ... 0]T CPU = 0.0001 CPU = 0.0064 CPU = 0.0282 CPU = 0.0745

y(0) = [1 1 ... 1]T ERR = 6.2547e−08 ERR = 6.9404e−08 ERR = 7.0589e−08 ERR = 7.0921e−08

RES = 4.5370e−05 RES = 2.4079e−04 RES = 6.3640e−04 RES = 1.2739e−03

IT = 4 IT = 4 IT = 4 IT = 4

x(0) = [1 0 ... 1 0]T CPU = 0.0002 CPU = 0.0058 CPU = 0.0257 CPU = 0.0768

y(0) = [1 0 ... 1 0]T ERR = 8.0689e−07 ERR = 7.5824e−07 ERR = 6.8342e−07 ERR = 6.1981e−07

RES = 6.2866e−04 RES = 2.7392e−03 RES = 6.3379e−03 RES = 1.1377e−02

be made with the corresponding results of the Tables 3–6 for x(0) = 0 ∈ R
m and 568

y(0) = 0 ∈ R
n. 569

As a summary, regarding Tables 3–7, a number of points are made below which 570

are pretty close to those given for Example 5.2 in [32]. 571

Table 6 Case IV

m = 128 m = 512 m = 1152 m = 2048

n = 64 n = 256 n = 576 n = 1024

ωopt 0.9990 0.9989 0.9989 0.9988

τopt = γopt 0.2477 0.2489 0.2491 0.2492

IT = 3 IT = 3 IT = 3 IT = 3

x(0) = [0 0 ... 0]T CPU = 0.0002 CPU = 0.0052 CPU = 0.0206 CPU = 0.0628

y(0) = [0 0 ... 0]T ERR = 3.5950e−07 ERR = 3.6667e−07 ERR = 3.9192e−07 ERR = 4.0261e−07

RES = 2.6077e−04 RES = 1.2721e−03 RES = 3.5333e-03 RES = 7.2318e−03

IT = 3 IT = 3 IT = 3 IT = 3

x(0) = [0 0 ... 0]T CPU = 0.0001 CPU = 0.0049 CPU = 0.0207 CPU = 0.0679

y(0) = [1 1 ... 1]T ERR = 3.5950e−07 ERR = 3.6667e−07 ERR = 3.9192e−07 ERR = 4.0261e−07

RES = 2.6077e−04 RES = 1.2721e−03 RES = 3.5333e−03 RES = 7.2318e−03

IT = 4 IT = 4 IT = 4 IT = 4

x(0) = [1 0 ... 1 0]T CPU = 0.0002 CPU = 0.0066 CPU = 0.0286 CPU = 0.0795

y(0) = [1 0 ... 1 0]T ERR = 2.6051e−07 ERR = 1.1926e−07 ERR = 1.1861e−07 ERR = 1.1626e−07

RES = 2.0297e−04 RES = 4.3083e−04 RES = 1.1000e−03 RES = 2.1340e−03
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Table 7 MINRES and PMINRES

m = 128 m = 512 m = 1152 m = 2048

n = 64 n = 256 n = 576 n = 1024

MINRES IT = 54 IT = 99 IT = 125 IT = 158

CPU = 0.0032 CPU = 0.0496 CPU = 0.2188 CPU = 0.7492

ERR = 6.0502e−07 ERR = 8.2003e−07 ERR = 9.7611e−07 ERR = 8.9558e−07

RES = 4.3887e−04 RES = 2.8449e−03 RES = 8.8001e−03 RES = 1.6087e−02

IT = 53 IT = 91 IT = 115 IT = 140

PMINRES CPU = 0.0697 CPU = 0.0437 CPU = 0.2232 CPU = 0.8407

Case I ERR = 7.6345e−07 ERR = 9.8838e−07 ERR = 9.4842e−07 ERR = 9.9928e−07

RES = 8.4286e−04 RES = 4.8655e−03 RES = 1.1676e−02 RES = 2.4053e−02

IT = 77 IT = 146 IT = 187 IT = 235

PMINRES CPU = 0.0046 CPU = 0.0662 CPU = 0.3423 CPU = 1.2378

Case II ERR = 6.9940e−07 ERR = 8.8528e−07 ERR = 9.6244e−07 ERR = 9.5017e−07

RES = 7.8387e−04 RES = 4.6438e−03 RES = 1.4195e−02 RES = 2.8379e−02

IT = 62 IT = 107 IT = 135 IT = 164

PMINRES CPU = 0.0040 CPU = 0.0516 CPU = 0.3754 CPU = 0.9511

Case III ERR = 5.5294e−07 ERR = 8.2844e−07 ERR = 9.7470e−07 ERR = 9.1514e−07

RES = 5.3880e−04 RES = 3.7478e−03 RES = 1.0279e−02 RES = 1.9705e−02

IT = 10 IT = 10 IT = 9 IT = 9

PMINRES CPU = 0.0020 CPU = 0.0100 CPU = 0.0426 CPU = 0.2011

Case IV ERR = 4.1815e−07 ERR = 3.3008e−07 ERR = 8.5284e−07 ERR = 7.4259e−07

RES = 5.4721e−04 RES = 2.1039e−03 RES = 1.1437e−02 RES = 2.0045e−02

1. The optimal cases I and II are pretty much equivalent as they are the optimal572

cases III and IV; the latter cases are far better than the former ones.573

2. It seems that in the optimal cases III and IV, ωopt ≈ 1 from below for all the574

values of l and, therefore, for the m and n considered.575

3. The first three cases of PMINRES do not give better results than those of MIN-576

RES; also, case IV of PMINRES is superior to MINRES and to all the rest of577

PMINRES (cases I, II, III).578

4. While the optimal cases I and II are pretty much equivalent to PMINRES (case579

IV), the optimal cases III and IV are obviously superior to the MINRES and580

PMINRES (cases I–IV).581

To conclude the present section, we give one more table (Table 8), where con-582

vergence of the APIU iterative method is shown for various triads of the parameters583

(ω, τ, γ ) chosen from their respective intervals of convergence. The extreme values584

of μ and those of ωopt , τopt , γopt are taken from the first row of the data of Table 2.585
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Table 8 Convergence of APIU for various triads (ω, τ, γ )

l = 8 (m = 128, n = 64)

IT = 44

CPU = 0.0013

γ1 = 0.0983 ERR = 7.3254e−07

τ1 = 0.1100 RES = 5.3137e−04

IT = 42

CPU = 0.0013

γ2 = 0.3548 ERR=8.1326e−07

ω1 = 0.4700 RES=5.8993e−04

IT = 87

CPU = 0.0025

γ3 = 0.6208 ERR=6.6236e−07

τ2 = 0.6779 RES=4.8046e−04

IT = 37

CPU = 0.0011

γ4 = 0.6971 ERR = 6.6491e−07

RES = 4.8231e−04

IT = 35

CPU = 0.0010

γ5 = 0.0188 ERR = 8.3354e−07

τ3 = 0.1100 RES = 6.0463e−04

IT = 18

CPU = 0.0009

γ6 = 0.0610 ERR = 5.9152e−07

ω2 = 1.4700 RES = 4.2908e−04

IT =160

CPU = 0.0078

γ7 = 0.1701 ERR = 7.9131e−07

τ4 = 0.2916 RES = 5.7400e−04

IT =76

CPU = 0.0022

γ8 = 0.1820 ERR = 7.1138e−07

RES = 5.1602e−04

To construct this table and at the same time have the triads (ω, τ, γ ) as different 586

as possible, we choose ω1 and ω2 as the midpoints of the intervals (0, ωopt ) and 587

(ωopt , 2). Next, since τ ∈ (0, 4
ωiμmax

), i = 1, 2, we choose τ1, τ2 and τ3, τ4 using 588

ω1 and ω2, respectively. Finally, the values of γ1, γ2, γ3, γ4, and γ5, γ6, γ7, γ8 are 589

chosen having in mind the four ranges for τ , based on ω1 and ω2, and the ranges for 590

γ from (2.24). 591
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6 Concluding remarks and discussion592

1. Section 1 is an introductory section to the problems considered and solved in593

this work. A number of previous works that led us to consider the problems594

treated in this paper are cited.595

2. In the introduction of Section 2, a brief reference is made to the generalized596

inexact accelerated overrelaxation (GIAOR) iterative method introduced by597

Bai, Parlett, and Wang in the beginning of Section 7 of [2] and specifically to a598

“simplified” version of it renamed later by Bai and Wang accelerated parame-599

terized inexact Uzawa (APIU) iterative method. So, what we considered in the600

next subsections was the iterative solution of the nonsingular symmetric saddle-601

point problem using three parameters ω, τ , and γ , instead of the usual two ω602

and τ . The main seed and ideas of the method as well as the intervals of con-603

vergence of the three parameters can be found in the aforementioned Section 7604

of [2].605

3. In the rest and main part of Section 2, we considered five of the iterative606

schemes (maybe more have appeared in the literature) which we have come607

across. All of them are based directly or indirectly on the APIU iterative method608

[2]. We made a number of comments on them, we pointed out what their609

strong points are and made some improvements to the last but one method and610

completed the last one.611

4. First, in Section 2.1, Bai et al. [2], in their pioneering work, proposed among612

others their three-parameter APIU iterative method and found intervals of613

convergence for all three parameters (ω, τ, γ ) for the nonsingular symmetric614

saddle-point problem. This method is presented and their optimal parame-615

ters were given later after the equivalence between the APIU and GMESOR616

iterative methods was established.617

5. Next, in Sections 2.2, 2.2.1, and 2.2.2, Louka and Missirlis [20] (see also618

[19]) proposed two iterative methods (GMESOR, GMPSD) and using a com-619

bination of analytical and geometrical tools succeeded in being the very first620

researchers who solved the three-parameter saddle-point problem completely.621

Surprisingly enough, in both methods, it was proved that τopt = γopt , meaning622

that the optimal three-parameter iterative method was nothing but the well-623

known optimal two-parameter one which was solved by Bai et al. in [2]. The624

latter authors also found the regions of convergence parameters and the optimal625

parameters involved. The parameters a in [20] by Louka and Missirlis (see also626

[19]) in GMESOR as well as those of a, ω2 in GMPSD three-parameter itera-627

tive methods were practically shown by the authors themselves that they were628

redundant.629

6. Then, in Section 2.3, Huang and Wang [18] used the APIU iterative method630

and by purely analytical methods solved also completely the three-parameter631

saddle-point problem. As was pointed out in Remarks 2.5 and 2.6, Huang and632

Wang [18], besides the solution of the problem, as Louka and Missirlis did633

in [20], they also obtained for the first time in their analysis issues that had634

escaped the attention of all the previous researchers in the area. Specifically,635

(i) for the case m = n, different expressions for the convergence regions of636
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the three parameters involved from those of the case m > n were obtained 637

and (ii) regions of convergence of the three parameters when ω and τ take 638

positive/negative or negative/positive values, respectively, were also obtained. 639

The convergence regions of the parameters involved for m > n and m = n 640

given in [18] were slightly modified. In Theorem 2.5, the modified ones were 641

obtained and were presented in the expressions (2.25) and (2.26), respectively. 642

7. Finally, in Section 2.4, Feng et al. [9] presented their three-parameter MASOR 643

iterative method for the solution of the nonsingular symmetric saddle-point 644

problem but did not succeed in obtaining regions of convergence nor optimal 645

parameters. What they missed regarding the previous two issues was completed 646

by the present authors based mainly on the Louka and Missirlis’s [20] and 647

Huang and Wang’s [18] works. 648

8. In Section 3, it is shown that all the four three-parameter iterative methods are 649

equivalent for the solution of the nonsingular saddle-point problem. This is also 650

true for their regions of convergence and their optimal parameters. A summary 651

of all these issues is then briefly presented. 652

9. In Section 4, the singular symmetric saddle-point problem for the three- 653

parameter iterative method was tackled and solved. As far as we know, this 654

has been done for the very first time. The way we worked it out was based on 655

the main Lemma 2.2 by Zheng et al. [32], instead of Lemma 3.4 of [11]. Nat- 656

urally, the corresponding analysis was a little more complicated than that in 657

[32]. Finally, it was proved that whatever holds for the regions of convergence 658

and the optimal parameters of the nonsingular symmetric saddle-point problem 659

does hold for the singular symmetric problem provided that we take out the 660

zero eigenvalues from the spectrum of the matrix coefficient and work with a 661

smaller nonsingular matrix (see text). In case, m < n and rank(B) = n′ = m, 662

the optimal results and the ranges of convergence of the parameters involved 663

found by Huang and Wang [18] for the special case m = n with n′ taking the 664

place of n in the corresponding expressions can be applied. 665

10. In Section 5, we worked out Example 5.2 of [32] and any comments on it were 666

given in the corresponding part of the text. 667
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